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Abstract

Recent studies have indicated the existence of an extensive trans-genomic trans-mural co-metabolism between gut
microbes and animal hosts that is diet-, host phylogeny- and provenance-influenced. Here, we analyzed the biodiversity at
the level of small subunit rRNA gene sequence and the metabolic composition of 18 Mbp of consensus metagenome
sequences and activity characteristics of bacterial intra-cellular extracts, in wild Iberian lynx (Lynx pardinus) fecal samples.
Bacterial signatures (14.43% of all of the Firmicutes reads and 6.36% of total reads) related to the uncultured anaerobic
commensals Anaeroplasma spp., which are typically found in ovine and bovine rumen, were first identified. The lynx gut was
further characterized by an over-representation of ‘presumptive’ aquaporin aqpZ genes and genes encoding ‘active’
lysosomal-like digestive enzymes that are possibly needed to acquire glycerol, sugars and amino acids from glycoproteins,
glyco(amino)lipids, glyco(amino)glycans and nucleoside diphosphate sugars. Lynx gut was highly enriched (28% of the total
glycosidases) in genes encoding a-amylase and related enzymes, although it exhibited low rate of enzymatic activity
indicative of starch degradation. The preponderance of b-xylosidase activity in protein extracts further suggests lynx gut
microbes being most active for the metabolism of b-xylose containing plant N-glycans, although b-xylosidases sequences
constituted only 1.5% of total glycosidases. These collective and unique bacterial, genetic and enzymatic activity signatures
suggest that the wild lynx gut microbiota not only harbors gene sets underpinning sugar uptake from primary animal
tissues (with the monotypic dietary profile of the wild lynx consisting of 80–100% wild rabbits) but also for the hydrolysis of
prey-derived plant biomass. Although, the present investigation corresponds to a single sample and some of the statements
should be considered qualitative, the data most likely suggests a tighter, more coordinated and complex evolutionary and
nutritional ecology scenario of carnivore gut microbial communities than has been previously assumed.
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research was supported by the Spanish CSD2007-00005 and by European Regional Development Fund (ERDF) funds. The Regional Government of Environment of
the Junta de Andalucı́a provided permission for the collection of samples (permit SGYB/FOA/AFR/CFS) during routine conservation management works. SAH, PNG
and CJN acknowledge the support of Bangor-Aberystwyth Strategic Alliance partnership in frames of Centre for Integrated Research in the Rural Environment
(CIRRE) and Biosciences, Environment and Agriculture Alliance (BEAA). The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: Two of the authors are employed by a commercial company (Ribocon GmbH). This does not alter the authors’ adherence to all the PLOS
ONE policies on sharing data and materials. The authors declare that they have no competing interests.

* E-mail: mferrer@icp.csic.es

Introduction

The Iberian lynx (Lynx pardinus) is native to the Iberian

Peninsula [1] and is considered the most endangered felid species

in the world [2]. Iberian lynxes are confined to two isolated

populations in southern Spain in the Doñana-Aljarafe and Sierra

Morena areas, and only 88 and 224 individuals, respectively, are

estimated to remain [3]. To save this species from extinction, an

EU LIFE Nature project is underway that includes habitat

preservation, lynx population monitoring, and rabbit population

management [4]. Additionally, cryopreservation of lynx genetic

material and a captive ex situ breeding project were initiated to

preserve the genetic diversity of the species and to produce new

specimens for future reintroduction [5,6].

At present, this species is critically endangered due to the

decline of its basic prey (the wild European rabbit, Oryctolagus

cuniculus), an increase in non-natural mortality, the fragmenta-

tion and loss of its habitat [7,8] and the effects of infectious

diseases [9,10]. The identification of heavy metals in the tissues
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of some lynxes [11] also suggests that anthropogenic activities

(such as mining) that do contaminate their water reservoirs in

Southern Spain (Doñana and Sierra Morena), may impact lynx

health and survival. Comparative analysis of the gestagens and

the estrogen levels in four lynx species has indicated the possible

role of qualitative and quantitative variations in gut bacteria

composition as determinants of specific life stages [12]. This

idea is consistent with the fact that gut harbors a vast ensemble

of microbes that perform vital processes for host physiology and

nutrition [13].

Owing to metagenomic approaches, our knowledge of the

abundance, diversity and evolution of gut microbes has been

fundamentally advanced over the past decade. Fecal microbial

communities of approximately 200 animals representing approx-

imately 60 species have been analyzed to date, including human

[13], buffalo [14,15], bovine rumen [16,17], pig [18,19], rat [20],

turkey [21], swine [22], giant panda [23], wallaby [24], feline [25],

canine [26,27], wild gorilla [28] and wild wolf [29] gut

communities, to cite the most significant cases. According to a

recent study [13], the diet and phylogeny of a host strongly shape

gut bacterial diversity, which increases from carnivory to omnivory

and to herbivory, and these bacterial communities co-diversify

with their host. The study also indicated that gut bacterial

communities from hosts of the same taxa with similar diets are the

most similar to each other, regardless of geographic location, and

that the capacity to survive largely on a plant-based diet was likely

acquired independently. However, no results explain how prey

with both monotypic and varied diets may shape the intestinal

microbiota of a predator. In this context, the rapidly growing field

of gene-centric metagenomic analysis is promoting our under-

standing of the functions of gut microbial populations. However,

the few examples applied to date are restricted to herbivores such

as swine [22], Tammar wallabies [24], cows [16], buffalo [15] and

giant pandas [23], omnivores such as humans [30] and, to a lesser

extent, carnivores such as canines [27]. The results of these studies

emphasize that: (i) animal survival may highly depend on gut

microbes; (ii) in many cases, the repertoire and diversity of specific

gene sets for a particular activity, such as plant biomass

conversion, could not be expected from the diet of the animal

[24]; and (iii) gene signatures may also be used as pathogenic and

antibiotic resistance indicators [22].

Despite extensive information concerning the field ecology of the

wild Iberian lynx [9,31–36], to date, no information is available

regarding its gut microbial composition, structure and function.

Herein, an extensive comparative analysis with respect to microbial

composition and functional content has provided the first insight

into the presence of metabolic signatures and gene sets enriched in

the lynx gut. We also measured enzymatic activities in bacterial

intra-cellular enzyme extracts isolated from lynx fecal samples and

compared them with those present in rumen content. Our objective

was to verify the correlation between the presence and/or

occurrence of particular gene sets and their functional performance

and to differentiate lynx gut from ruminant communities from a

functional point of view. Contrary to previous thought, this study

suggests an occurrence of high metabolic complexity in the gut of

the wild Iberian lynx and possibly also in other carnivores. It should

be noted that our investigation was restricted to the analysis of fecal

samples from one-adult wild Iberian lynx.

Methods

Fresh fecal samples were collected and immediately processed

from one-adult wild Iberian lynx from Sierra Morena (Santa

Elena, Jaén, Spain; 38u2090N 3u3290O) captured as part of the

routinely radio-monitoring program of the LIFE-Nature conser-

vation project. Capture was made with a double-entrance, electro-

welded-mesh box-trap following international safely standards

(ISO 10990-5), and according to the animal welfare specifications

of the permit SGYB/FOA/AFR/CFS of the Andalusia Regional

Government of Environment. Handling was performed under

anesthesia and the individual was safely released after 1 h of

capture. The animal, named Eva (weight: 11.1 kg; year of born:

2008), had a normal health status, and the sample was taken 8

hours from the last meal. The corporal status was good and

healthy. Fecal DNA was extracted using the MoBio Kit according

to the manufacturer’s instructions using 12 g of fecal sample. The

quality of the total DNA was checked by agarose electrophoresis

and was spectrophotometrically quantified, which indicated a total

amount of approximately 20 mg. Functional analysis were also

performed using fecal samples of a second animal, named

Granadilla (weight: 87.0 kg; year of born: 2010), captured and

processed as for the animal named Eva.

DNA Sequencing, Assembly, Gene Prediction and
Annotation

Sequencing was performed with a Roche 454 GS FLX Ti

sequencer (454 Life Sciences, Branford, CT, USA) at Lifesequen-

cing S.L. (Valencia, Spain), with one picotiterplate. Assembly was

performed with Roche Newbler assembler v. 2.5.3 using the default

parameters.

Potential protein-coding genes were identified with MetaGene

[37]. Additionally, contigs without open reading frame (ORF)

predictions by MetaGene were translated into artificial reading

frames and were BLAST-searched against the NCBI-nr database

for similar sequences. Artificial translations with similarities were

further processed in the same manner as the predicted ORFs from

MetaGene. Transfer RNA genes were identified with tRNAScan-

SE [38], and ribosomal RNA genes were identified with meta-rna

1.0 [39]. Annotation was performed with GenDB, version 2.2 [40],

supplemented with the tool JCoast, version 1.6 [41]. For each

predicted ORF, observations were collected from similarity searches

against the NCBI-nr, Swiss-Prot, Kyoto Encyclopedia of Genes and

Genomes (KEGG) and genomesDB sequence databases [41] and

against protein family databases from Pfam [42] and InterPro [43].

SignalP was used for signal peptide predictions [44] and TMHMM

was used for transmembrane helix analysis [45]. Predicted protein

coding sequences were automatically annotated using the in-house

software MicHanThi [46]. The MicHanThi software predicts gene

functions based on similarity searches using the NCBI-nr (including

Swiss-Prot) and InterPro databases. The annotation of proteins

highlighted within the scope of this study was the subject of manual

inspection. For all observations regarding putative protein func-

tions, an E-value cutoff of 1024 was used.

Functional Classification with KEGG
To identify potential metabolic pathways, genes were

searched for similarity against the KEGG database. A match

was considered valid if the similarity search resulted in an

expectation E-value less than 1e205 [47]. All occurring KO

(KEGG Orthology) numbers were mapped against KEGG

pathway functional hierarchies and were statistically analyzed.

Functional Classification with Cluster of Orthologous
Groups (COG)

All predicted ORFs were also examined for similarity against

the COG database [48]. A match was considered valid if the

similarity search resulted in an E-value less than 1e205.

Metagenomics of the Iberian Lynx Distal Gut
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Comparison with other Fecal Metagenomes Based on
KEGG

An additional set of 23 metagenomes describing animal-

associated (mammals and arthropoda) microbiomes for compar-

ative genomics were obtained by the IMG/M webpage of the US

Department of Energy Joint Genome Institute (http://www.jgi.

doe.gov/) [49]. For each metagenome, the functional classification

by KEGG has been downloaded. All of the downloaded lists were

parsed by counting matches to one of the 20590 KO entries in the

original KEGG hierarchy. The final list was normalized by

calculating the percentages of occurrence. This list was used to

build heat maps with JHeatChart (http://www.javaheatmap.com).

Additionally, a distance matrix was calculated between all of the

metagenome KEGG pathways listed by measuring the depen-

dence between the two lists with the Pearson product-moment

correlation coefficient. This distance matrix was used to generate

the tree and was finally integrated into the heat map.

In-depth Small Subunit (SSU) rRNA Analysis
Unassembled sequence reads from metagenome sequencing

were pre-processed (quality control and alignment) by the

bioinformatics pipeline of the SILVA project [50]. Briefly, reads

shorter than 200 nucleotides and with more than 2% ambiguities

or 2% homopolymers were removed. The remaining reads were

aligned against the SSU rRNA seed of the SILVA database release

106 (http://www.arb-silva.de/documentation/background/

release-106), whereupon non-aligned reads were not considered

for downstream analysis. Using this strategy, putative partial SSU

rRNA gene reads within the dataset could be extracted.

Subsequently, remaining reads were (1) dereplicated, (2) clustered,

and (3) classified. For statistical reasons, the considerable

overlapping of extracted reads in terms of gene region coverage

is extremely unlikely; therefore, steps (1) and (2) cannot lead to any

meaningful information. However, from a technical perspective,

the procedures are favorable because they minimize the number of

reads in the final classification step. Dereplication (the identifica-

tion of identical reads) was performed with cd-hit-est of the cd-hit

package 3.1.2 (http://www.bioinformatics.org/cd-hit) using an

identity criterion of 1.00 and a word size of 8. The remaining

sequences were clustered again with cd-hit-est using an identity

criterion of 0.98 (same word size). The longest read of each cluster

was used as a reference for taxonomic classification, which was

performed by a local BLAST search against the SILVA SSURef

106 NR dataset (http://www.arb-silva.de/projects/ssu-ref-nr/)

using blast 22.2.22+ (http://blast.ncbi.nlm.nih.gov/Blast.cgi)

with standard settings. The full SILVA taxonomic path of the

best blast hit was assigned to the reads in the event that the value

for (% sequence identity+% alignment coverage)/2 was at least

93.0. In the final step, the taxonomic path of each cluster reference

read was mapped to the additional reads within the corresponding

cluster and the corresponding replicates, which were identified in

the previous analysis step, to finally obtain (semi-)quantitative

information concerning the number of individual reads represent-

ing a taxonomic path.

The presence of archaeal 16S rRNA gene signatures was

checked by using the archaeal-specific primers Ar20F

(TTCCGGTTGATCCYGCCRG) and Ar958R

(YCCGGGGTTGAMTCCAATT) and total DNA as template.

Amplification was done in a 20 ml reaction volume with

recombinant Taq DNA Polymerase (Invitrogen, Germany) and

original reagents, according to the PCR protocols, with the

annealing temperature of 45uC and 50uC (bacterial and archaeal

rRNA, respectively), for 30 cycles.

MIxS Submission
Consistent contextual data acquisition for MIxS- compliant

submission by using the environmental package ‘host-associated’

has been done using JCoast v1.7.

Phylogenetic Analysis of SSU rRNA Genes
For the SSU rRNA gene sequences, initial alignment of

amplified sequences and close relatives identified with BLAST

[51] were performed using the SILVA alignment tool [50] and

manually inserted in ARB [52]. After alignment, the neighbour-

joining algorithm of ARB program package was used to generate

the phylogenetic trees based on distance analysis for SSU rRNA.

The robustness of inferred topologies was tested by bootstrap re-

sampling using the same distance model (1,000 replicates).

Preparation of Protein Crude Extracts and Enzyme Assays
Fresh fecal samples collected from two-adult wild Iberian

lynxes, named Eva (for which DNA was isolated and analyzed

here) and Granadilla, were used for activity test. To prepare

enzyme extracts, fresh fecal samples (5.00 and 3.97 grams for Lynx

named Eva and Granadilla, respectively) were firstly homogenized

with 50 ml (for Eva) and 15 ml (for Granadilla) buffer solution

(5 mM sodium pyrophosphate, pH 7.8; Sigma Chemical Co., St.

Louis, MO, USA) containing TweenH 80 (final concentration,

1 mg liter21; Sigma Chemical Co.) to facilitate microbial

distribution. For microbial dispersion from fecal samples, the

solution was sonicated on ice in an ultrasonic cleaner (Bandelin

SONOREX RK31; Bandelin electconic, Berlin, Germany) with

the amplitude set at 100% of the maximum. The dispersion time

for samples was 90 min. After dispersion, the samples were then

centrifuged at 9 g at 4uC for 10 minutes to remove fecal debris and

the cell pellet was used directly for protein extraction. The

supernatant was then centrifuged at 8,500 g for 10 min at 4uC to

pellet the microbial cells which were kept at 280uC until use.

Rumen contents were collected from four rumen-fistulated,

non-lactating Holstein cows (average weight of 731 kg) housed at

Trawsgoed experimental farm (Aberystwyth, Ceredigion, Wales).

Samples were retrieved under the authorities of the UK Animal

(Scientific Procedures) Act (1986). Animals were fed a diet

composed of a mixture of grass silage and straw (75:25) ad libitum.

Sampling was carried out 2 h after the morning feed. Rumen

samples were harvested and then processed to produce two

fractions: strained ruminal fluid (SRF) and liquid-attached bacteria

(LAB). For SRF retrieval, total ruminal content was strained

through four layers of muslin in order to remove large particles,

and SRF was then frozen at 280uC until use. Cell pellet was

obtained using the same protocol as for the Lynx (Granadilla) fecal

samples (see above) using the total amount (5.09 g) of ruminal

material. For LAB retrieval, approximately 1 liter of mixed total

rumen content was hand squeezed to get rumen liquor, and the

solid fraction was put in a large foil tray. The liquid fraction was

spun at 2,000 g, 10 min, 4uC (MSE Europa 24 M, Berthold

Hermle KG, Weisbaden, Germany); the supernatant was then

strained through a 1 mm2 pore-sized nylon mesh to remove feed

particles, and spun again at 13,000 g, 25 min, 4uC. The pellet was

washed in a saline solution (made from 180 g NaCl dissolved in

20 L distilled water), and subsequently centrifuged at 13,000 g,

25 min, 4uC. The pellet was re-washed with distilled water, and

spun down at 13,000 g, 15 min, 4uC. The pellet, containing LAB,

was then transferred into a sterile jar and kept at 280uC until use.

Cell pellet was obtained using the same protocol as described

above for lynx fecal samples using the total amount (430 mg) of

material and 3 ml TweenH 80-supplemented sodium pyrophos-

phate solution.

Metagenomics of the Iberian Lynx Distal Gut
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Protein extraction (for both lynx feces and rumen samples) was

performed by incubating 10 ml (for Eva), 15 ml (for Granadilla

and SRF) and 4 ml (for LAB) 4-(2-hydroxyethyl)piperazine-1-

ethanesulfonic acid (HEPES) buffer (40 mM, pH 7.0) supplement-

ed with 3 ml LysonaseTM Bioprocessing Reagent (Novagen) for

60 min at room temperature with the microbial pellet obtained as

described above. Fecal or ruminal bacteria were further disrupted

by mechanical lysis followed by sonication for 2.5 min on ice using

an ultrasonicator equipped with a 3-mm tapered microtip and

with the amplitude set at 10-W. The extract was then centrifuged

at 4uC for 10 min at 12,000 g to separate cell debris and intact

cells. The supernatant was carefully aspirated (to avoid disturbing

the pellet), transferred to a new tube and freeze dried. Dry

material was stored at 220uC until use and re-suspended in buffer

20 mM HEPES, pH 7.0, prior to use. Using this protocol the total

amount of proteins recovered for the four samples were: 12.5 mg

per 5.00 gram of fecal sample of the Lynx named Eva, 8.1 mg per

3.97 gram of fecal sample of the Lynx named Granadilla,

20.00 mg per 5.09 gram of ruminal SRF material and 21.00 mg

per 430 mg of fecal sample of LAB rumen content.

Enzymatic activity was quantified in 96-well plates using a

BioTek Synergy HT spectrophotometer by measuring release of p-

nitrophenol (pNP) using a protein amount of 6.34 mg (for Eva),

7.74 mg (for Granadilla), 15.83 mg (for SRF) and 15.42 mg (for

LAB), and [substrate] of 1 mg ml21 (from a 10 mg ml21 stock

solution) in 20 mM glycine buffer, pH 9.0, T = 30uC, in a final

volume of 50 ml. Enzyme and control tests were incubated for 5 to

960 min for assays. Under our experimental conditions, the

absorption coefficient for pNP was measured as

15,200 M21?cm21. In all cases, one unit (U) of enzyme activity

was defined as the amount of protein producing 1 mmol of

reducing sugars in 1 min under the assay conditions. Unless

otherwise stated, all assays were performed using technical

replicates. The following substrates (all from Sigma Chemical

Co., St. Louis, MO, USA) were used for activity tests: pNP-a-

glucopyranoside, pNP-b-D-glucopyranoside, pNP-a-maltoside,

pNP-a-D-maltopentaoside, pNP-a-D-maltohexaoside, pNP-b-D-

cellobioside, pNP-a-L-galactopyranoside, pNP-b-D-galactopyra-

noside, pNP-a-xylopyranoside, pNP-b-xylopyranoside, pNP-a-ara-

binopyranoside, pNP-b-arabinopyranoside, pNP-a-arabinofurano-

side, pNP-a-L-rhamnopyranoside, pNP-a-mannopyranoside, pNP-

b-D-mannopyranoside, pNP-b-lactopyranoside, pNP-b-lactoside,

pNP-a-fucoside, pNP-b-fucoside, pNP-b-glucuronide and pNP-b-

acetylglucuronide.

Deposition of Sequence Data
Project has been registered as umbrella BioProject at NCBI with

the ID PRJNA158313. This Whole Genome Shotgun project has

been deposited at DDBJ/EMBL/GenBank under the accession

AMCI00000000. The version described in this paper is the first

version, AMCI01000000.

Results and Discussion

General Comments
Recent research has disclosed tight connections between host

diet and microbiome phylogenetic and metabolic diversity [13]. In

this context, as wild lynx is well known to have a monotypic diet

that consists primarily of wild European rabbits, it could be used as

a model to interrogate how a specific prey may shape predator

intestinal microbiome. This is of a special significance, as the

microbiome analysis of a carnivore with monotypic prey diet has

not been yet reported, which may reflect the genetic potential

within an ecosystem. Following on from this, the analysis of both

microbial diversity and microbial genomic and functional contents

in fecal samples of a healthy adult lynx was undertaken. Instead of

performing an extensive phylogenetic analysis, special emphasis

was given to the identification and analysis of gene signatures and

their associated activities present in the gut microbiome.

To uncover the genomic information of the dominant colonic

bacteria in wild lynxes, fecal samples were collected from a healthy

adult lynx captured near Santa Elena (Jaén, Spain) (Figure S1). The

extracted DNA was directly pyrosequenced using a Roche GS FLX

DNA sequencer, which produced 795,151 reads with an average

length per read of 366.7 bp and a total of 291.59 Mbp of raw DNA

sequences. Circa 146,153 reads (or 18.38% total reads) were

singletons, i.e., reads that were not assembled into contigs; singletons

longer that 100 nucleotides accounted 140,429 (or 17.67%).

General Features of the Microbial Diversity in the Distal
gut of the Wild Lynx

The biodiversity at the level of small subunit (SSU) rRNA was

analyzed on the online server using SILVA databases. For this

purpose, we just used those raw (unassembled) sequences with a

length .200 nucleotides obtained after direct pyrosequencing of

the extracted DNA (Figure S2). All shorter sequences were

discarded. As result, 1,570 reads (or 0.2% of all of the total reads)

found matches in this database. The ensemble of SSU rRNA

sequences produced in this study provides an overarching,

although incomplete, view of the lynx gut microbiota. All of the

recovered sequences were unambiguously assigned; they affiliated

exclusively with the kingdom Bacteria, with the absolute domi-

nance of the three phylogenetic lineages of Firmicutes (43.25%),

Bacteroidetes (39.43%) and Fusobacteria (10.45%) (Figures 1 and

S3). Members of Proteo- and Actinobacteria were also identified in

relatively abundant quantities (4.27 and 1.78%, respectively),

whereas the phylum Spirochaetes was represented by 12 reads that

accounted for only 0.76% of the total SSU sequences. Candidate

division TM7, which is a recently recognized major lineage of the

domain Bacteria with unknown cultivated representatives, was

recovered from the distal gut of the wild lynx as singleton.

As shown in Figure S4, more than two-fifths of all of the reads

(679 out of 1,570) affiliated with the phylum Firmicutes

represented 11 different families of the following five classes:

Clostridia, Erysipelotrichi, Negativicutes, Mollicutes and Bacilli.

Lachnospiraceae and Ruminococcaceae were the largest clostridia

families and accounted for almost half of all of the reads belonging

to phylum Firmicutes (186 and 120 reads out of 679, respectively).

Although mammalian gut microbes are highly adapted to their

habitats, many lineages are extremely rare outside of mammalian

guts and resist cultivation [53]. Accordingly, only a G6Y_G13M

sequence was related to a cultivated organism, Howardella ureilytica

(DQ925472), whereas the other reads were closely related to the

uncultivated members of gut microbiota recovered from various

carnivorous mammals [13]. The members of three additional

families of class Clostridia, namely Peptostreptococcaceae, Clos-

tridiaceae and representatives of Family XIII Incertae sedis, were

present in lynx gut microbiota at varying frequencies (9.43%,

1.18% and 2.8% of all Firmicutes reads, respectively; Figure S5).

More than 140 reads, which accounted for almost 21% of all

Firmicutes reads, fell into class Erysipelotrichi and were unam-

biguously classified within Erysipelotrichaceaei. Aside from 28

identical reads belonging to Allobaculum stercoricanis (canine feces

isolate), no relation to other cultivated representatives of this

family was noted. Class Negativicutes was represented by the

family Veillonellaceae and contained 24 reads (3.53% of all of the

Firmicutes reads) that were closely related to uncultivated

bacterium recovered from human feces (DQ824172). Of the
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different Firmicutes-related phylotypes recovered from lynx feces,

almost 100 identical reads were somewhat similar to an uncultured

Anaeroplasma sp. clone EMP_L44 (EU794312) that was found in

cattle fecal microbiota (Figure S5). The identification of microbes

related to Anaeroplasmatales of class Mollicutes (according to

ARB, SILVA affiliated this class with the phylum Firmicutes) was

unexpected because members of this order are known as anaerobic

commensals that are typically found in the rumen [54]. The

intestinal material from a ruminant-like animal such as a rabbit

that was eaten by the lynx could be considered a possible source of

these microbes in the lynx fecal microbiota. Because it has been

demonstrated that Anaeroplasmas spp. play important roles as

pathogens of different hosts [55], progress in understanding the

relationship between commensal Anaeroplasma spp. and lynx health

is likely to promote the identification of new parasitic events

derived from ruminant-like Anaeroplasma spp. [56].

The phylum Bacteroidetes was represented by 619 reads (39.43%

of all reads) belonging to three families: Bacteroidaceae, Prevotella-

ceae and Porphyromonadaceae (Figure S6). Aside from reads

affiliated with the genera Prevotella, Paraprevotella and Odoribacter,

members of this group were similar to generally unclassified bacteria

recovered from the gut microbiota of different animals and birds

[57]. A total of 164 reads that represented six different subgroups

were identified within the phylum Fusobacteria (Figure S6); more

than 90% of these reads were taxonomically affiliated with the

members of the family Fusobacteria, among which 110 reads were

found be very similar to Fusobacterium perfoetens (M58684). The

diversity of the only 67 reads belonging to Proteobacteria identified

was extremely low, with all of the reads placed within the genus

Sutterella of Alcaligenaceae. In contrast, a total of 28 reads

representing seven subclusters were identified within the phylum

Actinobacteria (Figure S6). This phylum was mainly represented by

members of the family Coriobacteriaceae (almost 93% of

actinobacterial reads). Most of the Coriobacteriaceae reads were

classified into the genera Collinsella and Slackia and showed .98%

similarity to Collinsella intestinalis (AB031063) and S. faecicanis

(AJ608686). Noticeably, 12 reads recovered from the lynx

metagenome were affiliated with the phylum Spirochaetes, 10 (or

.83%) of which are organized into a cluster closely related to the

SSU rRNA gene sequences recovered from the feces of omnivorous

primates (EU778629) [13]. To our knowledge, this result is the first

indication of the presence of this bacterial group in the fecal

microbiota of carnivorous mammals. No reads related to SSU

rRNA genes of Archaea were detected in the lynx fecal

metagenomic pyrosequencing data; however, standard PCR survey

revealed the presence of archaeal SSU RNA gene signatures (not

shown). This finding contrast with the PCR-based analysis

performed on the fecal microbiota of wolves and other carnivorous

mammals [29,57], where no indication of archaeal genes was found.

Further studies will be required for the characterization of the

archaeal community populating the distal gut of wild lynx.

The Sequencing and Gene Prediction of Lynx Distal Gut
Microbiota

DNA sequences were assembled into an 18.34 Mbp sequence

with an average GC content of approximately 47.74% (11,068

Figure 1. Overview of the relative abundance of phylogenetic prokaryotic groups recovered from the lynx distal gut based on SSU
rRNA tag sequences extracted from the pyrosequences. All reads belonging to phylum Proteobacteria identified related to
Betaproteobacteria, which is only cited in the Figure.
doi:10.1371/journal.pone.0051521.g001
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contigs, of which 8,084 were longer than 500 bp; N50 of 4,370 bp

and longer contig of 68,169 bp). From the meta-sequence, we

identified 23,780 potential protein-coding genes (cut-off of $ 20

amino acid-long sequences). Even when suspicious hypothetical

open reading frames (ORFs) $ 150 bp were excluded, 29.7% (or

7,052 hits) of the protein sequences deduced were hypothetical

proteins that did not exhibit any sequence similarity to known

proteins in public databases. Another 22.1% (or 5,263 hits) of the

protein sequences exhibited similarity to proteins of unknown

function (conserved hypothetical proteins). Thus, a substantial

fraction of the genes found in the lynx gut were entirely novel with

as yet unknown functions. Of the non-hypothetical genes (11,465

or 48.2%), 84.1% could be assigned to a total of 10,587 Clusters of

Orthologous Groups (COGs), and 66.7% could be assigned to

KEGG) pathways (Table S1). On average, 2.5 genes belonged to

each COG. The taxonomic level of the gene catalogue with the

associated protein sequences was determined by BLASTP analysis

(for details see Methods). Approximately 30% (or 6,625 out of

23,780) of lynx gut sequences could not be assigned to any

characterized microbe, whereas the remaining sequences could be

assigned to approximately 287 particular genera. Although these

data may be overestimations, the taxonomic distribution of

assigned genes is comparable to that determined by SSU rRNA

assignment (see Table S2 for detailed information regarding

metagenome annotation).

The Lynx Gut Microbiome Possesses Gene Sets for the
Efficient Metabolism of Animal Tissues

Functional assignment of the predicted genes (23,780 in total)

was made on the basis of BLASTP analysis against a reference

dataset for COG and KEGG assignments (see Methods). In

addition, to compare the overall sequence similarities among the

microbiome of lynx gut and other 23 animal-associated gut

microbiomes (for details see Table S3), we performed a reciprocal

BLASTP analysis of the entire gene set for each microbiome,

followed by MDS clustering against the normalized distance

matrix (see ‘‘Methods’’), that overall avoid artifacts due to

differences in sample size (i.e. number of reads and ORFs, to

cite some). To predict the metabolic potential and to identify

significant over- and under-represented COGs and KEGGs, the

JCoast annotation pipeline was used.

Profiling analysis based on the KEGG enrichment values that

was calculated for each microbiome (Figure 2) showed overall

similar KEGG distributions for all of the gut microbiomes

examined, with an over-representation of KEGGs classified into

the ‘Carbohydrate Metabolism’, ‘Replication and Repair’, ‘Amino

Acid Metabolism’ and ‘Translation’ categories and an under-

representation of KEGGs included in ‘Cellular Processes’.

However, clear differences were observed that characterized the

lynx gut, including significant over-representation of KEGGs for

‘Signaling Molecules and Interaction’ and ‘Transport and

Catabolism’ and the remarkable under-representation of ‘Cell

Motility’, which was unique for the lynx gut (Table S3). The heat

map and clustering analysis shown in Figure 2 further suggested

that the lynx gut microbiome was functionally closer to the

microbiomes of guts from other mammals, such as mice, swine,

marsupials (Macropus eugenii) and canines (Canis familiaris). More-

over, the lynx gut metagenome clusters more closely with the

termite metagenome than with panda and human gut metagen-

omes.

The striking depletion of ‘presumptive’ genes for the biosyn-

thesis of flagella and for chemotaxis (only 15 genes identified:

namely, 4 cheAYR, 3 motB, 2 flgJ, 5 pilBFQT and 1 cpaF genes)

within the ‘Cell Motility’ category was noteworthy (Table S3). This

KEGG category accounts for only approximately 0.66% of the

total KEGGs, whereas the average value for the 23 gut

microbiomes considered herein was approximately four-fold

higher (Table S3). Recently, it was proposed that motility could

be considered advantageous for intestinal microbes because it

facilitates access to easily digestible food sources [58]. The fact that

the lynx diet consists of a high-energy animal tissue diet (80–100%

of which consists of rabbits) containing a low amount of free

carbohydrates (approximately 1.2%) may explain why flagellin

genes are unnecessary. Additionally, as it has been suggested for

microbes operating in the adult human gut, it is possible that the

abnegation of motility is an adaptation mechanism for gut

microbes to be able to persist in the intestinal environment

because flagella are highly immunogenic and may lead to the

bacteria being discarded [59].

The putative over-representation in lynx gut (circa two-fold)

of genes for ‘Signaling Molecules and Interaction’ (0.57% versus

0.27% average values) and ‘Transport and Catabolism’ (0.77%

versus 0.34% average values) KEGG categories (Table S3) was a

result of the prevalence of gene signatures encoding proteins

that were ‘presumptively’ involved in the metabolism and

uptake of fatty glycerols, glycoproteins, glyco(amino)lipids or

glyco(amino)glycans and nucleoside diphosphate sugars (Table

S4), that will be discussed below.

Putative aquaporin AqpZ was the first group of proteins that

was over-represented in lynx gut. These proteins are highly

efficient water/glycerol channels that function at high rates in the

gastrointestinal system [60]. Eight distinct AqpZ proteins (out of

12,725 assigned to KEGG pathways) were identified in the lynx

pyrosequences (Table S4), with six and two sequences binned to

several genomes of the Bacteroidetes and Firmicutes phylum,

respectively. Representatives of this protein family were also

found, although to lesser extents, in the gut microbiomes of larvae

Anoplophora glabripennis (0.014% total ORF), the ambrosia beetle

Xyleborus affinis (0.013% total ORF), the marsupial Macropus eugenii

(0.007% total ORF) [24], swine (0.005% total ORF) [22] and

Canis familiaris (0.0012% total ORF) [27], as compared to lynx gut

(0.034% total ORFs) (Table S3).

The second group of over-represented proteins that contributed

to the ‘Signaling Molecules and Interaction’ and ‘Transport and

Catabolism’ KEGG categories included ‘presumptive’ NEU1

sialidases (K01186), hyaluronoglucosaminidases (HYA; K01197),

a-galactosidases (GLA; K01189), a-N-acetylglucosaminidases

(NAGLU; K01205), N-acetylgalactosamine-6-sulfatases (GALNS;

K01132), N-acetylglucosamine-6-sulfatases (GNS; K01137), idur-

onate 2-sulfatases (IDS; K01136) and arylsulfatases (ARSA;

K01134), which accounted for almost 0.25% of all ORF (Tables

S3 and S4). Only mammal (but not insect) guts were found to

contain some of these proteins, although to lesser extents

compared to the lynx gut and never possessing this entire set,

with the Canis familiaris gut containing the highest number of these

genes (0.031% of all ORF; Table S3). Acid GLA a-galactosidases

(15 hits) hydrolyze the terminal a-galactosyl moieties from

complex glycolipids and glycoproteins such as ceramide trihexo-

side [61]; sialidases (8 hits) help break down large sugar molecules

(oligosaccharides) attached to certain glyco-proteins by removing

sialic acid [62]; HYA hyalurono-glucosaminidases (7 hits) catalyze

the hydrolysis of hyaluronic acid and similar glycosaminoglycans

that are found in numerous animal tissues, such as joints, cartilage,

skin and eyes [63]; NAGLU (8 hits), GALNS (7 hits), GNS

(5 hits), ARSA (7 hits) and IDS (2 hits) may contribute to the

putative hydrolysis of the N-acetylgalactosamine (GalNAc) and N-

acetylglucosamine (GlcNAc) components of animal tissues [64–

66]. Binning analysis suggested that all but one of this second set of
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sequences binned to several genomes derived from bacteria

belonging to the Bacteroidetes phylum, most likely of the Bacteroides

genus (Table S4).

The third group of over-represented proteins contributing to the

‘Signaling Molecules and Interaction’ and ‘Transport and

Catabolism’ KEGG categories included ‘presumptive’ b-galacto-

samide-a-2,3-sialyltransferases (K00785; 6 hits), b-phosphogluco-

mutases (or vacuolar sugar phosphorylases) (K01838; 14 hits) and

NagZ b-N-acetylhexosaminidases (K01207; 50 hits) (Table S4),

which were found to be abundant in the lynx gut (0.29% of all

ORF) but were practically absent in other intestinal environments

(Table S3). All but three of the third set of sequences most likely

binned to several genomes derived from bacteria belonging to the

Bacteroidetes phylum (Table S4).

In addition, an over-representation of ‘presumptive’ 59-nucle-

otidases in the lynx gut was also evident (K01081; 13 hits or

0.054% of all ORF), which was also observed in mammal (but not

insect) gut metagenomes (Table S3). It may be that 59-

nucleotidases provide a complete system for the hydrolysis of

extracellular nucleoside diphosphate sugars (activated sugar forms

attached to glycoproteins and glycolipids in animal tissues) to

nucleoside and non-phosphorylated sugar that can be easily

transported into the cells and used as a carbon source [67]. We

finally identified ‘presumptive’ prolyl endopeptidases that included

Figure 2. Comparison of lynx with other animal-associated (mammals and arthropoda) gut metagenomes. Clustering of gut
metagenomes available within IMG/M based on functional composition of KEGGs.
doi:10.1371/journal.pone.0051521.g002
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one lysosomal Pro-X carboxypeptidases (PRCP; K01285) and 22

prolyl dipeptidyl peptidases (DDP4; K01248), possibly linked to

the metabolism of peptides. All but one sequences of the

nucleotidases and endopeptidases binned to several genomes

derived from bacteria belonging to the Bacteroidetes phylum

(Table S4).

The Lynx Gut Microbiome also Possesses Gene Sets for
the Hydrolysis of Plant/Seed Biomass

All the above data confirmed the ‘presumptive’ potential of the

lynx gut microbial community for sugar uptake from animal

tissues, in agreement with the fact that approximately 50% of all

proteins in tissues are glycosylated, with the predominant sugars

being glucose (Glc), galactose (Gal), mannose (Man), fucose (Fuc),

N-acetylgalactosamine (GalNAc), N-acetylglucosamine (GlcNAc)

and N- sialic acid (Sia). We further investigated the presence of

additional signatures for sugar metabolism. Functional assignment

of predicted genes encoding glycosyl hydrolases (GHs) and

carbohydrate-binding modules (CBMs) was performed via

BLASTP analysis against the Carbohydrate Active Enzymes

(CAZy) database [68]. All hits with an E-value of less than e205

and sequence homology $50% were considered and manually

analyzed. As a result, out of 23,780 sequences, 372 CAZy-like

proteins were identified (Table S4). To predict metabolic potential

and to identify significant over- and under-represented GH genes

a cluster analysis was performed that considered both the diversity

and the relative abundance of GH genes. The GH profile

clustering of the lynx, termite, bovine rumen, giant panda, wallaby

and canine is shown in Figure 3, which further evidenced that in

terms of carbohydrate-related enzymes, the lynx gut microbiome

was more closely related to canine gut microbiome and, to a lesser

extent, to that of bovine rumina, pandas and wallabies (which

cluster together) and termites (Figure 3).

As shown in Table S4, the five most abundant protein families

in the lynx gut were putative GHF13 a-amylase and the related

GHF57 and GHF77 enzymes (54 sequences), GHF2 b-galactosi-

dase/b-glucuronidase/b-mannosidase and related enzymes (50

sequences), GHF20 lysosomal b-hexosaminidase/lacto-N-biosi-

dase/b-1,6-N-acetylglucosaminidase (48 sequences), GHF92 a-

1,2-mannosidase (22 sequences) and GHF23 lysozyme type G/

peptidoglycan lyase (15 sequences). Two interesting observations

can be made by comparing the relative contributions of these

protein families with those found in other gut microbiomes.

Among the metagenomes analyzed, the lynx gut microbiome was

most enriched in putative GHF13 a-amylase and related enzymes

(14.6% of the total GHs); additionally, putative GHF2 b-

galactosidase/b-glucuronidase/b-mannosidase and related en-

zymes represented approximately 13.4% of the total GHs

identified in the lynx gut. This abundance is in striking contrast

with the identification of only 1.7% of such enzymes in the Canis

familiaris metagenome (Table S4 and Figure 3). The abundance of

these enzymes suggested that starch- and galactomannan-hydro-

lytic systems for ‘presumptive’ plant/seed cell wall hydrolysis are

putatively abundant in the lynx gut community. These findings

were entirely unexpected considering the dietary profile of the wild

lynx, which predominantly consisted of wild rabbits.

The high number of putative GHF20 proteins (approximately

13% of the total GHs) when compared to canine (7.2% of the total

GHs), giant panda (1.6% of the total GHs) and Tammar wallaby

(1.4% of the total GHs) microbiomes (Table S4 and Figure 3) was

also particularly significant. No representatives of this family of

proteins were identified in the termite hindgut and the bovine

rumen. Enzymes of this family are known to hydrolyze terminal N-

acetyl-D-hexosamine residues in N-acetyl-b-D-hexosaminides

Figure 3. Heat map and clustering of predicted genes encoding
GHs in the lynx, termite, bovine rumen, panda, wallaby and
canine gastrointestinal metagenomes. The heat map colors
represent the relative percentages of GH families within each sample.
Hierarchical clustering based on relative percentage of predicted genes
encoding GHs is specifically shown.
doi:10.1371/journal.pone.0051521.g003
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found in gangliosides that are abundant animal tissue components.

In addition, the metagenome data produces eight sequences (or

2.2% of the total GH) of putative GH89 a-N-acetylglucosamini-

dases, which may be relevant for the ‘presumptive’ degradation of

heparan sulfates and mucopolysaccharides found in all animal

tissues [64]. Only the canine and the occasionally carnivorous

giant panda guts contain GHF89 proteins (1.4% and 0.5% of the

total GHs, respectively) (Table S4). The number of putative a-

galactosidase genes (16 sequences in total) identified in the

metagenomic dataset was evenly distributed among GHF27,

GHF36, GHF97 and GHF110, with representatives of GHF110

only found as lynx- (1.3% of the total GHs) and canine-specific

(1.0% of the total GHs) (Table S4). Enzymes of this family are

known to hydrolyze terminal, non-reducing a-D-galactose residues

in galactose oligosaccharides such as galactolipids, which are also

abundant in all animal tissues, and galactomannans. Furthermore,

genes matching putative GHF33 lysosomal (trans)sialidases/

neuraminidases (2.2% of the total GHs) that hydrolyze glycosidic

linkages of terminal sialic residues in glycoproteins and glycolipids

were found to be carnivore-specific and slightly over-represented

in the lynx gut metagenome compared to that of canine (1.5% of

the total GHs; Table S4). Putative GH63 enzymes (1.3% of the

total GHs), involved in the formation and hydrolysis of mannosyl-

oligosaccharides, likely belong to the same group of carnivore-

specific a-glucosidases (Table S4 and Figure 3). Additionally, the

lynx metagenome was the most enriched microbiome in putative

a-fucosidases GHF29 and GH95 (7.0% of the total GHs) and

related enzymes targeting fucose, namely K05305 fucokinases (EC

2.7.1.52; 6 hits), with almost no representatives in other gut

microbiomes (Table S4). Fucose is found on N-linked glycans on

mammalian, insect and plant cell surfaces but also in bacterial

polysaccharides. The under-representation of these enzymes in

herbivorous intestines may be likely related to dietary specificity,

although this hypothesis must still be clarified.

In contrast to the compared gut microbiomes, few ‘presumptive’

GHF5/GHF28/GHF53 hemicellulases and cellulases (5 hits or

1.3% of the total GH) were found in the lynx gut metagenome

(Table S4); in accordance with this observation, the lynx gut also

exhibited an under-represented set of GHF1 and GHF3 b-

glucosidases and related enzymes (13 hits or 3.8% of the total).

Sequences of those families were highly abundant (from 15.6 to

28.0% total hits) in other mammal and insect gut microbiomes

(Table S4 and Figure 3).

Binning analysis revealed that 87% of all sequences contributing

to the ‘presumptive’ hydrolysis of plant/seed biomass related to

several genomes derived from bacteria belonging to Bacteroidetes

phylum (most likely from members of the Bacteroides genus), 12% to

Firmicutes (most likely from members of the Clostridium genus) and

1% to Actinobacteria (Table S4). Notably, the contribution of

sequences belonging to phylum Firmicutes was much higher to

that found for sequences contributing to the ‘presumptive’ sugar

uptake from animal tissues (less than 3%).

Taking together, the most notable conclusions drawn from all of

these datasets were the presence of unique signatures for GH and

associated enzymes ‘presumptively’ linked to sugar uptake from

glycoproteins, glyco(amino)lipids and/or glyco(amino)glycans and

nucleoside diphosphate sugars most likely present in animal tissues

and the virtual absence of cellulases and hemicellulases. Whereas

the first observation is consistent with the metabolic capacity

previously reported for carnivore (i.e. canine) gut [27], the second

one suggests that the lynx gut appears to be an extensive reservoir

of genes encoding enzymes attacking the a-glucose, a-mannose

and b-galactose side chains of complex plant/seed polysaccharides

at proportions much higher than those found in some herbivores

(Table S4). Additionally, we further observed that sequences for

‘presumptive’ several ABC-type sugar transport systems, such as

the ribose RbsB, methyl-galactoside MglB and maltose/maltodex-

trin MalE transport systems, were absent in the lynx gut (Tables

S2 and S3); an in-depth analysis of sugar transport signatures

revealed only a restricted gene set encoding transporters of sugar

ABC-like permeases and phosphotransferase (PTS)-like sugar

transport proteins, which were found in high numbers in other

gut microbiomes (Table S3).

Detection of Putative Enzyme Signatures for Sugar
Metabolism Based on Activity Assays

Microbial ability to thrive in ecological niches depends upon

adaptation of their enzymatic machinery to physical-chemical

environmental constraints in situ. Recently, an association between

activity levels of specific transformations and the gene abundance

or the abundance of its associated encoding transcripts was

reported [69,70]; however it should be taken into account that

enzymes commonly work in complex environments where

multiple factors may, all together, affect and modulate their

performance independently of their transcript level. Accordingly,

using a complementary approach to the analysis of the gene

repertoire, we aimed to improve our understanding of lynx-gut

bacteria system by examining the sugar-degrading capacity of

protein extracts from fecal samples from two wild lynxes, one

corresponding to that for which DNA was isolated and analyzed

here (named Eva) and a second one, named Granadilla, captured

in the same area and under the same protocols. In parallel, protein

extracts from rumen content from four rumen-fistulated and non-

lactating Holstein cows were isolated and used for comparative

purposes. This sample was selected as a model ruminant-like

animal because its availability; although, a better model might be

to investigate the activity characteristics of the lynx basic prey (the

wild European rabbit), technical limitations to capture wild

animals (no hunting was allow during the year of lynx sample

collection), limits this option. It should be noticed that the assays

were restricted to intra-cellular activities present in bacterial cells

rather than in the whole fecal samples to avoid the possible

inference of host enzymes. Twenty-one different synthetic sugar-

based substrates were tested using a colorimetric assay. Prelimi-

nary tests confirmed alkaline pH (9.0) as the most convenient for

activity determination; to avoid protein instability temperature

assay was set at 30uC.

As shown in Figure 4, by meaning of specific activity

determination (unit g21 protein) we found similar activity profile

for the two lynx samples; only major differences were observed

when comparing the activity levels for substrates containing b-

glucose and b-lactose. GH activities were high, ranging between

7.1561.32 (for pNP-b-galactose) and 0.00560.0005 (for pNP-b-

mannose) mmol min21g21 protein. For rumen samples, activities

in both strained ruminal fluid (SRF) and liquid-attached bacteria

(LAB) from mixed liquid and solid ruminal content were almost

indistinguishable from one another, ranging between 4.4360.032

(for pNP-a-galactose) and 0.01260.001 (for pNP-a-mannose) mmol

min21g21 protein; this indicates both rumen samples possess

similar biomass-degrading capacity.

Overall, highest lynx-associated enzyme activities, on gram of

protein basis, were found for substrates containing b-xylose and b-

and a-galactose; substrates containing a- and b-fucose, b-

(methyl)glucuronide and a-glucose were hydrolyzed at lower level

in both lynx samples whereas no appreciable activity was detected

for pNP-a-xylose and pNP-b-arabinopyranoside (Figure 4A). For

the rumen samples a more homogeneous scenario was found with

similar activity levels for about nine different substrates containing
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b-xylose, a- and b-galactose, a- and b-glucose, b-lactose, a-

arabinose (pyranose conformation) and a-rhamnose (Figure 4B).

Interestingly, rumen samples did show much higher capacity (.25

fold) to hydrolyze pNP-b-cellobiose (indicative of hemicellulases

and cellulases) as compared to the lynx samples for which this was

one of the poorest substrates (Figure 4C). By contrast, rumen

samples had the lowest activities for b-(methyl)glucuronides

(almost below the detection limit) while they were efficiently

hydrolyzed by lynx-derived proteins (from 180- to 2770-fold

difference). This may agree with the fact that acyl glucuronidation

is one of the major metabolic conjugation reactions of most

carboxylic acid in animal tissues [71]. Additionally, whereas fucose

(up to 2.9-fold) and mannose (up to 9.4-fold) substrates were

slightly preferred by lynx proteins, a-glucose and malto-oligosac-

charides (up to 6.0-fold) were for rumen ones (Figure 4C).

Figure 4. Intracellular enzyme (glycosyl hydrolase) activities associated to bacterial enzyme extracts isolated from two wild Iberian
lynx fecal samples and rumen content from four rumen-fistulated and non-lactating Holstein cows. (A) Average potential hydrolysis
rates (n = 2, 6 standard deviation in three technical replicates) in protein extracts from two wild lynxes (Eva and Granadilla) captured in the same area
and under the same protocols. (B) Average potential hydrolysis rates (n = 4, 6 standard deviation in three technical replicates) in protein extracts from
rumen content from four rumen-fistulated and non-lactating Holstein cows. (C) Comparative average glycosidase activity for lynx gut and cow rumen
protein extracts; the fold difference is specifically shown based on data provided in panels A and B. In all cases, enzyme activity was quantified using a
BioTek Synergy HT spectrophotometer by measuring release of p-nitrophenol (pNP) using a protein amount of 6.34 mg (for Eva), 7.74 mg (for
Granadilla), 15.83 mg (for SRF) and 15.42 mg (for LAB), and [substrate] of 1 mg ml21 (from a 10 mg ml21 stock solution) in 20 mM glycine buffer,
pH 9.0, T = 30 uC, in a final volume of 50 ml. The different substrates used as specifically shown. Note: activity against pNP derivatives of GalNAc or
other mucus-associated sugars could not be determined because they are not commercially available.
doi:10.1371/journal.pone.0051521.g004
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Taken together, we found enzyme activity data in good

agreement with those found by in silico analysis of metagenome

sequences, namely, an over-representation of a/b-galactosidases

and b-glucuronidases and their associated activities together with a

slightly lower representation of gene signatures and activities

associated to lacto-N-biosidases, fucosidases and mannosidases,

which comparatively are dominant in lynx gut (Figure 4C).

Additionally, the low activity against pNP-b-cellobiose is in

agreement with the under-representation of ‘presumptive’

GHF5/28/53 (hemi)cellulases in lynx metagenome as compared

to cow rumen (Table S4). However, the low a-glucosidase but the

high b-xylosidase activity in lynx gut protein extracts (Figure 4A)

contrast with the over-representation of a-amylase and related

gene signatures and the under-representation of b-xylosidase and

related gene signatures in the metagenome (Table S4), respective-

ly, which indicate that additional factors rather than gene content

may contribute to the overall sugar metabolism in animal guts, i.e.

lynx gut. What ever the case, the preponderance of b-xylosidase

activity (even at higher level than in ruminal extracts; Figure 4C)

may further suggests the ‘presumptive’ potential of the lynx gut

microbial community for sugar uptake from xylose containing

plant N-glycans [72]. This is of special significance since this

potential metabolic capacity could not be predicted from

metagenome sequencing data analysis, thus confirming the

recognized hypothesis that minor enzyme components may play

significant ecological role. Additionally, this result highlights the

need for more complementary bio-informatics and rigorous

experimental analyses to accurately ascertain the overall metabolic

capacities of microbial communities, including those from distal

gut.

Conclusion
In conclusion, the metagenomic approach described in this

study represents a first attempt to preliminary characterize the

tremendous bacterial diversity found in wild lynx feces. According

to previous studies of canine [26,27] and feline [25] intestinal

microbiota, the phylum Firmicutes was the largest phylum in lynx

fecal microbial community, constituting 43.25% of the total SSU

rRNA reads analyzed. The reads contained five Firmicutes classes

and the majority detected was from the order Clostridiales.

Figure 5. Model representing the potential sugar uptake system feeding the central lynx metabolism through the hydrolysis of
carbohydrate-containing substrates derived directly from animal tissues or indirectly from plant/sugar biomass most likely
derived from prey nutrition sources.
doi:10.1371/journal.pone.0051521.g005
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Bacteria affiliated with the phylum Bacteroidetes were the second

most abundant group in the lynx fecal microbiota. Members of

Fusobacteria were also detected in the lynx fecal sample and

slightly exceeded 10% of the total reads. A similar amount (9.2%

of total reads) of Fusobacteria was identified in the fecal microbial

community of wolves (29), whereas this group of organisms

appears to be a minor part of the intestinal ecosystem in both

herbivorous and omnivorous mammals [13]. The identification of

bacterial phyla such as Spirochaetes and candidate division TM7,

which has not been previously detected by conventional PCR-

based analysis in carnivorous mammals, will facilitate the next step

in understanding the complex phylogenetic diversity of the

intestinal microbial communities and will introduce previously

uncharacterized bacterial phylotypes for further analysis. In

addition to the bacterial diversity datasets, the collective gene-

centric metagenomic findings suggest that the wild lynx contains a

distinct microbiome structure with respect to sugar processing and

metabolism compared to any other gut microbiome reported to

date. Data likely suggest that in the lynx microbiome, together

with genes encoding AqpZ aquaporin and lysosomal-like digestive

enzymes most likely involved in sugar uptake from animal tissues,

an almost equal contribution of enzyme sets attack the side chains

of complex plant/seed polysaccharides but not the more

recalcitrant primary (hemi) cellulose chains. Whereas the first set

of enzymes could be directly driven by diet (wild rabbits), the

second set may appears to be driven by the prey characteristics

and its diet (seeds and plants). In this context, wild lynx is well

known to have a monotypic diet that consists primarily of wild

European rabbits that in their turn utilize seeds and plants as their

principal sources of energy. Accordingly, the data presented here

may suggest that both prey (primary energy supply) and its diet

(secondary energy supply) may both play major roles in the

nutritional ecology and evolution of the gut microbial communities

of a predator. Under this scenario, gut communities from a

carnivore may contain stable microbial communities that are also

adapted to metabolize the sources of energy from the gut of the

prey intestine (see Figure 5 for details). However, the possibility

that bacteria belonging to phylum Bacteroidetes (major contrib-

utor for the sugar uptake, as revealed by binning analysis) that

typically have also the metabolic capacity in their genomes to

degrade a variety of complex materials, are playing a major

metabolic role independently of the diet source, cannot be ruled

out. In addition, the fact those bacteria are successful colonizers in

the gut of lynx (Figure 1) might be also due to a starvation situation

of predators in which they rely on mucus production from the

host, independently of the diet source; this might also explain the

high number of genes associated to the utilization of sugar

components such as GalNAc, fucose and sialic acid. What ever the

case, the fact that ‘presumptive’ functional microbiome structures

of lynx gut differs from that of any other gut microbiome reported

to date, suggest that, to some extent, prey and predator

gastrointestinal microbiomes may share functional capacities for

energy nutrition and that a monotypic diet may have direct effects

on microbiome structures. However, the possibility of biases

introduced by the different methods used to isolate DNA samples

as well as the artifacts due to differences in sample size (i.e. number

of reads and open reading frames) caused by the different

sequencing platforms used (Sanger, Solexa, 454 pyrosequecing or

Illumina), could not be ruled out when comparing gut micro-

biomes. Further studies are required for the characterization of the

gut metagenomes of lynxes and other carnivorous animals of

varying dietary regimes, locations, seasons, ages and health

statuses to elucidate key factors shaping gut structure. In this

context, it is known that the Canadian Lynx (Lynx canadiensis) has a

similar monotypic diet based on snowshoe hares (Lepus americanus);

therefore, further studies for comparing the gut microbial

communities of Iberian lynx and European rabbit and Canadian

lynx and snowshoe hares should enhance the understanding of the

potential interactions between specific predator-prey tandems.

Whatever the case, since the present investigation considered only

one (for sequence analysis) and two (for activity tests) individuals,

further statistical significance studies are required to ascertain the

link between diet and bacterial diversity in the gut due to a

monotypic diet. Finally, to the best of our knowledge this study

further provided the first biochemical insights into the comparative

potential of carnivorous- and ruminal-associated microbial com-

munities to deconstruct sugars present in animal tissues and plant

biomass.

Supporting Information

Figure S1 Location of the Guarrizas Iberian lynx
reintroduction area.

(JPG)

Figure S2 Small subunit (SSU) rRNA length distribution
identified in raw (unassembled) sequences after direct
pyrosequencing of the extracted DNA from lynx fecal
samples. Sequences with a length $ 200 nucleotides are shown.

(JPG)

Figure S3 Overview of the prokaryotic diversity of SSU
rRNA tag sequences extracted from the lynx distal gut
pyrosequences.

(JPG)

Figure S4 A neighbor-joining tree of the proteobacterial
SSU rRNA gene sequences representing the largest
clostridia families affiliated with the phylum Firmi-
cutes.

(JPG)

Figure S5 A neighbor-joining tree of the proteobacterial
SSU rRNA gene sequences affiliated with the phylum
Firmicutes. The number of sequences in each identity cluster is

specified.

(JPG)

Figure S6 A neighbor-joining tree of non-proteobacter-
ial SSU rRNA gene sequences. The number of sequences in

each identity cluster is specified.

(JPG)

Table S1 General features of the lynx gut metagenome
sequences.

(DOC)

Table S2 Complete information regarding gene predic-
tion and the annotation and taxonomic classification of
lynx gut metagenome sequences. Panel ‘General features’

includes, total length of the metagenome, number of hypothetical,

conserved hypothetical and functional conserved proteins, number

of contigs, ORFs, tRNAs, RNAs, GC content and contig length

distribution; Panel ‘CDS’ includes the automatic annotation of

lynx gut metagenome coding sequences; Panel ‘GenomesDB

Genus 1e2059 includes the result of phylogenetic binning of CDSs

at the genus level according to an e value of distribution of 1e205;

Panel ‘GenomesDB Order 1e2059 includes the result of phyloge-

netic binning of CDSs at the order level according to an e value of

distribution of 1e205; Panel ‘COG 1e2059 includes the number of

total ORFS and associated COG and COG distribution; Panel

‘KEGG Level 3 1e2059 includes the number of genes associated to
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particular KEGG pathways; Panel ‘KEGG Level 2 1e2059

includes the number of genes associated to particular major

KEGG metabolisms. Full details of the methods used for

pyrosequences annotation are given in Methods.

(XLS)

Table S3 Complete information regarding the hierar-
chical clustering of the lynx gut metagenome and other
gut metagenomes based on functional composition. The

metagenomes used for comparative analysis are specifically shown.

Panel ‘List’ includes the list of metagenomes used for comparative

analysis; Panel ‘Subset 2nd Class’ includes the comparative analysis

of genes represented in KEGG major categories, both in total

number and percentage referred to total ORFs; Panel ‘All Kegg

1e205 test’includes the total number of genes coding proteins

represented in KEGG pathways; Panel ‘% for Heatmap’ includes

the relative percentage of total genes distributed per KEGG major

categories per metagenome; Panel ‘Distances for Heatmap’

includes the comparative distance between pairs KEGG path-

way-metagenome used for clustering and heat map analyses.

(XLS)

Table S4 Presence of glycoside hydrolases (GHs) in the
lynx metagenome sample compared to that found in the
metagenomes of other representative herbivores and
carnivores. Panel ‘GH distribution’ includes the total number

and the relative percentage of different GHs in the metagenomes

as well as the putative function associated to each GH protein

family (based on bibliographic records and (CAZy) database.

Functional assignment of predicted genes encoding GHs and

CBMs was performed via BLASTP analysis against the CAZy

database. The identified sequences were manually checked and

functional assignment was performed based on the biochemical

functions associated to the most similar proteins belonging to a

given family. Panel ‘Detailed info relevant ORFs’ includes an

extensive description of the KEGG orthologs and the taxonomic

affiliations of the genes that code for GHs and other relevant genes

coding enzymes of interest. GHs were distributed according to

their protein families. Results of the annotation pipeline shown in

Table S2 were used for both KEGG orthologs and tentative

taxonomic assignments. Full details of the methods used for

pyrosequences annotation are given in Methods.

(XLS)
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