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Abstract

The prime aim of our work is to report and comment on the bioaccessible concentrations – i.e., the soluble content of
chemical elements in the gastrointestinal environment that is available for absorption – of a number of essential mineral
nutrients and potentially harmful elements (PHEs) associated with the deliberate ingestion of African geophagical materials,
namely Calabash chalk and Undongo. The pseudo-total concentrations of 13 mineral nutrients/PHEs were quantified
following a nitric-perchloric acid digestion of nine different Calabash chalk samples, and bioaccessible contents of eight of
these chemical elements were determined in simulated saliva/gastric and intestinal solutions obtained via use of the Fed
ORganic Estimation human Simulation Test (FOREhST) in vitro procedure. The Calabash chalk pseudo-total content of the
chemical elements is often below what may be regarded as average for soils/shales, and no concentration is excessively
high. The in vitro leachate solutions had concentrations that were often lower than those of the blanks used in our
experimental procedure, indicative of effective adsorption: lead, a PHE about which concern has been previously raised in
connection with the consumption of Calabash chalk, was one such chemical element where this was evident. However,
some concentrations in the leachate solutions are suggestive that Calabash chalk can be a source of chemical elements to
humans in bioaccessible form, although generally the materials appear to be only a modest supplier: this applies even to
iron, a mineral nutrient that has often been linked to the benefits of geophagia in previous academic literature. Our
investigations indicate that at the reported rates of ingestion, Calabash chalk on the whole is not an important source of
mineral nutrients or PHEs to humans. Similarly, although Undongo contains elevated pseudo-total concentrations of
chromium and nickel, this soil is not a significant source to humans for any of the bioaccessible elements investigated.
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Introduction

Humans ingest soil both deliberately – a practice known as

geophagia or geophagy – and accidentally, with consequent

implications to their mineral nutrition [1]. Thus following the

encounter with digestive fluids, chemical elements can be

solubilised from soils and are potentially available for absorption,

the so-called bioaccessible soil content. For example, geophagical

soils consumed by ethnic Bengali communities in the UK were

found by Abrahams et al. [2] to be a significant source of

bioaccessible iron (Fe). Since this chemical element is an important

mineral micronutrient with Fe deficiency being widespread

throughout the world [3], the consumption may be of benefit to

the geophagist although with the quantities of soil that can be

deliberately consumed (e.g., up to c. 65 g/day [2]; 8–108 g/day

with a median of 28 g/day [4]; 2.5–219 g/day with a median of

41.5 g/day [5]) so-called Guidance Levels [6] could be exceeded.

Furthermore, Abrahams et al. [2] highlighted the risk of soil-lead

(Pb) toxicity affecting pregnant women – a group of human society

who are especially associated with geophagia – and their foetus.

Conversely, the absorption of elements into the human body

following soil consumption can also be reduced attributable to, for

example, the adsorptive properties of ingested earth materials that

can lower bioaccessible concentrations. Hooda et al. [7] indicated

the sorption potential of some geophagical soils in lowering the

bioaccessibility of copper (Cu), Fe and zinc (Zn), although other

materials were identified to be a source of calcium (Ca),

magnesium (Mg) and manganese (Mn) that humans could

potentially utilise.

A review of the literature clearly indicates that geophagia is not

limited to any particular age group, race, sex, geographic region or

time period, though today the practice is most obviously common

amongst the world’s poorer or more tribally-oriented people and

is, therefore, particularly extensive in the tropics [8]. A number of

accounts relating to geophagia in Nigeria can be found in the

literature [9–13], and here the practice is noted to be especially

associated with pregnant women who consume earth materials to

alleviate the symptoms of morning sickness. Calabash chalk – also

known (according to language/locality) as Argile, Calabar stone,

Calabash clay, Ebumba, La Craie, Mabele, Ndom, Nzu, Poto and

Ulo – is a generic term used for naming these Nigerian

geophagical materials.

The migration of people from societies where geophagia is

especially prevalent results in a cultural transfer of the practice to
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countries that many would consider to be not typically associated

with this deliberate consumption. Thus, in the UK, geophagia is

known to be associated with immigrants from south Asia [2,14–

15] and west Africa [16–17], with the latter consuming Calabash

chalk that has been imported from Nigeria and sold in ethnic

shops. In some developed countries, concern has been expressed

about this consumption – not only in the UK [18], but also in

Canada [19] and the USA [20] – because of the Pb content. The

UK Food Standards Agency [21] have reported (presumably total)

Pb concentrations in Calabash chalk that range from 8.2 mg/kg to

16.1 mg/kg, whilst Dean et al. [16] determined a mean total

content of < 40 mg/kg. While these total concentrations are

significantly greater than previous World Health Organisation

guideline limits of 1 mg Pb/kg in foodstuffs, an important

consideration is the bioavailability (defined here as the fraction

that reaches the human systemic circulation from the gastrointes-

tinal [GI] tract) of soil-Pb. The bioavailability of this Pb – and

other chemical elements – is strongly dependant on bioaccessibility

since if an element is not bioaccessible it will not be available for

absorption [22], and both bioavailability/bioaccessibility are

influenced by a number of soil variables (mineralogy, particle size

and morphology) as well as factors associated with the human

individual, such as age, sex, genetics and socioeconomic status

[1,23]. However, being dependant on in vivo studies either on

humans [24] or (more commonly) human surrogates such as pigs

[25] and rats [26], the bioavailability of soil chemical elements is

more difficult and involved to evaluate. Consequently, much use

has been made of in vitro bioaccessibility (IVBA) tests that mimic

the conditions of the human GI environment and determine the

bioaccessibility of ingested soil chemical elements. Initially

relatively simple experimentation was undertaken, using reagents

such as hydrochloric acid to simulate the conditions of the human

stomach (e.g., [5,27–28]), but with the recognition that such

procedures ignore the changes in the Eh/pH regime and kinetics

during passage of soil through the GI system, increasingly more

sophisticated IVBA tests have been developed [22,29–30].

However, problems are evident with the use of these various

IVBA procedures - there is a lack of Certified Reference Materials

(CRMs) that are needed for the evaluation of the accuracy of the

analysis, there is insufficient in vivo information against which the

bioaccessible concentrations can be compared, and the various

models employed produce different results – though the

BioAccessibility Research Group of Europe (BARGE) has recently

(and after we undertook the experimental work described below)

developed and published information about a fasted state IVBA

method that begins to address some of these issues [31] and which

has been correlated against in vivo data for arsenic (As), cadmium

(Cd) and Pb [32].

Despite advances made in the development of IVBA proce-

dures, there has been only a limited application regarding their use

on geophagical materials. Indeed, some recent studies on de-

liberately consumed earth materials can be criticised either

because of their continued use of simplified IVBA procedures, or

their reliance on total chemical element determinations [33–34].

The main aim of our work is to report and comment on the

bioaccessible concentrations of a number of elements found in

commercially available Calabash chalk materials purchased from

markets in Nigeria. To determine these concentrations, we

subjected the Calabash chalk samples to an IVBA test that was

originally developed for assessing the bioaccessibility of soil organic

pollutants when the geophagists are in a fed-state (we use this fed

procedure because the main consumers of Calabash chalk are

pregnant women who ingest these earth materials either just

before or after mealtimes). Coincidentally, as this research was

being undertaken, a commercial geophagical sample – known as

Undongo, the Swahili word for soil - from Kenya was made

available to us. With current interest being evident regarding

human geophagia in Africa, we also included this soil in the IVBA

experimentation, and provide here the bioaccessible data derived

from this material.

Materials and Methods

2.1 Sample Details and Collection
Nine varieties of Calabash chalk, selected on the basis of their

obvious differences in appearance (such as colour, lamination and

shape), were purchased from markets located in Jos (Plateau State,

Nigeria) and Zaria (Kaduna State). Seventeen market vendors and

526 women who were in hospital or were attending antenatal

clinics, were questioned about the origins and use of Calabash

chalk in Nigeria. It is the intention to publish the findings of this

survey at a later date, but we briefly report some pertinent

information here. Pregnant women from the Igbo tribe – a large

ethnic group of eastern Nigeria – were recorded as the main users,

and comments were made on the effectiveness of the ingested

soils/rocks in limiting vomiting during pregnancy and reducing

over-salivation: there is no suggestion that the Calabash chalk is

being consumed to aid mineral nutrient supplementation. The

daily amount consumed varies, but generally is c. 5–10 g.

However, differences are apparent between pregnant and non-

pregnant women: the former tend to ingest more (up to 20 g/day)

with consumption occurring either before or after mealtimes to

prevent vomiting, whereas the latter consume soil generally when

in a fasted state. For both groups of women, consumption occurs

by gnawing chunks of the geophagical material.

The Undongo sample was obtained from a small supermarket in

the Ukambani hills, Kenya. This material is purchased in labelled

polythene bags (Figure 1) that contain blocky units of ‘roasted’ soil

some 50 g in total. The labelling highlights the richness of Fe in

the soil and its value to pregnant women and their foetus, although

no details about how the material should be consumed (e.g., in

a fasted or fed state; how much should be ingested/day) is

provided.

2.2 Sample Preparation
Samples were oven-dried at 40uC for 48 hrs prior to

disaggregation using a porcelain mortar and pestle and sieving

through a 2000 mm aperture nylon mesh. Subsamples of the

,2000 mm fine earth fraction were then: (I) further sieved through

a 250 mm aperture nylon mesh and, (II) ground and sieved

through a 150 mm aperture nylon mesh. The ,2000 mm,

,250 mm and ,150 mm subsamples were retained for subsequent

analysis.

2.3 Determination of Pseudo-total Concentrations
The ,150 mm subsamples were subjected to a nitric-perchloric

acid digestion following the procedure described by Thompson

and Wood [35]. These authors note the effectiveness of this acid

mixture in decomposing clay minerals and a number of primary

minerals, though some soil constituents (if present) are not fully

digested, and consequently the method is often regarded as

a procedure that determines, in association with appropriate

instrumentation, pseudo-total (i.e., an approximation) rather than

true total concentrations. However, our use of fine (i.e., ,150 mm)

material in this experimental procedure facilitates sample de-

composition and optimises the release of chemical elements into

solution. Analysis of the sample solutions was undertaken using

inductively coupled plasma mass spectrometry (ICP-MS) for six

Human Geophagia: Nutritional Implications
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soil trace elements (Cd, cobalt [Co], chromium [Cr], Cu, nickel

[Ni] and Pb), whilst another trace element, Zn, and a number of

major (Ca, Fe, potassium [K], Mg) and minor (Mn, sodium [Na])

elements were determined by atomic absorption spectrometry.

2.4 Determination of Bioaccessible Concentrations
For our assessment of the bioaccessible concentrations, we used

the Fed ORganic Estimation human Simulation Test (FOREhST)

procedure. This method was initially developed to assess the

bioaccessibility of soil polycyclic aromatic hydrocarbons (PAHs,

widespread organic pollutants) under simulated fed conditions.

Most IVBA procedures are concerned with inorganic soil

constituents, and simulate fasted conditions that – relative to the

fed state – are associated with lower pH conditions, so providing

the most conservative estimate of bioaccessibility [36]. However,

since pregnant women who consume Calabash chalk ingest the

material either just before or after mealtimes, we used the

FOREhST method to quantify soil bioaccessibility in a fed-state

where the geophagist is consuming food. To investigate the impact

of ingested foodstuffs on bioaccessibility per se, we also subjected

the soil samples to the FOREhST procedure digestion pH and

transit conditions but did not add the foodstuff component of the

experimental method. To summarise, soil chemical element

bioaccessibility was: (I) determined using the FOREhST method,

a fed-state experimental procedure that is appropriate to use since

the main consumers in this investigation are pregnant women who

ingest the geophagical materials just before or after mealtimes, and

(II) assessed using the FOREhST method where the food

component of the in vitro procedure is omitted, but where other

experimental variables (transit times, solution pH, enzyme

concentrations) are the same as (I), so enabling the effect of food

alone on bioaccessibility to be evaluated.

The FOREhST procedure is a IVBA test, carried out at 37uC to

simulate human body temperature, and utilising end-over-end

Figure 1. Roasted Undongo purchased from a small supermarket in Kenya. The labelling, not fully distinct on the image, states a ‘‘richness
of iron’’ that is of benefit to pregnant women and their unborn child. Photograph: Peter W. Abrahams.
doi:10.1371/journal.pone.0053304.g001
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rotation that replicates the churning of soil and fluid in the gut.

The stages involved in the methodology represent the saliva/

gastric and intestinal (i.e., duodenal and bile) phases of the human

GI system. Briefly (for a detailed description, see Cave et al. [36]),

0.3 g of each soil/shale sample was weighed into an individual

extraction bottle to which was placed 4.5 ml of simulated saliva

solution (pH=6.860.5). After 5 min, 9 ml of simulated gastric

solution (pH=1.460.5) was added to produce a mixed saliva/

gastric solution phase that had a final pH of 1.660.2. Following

2 hr of rotation in a water bath calibrated to 37uC, sample

solutions were retrieved from each extraction bottle, and retained

for chemical element quantification. This procedure was then

repeated on another set of weighed soil/shale samples but,

following the 2 hr of rotation with the saliva/gastric solution, 9 ml

of simulated duodenal (pH=8.160.2) solution and 4.5 ml of bile

fluid (pH=8.260.2) was then added to each extraction bottle,

producing a final solution that had a pH of 6.060.5. The

extraction bottles were rotated in the water bath for a further 2 hrs

after which the sample solutions were retrieved for chemical

analysis. This version of the methodology leads to leachate sample

solutions being collected both at the end of what we term the

saliva/gastric and intestinal phases of extraction. Chemical

element quantification of these solutions was undertaken using

ICP-MS instrumentation. Because of analytical considerations

(e.g., a variety of Na-containing reagents are used in the

FOREhST procedure, with deleterious implications for the

determination of bioaccessible Na), we restrict our focus to the

bioaccessible concentrations of eight elements (Co, Cr, Cu, Fe,

Mn, Ni, Pb and Zn): these bioaccessible concentrations associated

with the geophagical materials are reported in units of mg/kg.

Since the bioaccessibility of inorganic soil constituents is

dependent upon, amongst other variables, particle size, the

FOREhST procedure was applied to sieved materials of

,2000 mm and ,250 mm. We chose these particle sizes firstly

because the geophagists are ingesting the bulk material (which

explains our use of the ,2000 mm fraction), and secondly because

IVBA methods undertaken for human health risk assessments

typically use ,250 mm particles. Soil chemical element bioacces-

sibility also depends on whether foodstuffs have been ingested and,

as previously mentioned, we subject the geophagical materials to

(I) a scenario of fed-state (F-S) conditions where a freeze-dried

oatmeal and rice porridge infant food supplemented with

sunflower oil is used as the foodstuff in the experimental procedure

as described by Cave et al [36], and (II) simulated fed GI pH and

transit conditions but where no food has been consumed by the

geophagist (i.e., no rice porridge/sunflower oil is used in the

laboratory method: a fed-state, no food [F-SNF] scenario that

enables the effect of food alone on bioaccessibility to be evaluated).

To summarise the IVBA methodology, eight solutions were

obtained for ICP-MS chemical element quantification from each

geophagical sample subjected to the FOREhST procedure. These

solutions represent the saliva/gastric and intestinal phases of

extraction on ,2000 mm and ,250 mm particle sizes, and

simulated F-S and F-SNF conditions.

2.5 Determination of other Sample Variables
To provide some background information about the geopha-

gical materials, a number of procedures were undertaken in the

laboratory. A 1:2.5 w/v distilled water suspension was used for pH

determination undertaken on the,2000 mm geophagical samples,

whilst the method used to assess the cation exchange capacity

(CEC) was based on that of Bascomb [37]. Organic carbon (OC)

content was quantified from ,150 mm material following a mod-

ified version of the procedure described by Walkley and Black [38]

whereby the OC is oxidised with an acid dichromate solution. Soil

colour was measured by comparison with a colour chart [39].

2.6 Analytical Quality Control (AQC) Procedures
Trow [40] details the appropriate AQC procedures that were

undertaken to measure the robustness of our analytical data. For

example, two CRMs were included in the analysis to assess the

accuracy of the determined pseudo-total concentrations. Repli-

cates of these CRMs and two of the geophagical samples allowed

the calculation of precision, whilst detection limits (calculated as 3

x standard deviation of mg/l blank values multiplied by

appropriate dilution factor) were determined from the results

derived from the analysis of blank samples.

A CRM was included when undertaking the FOREhST

procedure and one geophagical sample was randomly chosen for

replication. Blank samples were also included and, where

appropriate, the bioaccessible concentrations of the in vitro

solutions associated with the geophagical materials were ‘blank

deducted’.

2.7 Calculation of Maximum Absorption Potential (MAP)
Values
To aid the evaluation of the importance of the geophagical

materials in supplying chemical elements to humans we have

calculated MAP values for Co, Cr, Fe, Mn and Ni. Such

calculations are based on the following assumptions:

N That the amount of soil/shale material consumed by the

geophagist is 20 g/day.

N Since mineral elements are mainly absorbed from the small

intestine of the GI tract, the highest concentration determined

from the leachate solutions associated with this phase of the

in vitro procedure – irrespective of particle size or F-S/F-SNF

simulated conditions – was used for the calculations. For Cr,

where all the leachate concentrations were below the detection

limit, the latter threshold was used in the calculation to

determine a ,MAP value.

N That all of the chemical elements solubilised in the simulated

intestinal phase of the in vitro procedure are absorbed by the

geophagist. We recognise that this is actually very unlikely [41–

42], and as such the MAP values are an overestimate of the

bioavailability of the chemical elements investigated in this

way. Nevertheless, we justify use of the MAP values, since they

provide a worst-case scenario that allows us to assess the

implications of the bioaccessible concentrations determined

from the in vitro leachate solutions.

Results

3.1 Results from the Employed AQC Procedures
Table 1 provides a summary of the AQC results associated with

the determination of the pseudo-total concentrations. Some

problems in the quality of the data are evident – e.g., raised

concentrations of Ca in the blank samples, the poor accuracy of

Na determined from the two CRMs – but the results following the

analysis of the geophagical materials are discussed in light of the

insight that the AQC procedures have provided.

Relative to the pseudo-total contents, the bioaccessible con-

centrations determined from the leachate solutions following the

in vitro FOREhST procedure are more difficult to interpret from

the perspective of AQC. Many concentrations are close to or

below detection limits – thus, for example, having implications for

quantifying the precision of our analysis determined from replicate

Human Geophagia: Nutritional Implications
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samples – whilst CRMs that can be used to evaluate accuracy are

very limited for this type of analysis. The British Geological Survey

(BGS) reference soil no: 102 has a bioaccessible guidance value –

determined using the Unified BARGE Method (UBM) IVBA

procedure [31] – of 1366 mg Pb/kg for the stomach phase (note

this method simulates unfed conditions). This CRM was used in

our analysis, but the two blank sample solutions associated with

the F-SNF saliva/gastric phase – the closest simulated conditions

that we employed compared to the UBM method – of our

experimental procedure were found to have notably higher Pb

concentrations than the BGS reference material solutions (indeed

the solutions of all the geophagical samples associated with this F-

SNF phase had a Pb content that was less than those of the blank

solutions). We conclude that the CRM soil, and all the geophagical

materials, are adsorbing Pb and consequently lowering the

simulated saliva/gastric solution concentrations of the F-SNF

scenario (a reaction that, as we highlight later, is also apparent for

some of the other determined elements, most notably Cu and Zn).

The UBM procedure is run at a stomach pH of 1.2, lower than the

FOREhST method we employed where the pH following the

saliva/gastric phase of the F-SNF scenario is typically 1.660.2.

The latter pH range was observed for the solutions of the

geophagical samples following the saliva/gastric F-SNF extraction

in our work, but notably the pH of the BGS CRM soil solutions

following this phase was 4.5–4.8. The increased pH will be

a significant factor in accounting for the solution concentrations of

Pb observed in our analysis of this CRM, with the implication

being that we cannot assess the accuracy of the Pb concentrations

determined in our work because of the significant pH differences

compared to the UBM procedure from which the bioaccessible

guideline value of 1366 mg Pb/kg is obtained.

Eight samples were replicated when undertaking the IVBA

procedure in order to determine the precision of this analysis.

However, because a number of solution concentrations were

below the limits of detection, the reproducibility of analysis can

only be quantified from a more restricted number of duplicated

samples: Table 2 provides a summary of the precision estimates

determined in our study.

3.2 Some General Observations Relating to the
Geophagical Materials
Most of the Calabash chalk samples are clay-rich soil materials

that have been dried and/or baked into blocky or spherical units,

though some are laminated shales (i.e., argillaceous sedimentary

rocks; Figure 2). Table 3 records some details relating to these

materials. All of the Calabash chalk samples have a very low OC

content ranging from ,0.1–0.4% (median = 0.1%) suggesting

that the geophagical soils have been excavated from sub-surface

horizons rather than (more organic enriched) topsoils. These

inorganic geophagical materials have a CEC rating that we

interpret as mainly varying from very low (i.e., ,6 cmolc/kg) to

medium (i.e., within the range 12–25 cmolc/kg), and all samples of

Calabash chalk are acidic in reaction (minimum-maximum

pH=3.4–6.4; median= 5.1). In contrast, Undongo has a high

CEC (32 cmolc/kg) and an alkaline reaction (pH=7.7), though

like the Calabash chalk it is associated with a very low OC content

(0.1%).

3.3 Pseudo-total Concentrations
A summary of the pseudo-total concentrations determined from

the samples of Calabash chalk is provided in Table 4. The

concentrations of Pb approximate or slightly exceed typical

‘average’ values that are associated with shales and present-day

soils [43–44], and the contents are similar to Calabash chalk

analysis that has been previously reported by Dean et al. [16].

However, a notable feature of the majority of the results in Table 4

is that while they are mostly within the normal range of total soil/

shale concentrations, for most of the elements – Ca, Cd, Co, Cr,

Table 1. Analytical accuracy, precision and detection limits
determined from samples (CRMs; blanks) subjected to a nitric-
perchloric acid digestion.

Certified Reference
Material

Detection
limit (mg/kg)c

GBW07407a SGR-1b

Ca Accuracyd:
Precisione:

-f

-f
81
2.9

552

Cd Accuracy:
Precision:

197
23

137
4

0.1

Co Accuracy:
Precision:

102
11

91
8

0.3

Cr Accuracy:
Precision:

69
11

94
9

3.5

Cu Accuracy:
Precision:

102
10

109
9

4.1

Fe Accuracy:
Precision:

83
0.6

88
3.3

1794

K Accuracy:
Precision:

71
2.3

22
1.1

40

Mg Accuracy:
Precision:

30
2.6

137
0.6

306

Mn Accuracy:
Precision:

72
8

109
8.4

0.4

Na Accuracy:
Precision:

41
5

19
1.5

26

Ni Accuracy:
Precision:

139
11

136
8

12

Pb Accuracy:
Precision:

94
13

122
19

0.6

Zn Accuracy:
Precision:

94
23

100
13

4.0

alaterite soil produced by the National Research Centre for Certified Materials,
China;
bGreen River shale produced by U.S. Geological Survey;
ccalculated as 3 x standard deviation of mg/l blank values multiplied by
appropriate dilution factor;
ddefined here as the deviation of the measured observation from the true
(certified) value, and calculated as (mean of five measurements/certified) x
100%;
eprecision = coefficient of variation (%) determined from five replicates of one
sample;
fcannot be calculated since below detection limits.
doi:10.1371/journal.pone.0053304.t001

Table 2. Precision of analysis quantified from sample
replicates subjected to the in vitro FOREhST procedure.

Co Cr Fe Mn Ni

Median precisiona 10.2 9.4 20.8 5.5 6.7

nb 4 2 6 4 3

aprecision = coefficient of variation (i.e., standard deviation/mean x 100%)
determined from replicated samples;
bnumber of replicated samples from which median precision calculated.
doi:10.1371/journal.pone.0053304.t002
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Cu, Fe, K, Mg, Mn, Na, Ni and Zn – the contents in many

samples are below what may be regarded as an average value (in

coming to this conclusion, it needs to be appreciated that normal/

typical total concentrations of soil chemical elements are mostly

reported from topsoils – that the Calabash chalk soils appear not

to be – which are likely to be enriched because of natural processes

such as adsorption by surface organic matter or low-level

anthropogenic pollution). The pseudo-total concentrations of

some pieces of Calabash chalk are an exception to this general

observation with, for example, two samples – both shales –

containing the highest amounts of Ca (1769 mg/kg and 2473 mg/

kg, respectively), Co (both 17 mg/kg), Fe (37070 mg/kg and

46670 mg/kg) and Mg (12936 mg/kg and 21176 mg/kg) re-

corded in our study. However, no concentration of any chemical

element in any sample of Calabash chalk can be regarded as

excessively high. In contrast, the Undongo sample contains

elevated pseudo-total concentrations of Cr and Ni (152 mg/kg

and 126 mg/kg, respectively) compared to many soil materials,

and is distinct from the Calabash chalk in having a low Pb and K

content (8 mg/kg and 210 mg/kg, respectively).

3.4 Bioaccessible Concentrations
For both the saliva/gastric and intestinal phases of the F-SNF

scenario, all the in vitro leachate solutions have Pb concentrations

less than the sample blanks, suggesting an adsorption of this PHE

by soil/shale constituents (furthermore, for the intestinal phase,

any Pb not adsorbed by the geophagical material is likely to be

precipitated/complexed by the increased pH and enzyme

concentration [45–46]). The blanks associated with the F-S

scenario of our in vitro experimentation have a notably lower Pb

concentration when compared with the blank solutions of the F-

SNF scenario. These results are indicative of adsorption by the

food component of the experimental procedure, a reaction

exacerbated by the pH of the blank solutions (the blank solutions

associated with the saliva/gastric part of the F-S scenario [median

pH=4.4] are notably less acidic than those of the F-SNF

[pH=1.8] phase). Binding of Pb by some of the geophagical

materials is also apparent from the F-S in vitro results (i.e., the Pb

content of the geophagical solutions are less than those determined

from the blanks), especially by particles ,250 mm in size.

Figure 2. Five of the Calabash chalk samples investigated in our study. These materials are shales (top left [sample 8 as listed in Table 3] and
bottom right [sample 4]) and dried/baked soils (samples 9, 6 and 5, top middle and right, and bottom left, respectively). Photograph: Peter W.
Abrahams.
doi:10.1371/journal.pone.0053304.g002
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However, some materials are also a source of Pb since associated

leachate solution concentrations are greater than those of the

blanks, though these solution concentrations are close to or below

the limits of detection (which are 0.25 mg/kg and 0.7 mg/kg for

the gastric/stomach and intestinal phases of the F-S scenario,

respectively). A maximum concentration of 0.65 mg Pb/kg

(sample 1, ,2000 mm soil) and 2.5 mg Pb/kg (sample 9,

,2000 mm soil) was recorded from the F-S saliva/gastric and

intestinal phases, respectively.

The results associated with the Cu and Zn bioaccessible

concentrations are similar to those observed for Pb. The blank

solution Cu contents associated with the F-SNF scenario are

elevated (22 and 8 ng/ml for the saliva/gastric and intestinal

phases, respectively), and many leachate solutions contain less than

these concentrations and so are indicative of adsorption by the

geophagical materials. Some intestinal leachate solutions contain

more Cu than the F-SNF blanks, but at concentrations that can

not be detected with confidence. Similar conclusions apply to the

Cu concentrations of solutions associated with the F-S scenario,

with only one sample (number 4) yielding more (1.1 mg/kg linked

with the saliva/gastric phase) than can be robustly detected. The

majority of the Zn concentrations obtained from the F-SNF

scenario are below the content found in the blanks (8.1 and

10.1 ng/ml for the saliva/gastric and intestinal phases, respec-

tively), though nearly all of the ,2000 mm geophagical materials

associated with the F-SNF saliva/gastric phase yield leachate

Table 3. Place of purchase, general area of origin, consumers and appearance of the geophagical materials.

Sample Purchase location Origin Consumersa Appearanceb

1 Jos Main Market Jos Plateau, central Nigeria PW, N-PW, C Clay blocky units: 10YR 7/3 very pale brown

2 Jos Main Market Jos, central Nigeria PW, N-PW, C Clay blocky units: 10YR 7/3 very pale brown

3 Jos New Market Southeast Nigeria PW, N-PW Spherical clay units: 5YR 7/2 pinkish grey

4 Jos Main Market Southeast Nigeria PW, N-PW Shale: 10YR 7/2 light grey and 2.5Y N4/0 dark
grey

5 Jos Main Market Southeast Nigeria PW, N-PW Shale: 2.5Y 7/2 light grey and 2.5Y 7/4 pale
yellow

6 Jos Main Market Southeast Nigeria PW, N-PW Clay blocky units: 5R 6/2 pale red and 5YR 7/
1 light grey

7 Jos New Market Southeast Nigeria PW, N-PW, C, M Clay blocky units: 5Y 6/2 pale red and 5YR 8/
1 white

8 Jos Terminus Market Jos Plateau, central Nigeria PW, N-PW Laminated clay blocky units: 5R 6/2 pale red

9 Zaria Main Market Imo State, Southeast Nigeria – Spherical clay units: 5R 6/4 pale red and 5YR
7/2 pinkish grey exterior; 5YR 8/1 white
interior

aPW=pregnant women; N-PW=non-pregnant women; C = children; M=men;
bincludes Munsell soil colour [39].
doi:10.1371/journal.pone.0053304.t003

Table 4. Descriptive statistics summarising the pseudo-total content (mg/kg) of the Calabash chalk samples, and concentrations
determined from the Undongo sample.

Ca Cd Co Cr Cu Fe K

Calabash chalka:

Median ,552 0.1 2.5 23 6.9 18186 1978

Min. – Max. ,552–2473 0.1–0.7 2.0–17 8.0–67 ,4.1–18 6498–46670 830–3354

IQR – 0 6.5 31 8.8 20348 1036

MBIV (%) – – 130 67.4 63.8 55.9 26.2

Undongo: ,552 0.1 9.1 152 18 7758 210

Mg Mn Na Ni Pb Zn

Calabash chalk:

Median 507 18 235 27 37 23

Min. – Max. ,306–21176 ,0.4–572 107–514 23–49 20–43 11–87

IQR – 273.8 407 26 23 76

MBIV (%) – 760.6 86.6 48.1 31.1 165.2

Undongo: 1426 57 3914 126 8 19

an= 9. IQR = inter-quartile range; MBIV =median-based index of variability (calculated as quartile deviation/median x 100%, where the quartile deviation is half the inter-
quartile range). Some IQR and MBIV values cannot be calculated.
doi:10.1371/journal.pone.0053304.t004
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solution concentrations slightly above the blank concentrations

(but none are greater than the robust limit of detection which is

5.3 mg/kg). For the F-S scenario, again the majority of the

leachate solution Zn concentrations are either below the blank

solution contents or below the limits of detection (the latter are

1.2 mg/kg and 2.4 mg/kg for the saliva/gastric and intestinal

phases of this scenario, respectively). However, one F-S leachate

solution (Undongo, ,250 mm soil, saliva/gastric phase) yielded

a detectable concentration of 4.7 mg Zn/kg.

For the remaining chemical elements (i.e., Co, Cr, Fe, Mn and

Ni) considered in the bioaccessibility study, whilst a number of

leachate solutions have concentrations below those of the blank

solutions, many are above so indicating the potential of ingested

soils/shales to be sources of these mineral elements that humans

can subsequently absorb. Tables 5 and 6 provide a summary of

these bioaccessible concentrations, with a number being reported

as below the limits of detection.

Discussion

A common concern that is expressed about geophagia is that

ingested earth materials are potentially a source of PHEs that can

have a clinical or sub-clinical toxic effect on an individual (e.g.,

Shellshear et al [47]; Wedeen et al. [48]). With exceptions (e.g.,

the Cr and Ni content of the Undongo sample), the geophagical

materials examined in our study are not enriched in PHEs – such

as Pb – when considering the pseudo-total concentrations and

comparing them to those of other soil/shale materials. Neverthe-

less, because Calabash chalk contains pseudo-total concentrations

of Pb that are well in excess of those found in the majority of

foodstuffs (which are typically well below 1 mg/kg [49–50]) some

organisations within developed countries such as the UK have

expressed anxieties about its consumption and are trying to restrict

its importation and use. In any evaluation of the chemistry of

geophagical materials however, it is the bioaccessible concentra-

tions that are more important than the total contents. For Cu, Pb

and Zn many of the leachate solutions are either less than the

blanks, suggestive of adsorption by the geophagical materials, or

have concentrations that cannot be robustly quantified. For Pb,

the maximum concentration found in our study was only 2.5 mg/

kg associated with the intestinal phase of the F-S procedure. The

instinct is to conclude that these materials are generally not an

important source of this mineral element, or Cu and Zn, but there

is evidence for Pb that there is no apparent safety threshold with

a human health risk associated with even low-level exposures [51].

A number of leachate solutions have Co, Cr, Fe, Mn and Ni

concentrations lower than the blanks that are again suggestive of

the adsorptive properties of the geophagical materials. For those

leachate concentrations that are greater than the blank solutions,

a number cannot be quantified with confidence making in-

terpretation of the data difficult. Should ingested soils release

bioaccessible mineral elements, it would generally be expected that

finer particles will be a more significant source due to their greater

effective surface area, that the acidic gastric environment will

promote the release of many elements relative to the more alkaline

intestinal part of the human digestion system, and that the

solubility within the GI tract is greater in F-SNF rather than F-S

scenarios. The limited fully quantifiable data of this study make it

difficult to confirm such generalisations, but we can make some

observations about the importance of these ingested geophagical

materials regarding their role in supplying Co, Cr, Fe, Mn and Ni

to consumers of such products. Table 7 details the MAP values of

these five chemical elements by humans. These values are

Table 5. Bioaccessible concentrations (mg/kg) associated with the F-SNF saliva/gastric and intestinal phases of the in vitro
procedure.

Saliva/gastric leachate phase

,250 mm ,2000 mm

Co Cr Fe Mn Ni Co Cr Fe Mn Ni

Calabash chalk:

Median 0.70 0.28 25 6.3 +a + 0.25 39 3.0 +

Min. – Max. ,0.14–3.5 0.16–0.40 ,14–116 ,1.8–253 ,0.80–4.5 ,0.14–1.8 0.14–0.44 16–54 ,1.8–136.5 ,0.80–2.4

nb 8 of 9 2 of 9 5 of 9 8 of 9 8 of 9 8 of 8 8 of 9 4 of 8 7 of 8 8 of 8

Undongo: 1.5 1.7 ,blkc 9.6 ,0.80 3.3 2.3 ,blk 11.9 ,0.80

Intestinal leachate phase

,250 mm ,2000 mm

Co Cr Fe Mn Ni Co Cr Fe Mn Ni

Calabash chalk:

Median ,0.70 ,2.8 ,28 5.9 ,blk ,0.70 ,2.8 74 4.8 ,1.7

Min. – Max. ,0.70–3.1 All ,2.8 ,28–158 ,3.6–187 All,blk ,0.70–1.5 All ,2.8 ,28–53 ,3.6–83 ,1.7–3.2

nb 9 of 9 9 of 9 7 of 9 7 of 9 0 of 9 8 of 8 4 of 8 2 of 8 5 of 8 6 of 8

Undongo: 1.6 ,2.8 ,28 ,3.6 ,blk ,0.70 ,2.8 ,blk ,3.6 0.36

acannot be computed since value is at the interface of detectable/not detectable concentrations;
bnumber of samples with concentrations above those of the sample blanks out of the total number of Calabash chalk samples analysed;
c,blk = less than sample blank concentrations.
doi:10.1371/journal.pone.0053304.t005
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compared against Reference Nutrient Intake (RNI) values (defined

as the amount of a nutrient that is adequate for nearly all – i.e.,

97.5% - of a population group; [41]) for adolescent females aged

15–18 years and women of child-bearing age (i.e., the main

consumers of Calabash chalk as identified in our questionnaire

survey). For varying reasons, no RNI is proposed for Co, Cr, Mn

and Ni, but the MAP observed for Fe is < 21.4% of the RNI for

this chemical element. The potential of ingested Calabash chalk

being a significant source of this essential mineral nutrient to

geophagists is thus demonstrated, and is similar in magnitude to

that previously identified by Abrahams et al. [2], but it needs to be

noted: (I) that this observation is based on the highest concentra-

tion of Fe detected in the intestinal leachate solutions, and (II) that

100% absorption of the bioaccessible Fe is extremely unlikely

[42,52]. The median detectable concentrations of Fe in the

intestinal leachate solutions indicate that the average amount

absorbed following a 20 g/day ingestion of Calabash chalk – again

assuming that all the soluble Fe is incorporated into the human

body – is ,0.56 mg/day, a value that is ,3.8% of the RNI

indicated in Table 7. Our conclusion is that generally Calabash

chalk is not a significant source of Fe to the geophagist. A similar

conclusion can also be made for the Undongo sample. Despite the

‘‘richness of iron’’ displayed on the packaging of this product,

Undongo has neither the (pseudo) total nor bioaccessible

concentrations to justify this statement: a maximum concentration

of 35 mg/kg recorded from the intestinal phase of the in vitro

leachate procedure equates to a MAP of just 0.7 mg/day

(assuming a soil intake of 20 g/day, and 100% absorption of this

soluble Fe), some 4.7% of the RNI displayed in Table 7.

We are not the only researchers who have concluded that

ingested soils are not a significant source of Fe to the geophagist.

The in vitro work of Hooda et al [7] indicated how the sorption

Table 6. Bioaccessible concentrations (mg/kg) associated with the F-S saliva/gastric and intestinal phases of the in vitro
procedure.

Saliva/gastric leachate phase

,250 mm ,2000 mm

Co Cr Fe Mn Ni Co Cr Fe Mn Ni

Calabash chalk:

Median 0.25 ,0.17 16 ,4.8 ,2.5 +a ,0.17 25 ,4.8 ,2.5

Min. – Max. ,0.12–0.56 All ,0.17 13–56 ,4.8–32 All ,2.5 ,0.12–0.48 ,0.17–0.24 18–63 ,4.8–28 All ,2.5

nb 8 of 9 4 of 9 4 of 9 8 of 9 7 of 9 8 of 8 8 of 8 8 of 8 7 of 8 6 of 8

Undongo: 0.30 ,0.17 ,9.6 ,4.8 ,2.5 0.20 ,0.17 ,blkc ,4.8 ,2.5

Intestinal leachate phase

,250 mm ,2000 mm

Co Cr Fe Mn Ni Co Cr Fe Mn Ni

Calabash chalk:

Median + ,2.0 15 ,3.9 ,1.1 ,0.12 ,2.0 13 ,3.9 ,1.1

Min. – Max. ,0.12–0.40 All ,2.0 ,6.1–9.5 ,3.9–23 All ,1.1 ,0.12–0.31 All ,2.0 8.8–24 ,3.9–15 All ,1.1

nb 9 of 9 8 of 9 9 of 9 9 of 9 8 of 9 8 of 8 4 of 8 4 of 8 6 of 8 6 of 8

Undongo: 0.30 ,2.0 10 ,3.9 ,1.1 0.12 ,2.0 35 ,3.9 ,1.1

acannot be computed since value is at the interface of detectable/not detectable concentrations;
bnumber of samples with concentrations above those of the sample blanks out of the total number of Calabash chalk samples analysed;
c,blk = less than sample blank concentrations.
doi:10.1371/journal.pone.0053304.t006

Table 7. MAP values of five mineral elements following the
consumption of 20 g of Calabash chalk by human
geophagists, and a comparison with: (I) RNI values for
adolescent 15–18 year old females and women of child-
bearing age, and (II) SULs/GLs for a 60 kg adult.

Co Cr Fe Mn Ni

MAP (mg/
day)a

0.06 ,0.06b 3.16 3.74 0.06

RNIc No RNId No RNI 14.8 No RNIe No RNIf

SUL/GLg 1.4 10h 17i 4j No SUL/GL

aCalculated using the highest concentration recorded from the solutions
associated with the intestinal phase of the in vitro leachate procedure
employed in our study, and assuming that all of the element released into
solution is absorbed by the geophagist;
bsince all intestinal Cr concentrations are below detection limits, this value is
derived using the highest such threshold value determined in our study;
cvalues (mg/day) from UK Department of Health (DoH, [41]);
dno RNI in this form can be given since although an essential element, Co is
utilised by humans only as a constituent of vitamin B12 that is obtained from
the consumption of meat, supplements/pharmaceuticals or fortified foods;
ehuman Mn deficiency has not been observed outside experimental studies and
since intakes thus appear adequate the DoH [41] set no RNI for this chemical
element;
fNo RNI established since Ni deficiency has not been observed in humans and
their requirement for this metal is unknown (but could be as low as 5 mg/day
[55]);
gvalues expressed as mg/day [6];
hGL applies to trivalent Cr (the naturally occurring valency state of this chemical
element that is found in soils);
ifor guidance purposes, a supplemental intake of 17 mg/day would not be
expected to produce adverse effects in the majority of people. This is based on
data referring to the ferrous form of Fe;
jGL for supplemental intake.
doi:10.1371/journal.pone.0053304.t007
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potential of some geophagical soils can lead to a reduction of Fe

concentrations in the simulated GI fluids. These findings, however,

contradict those from other research. Thus, following the use of an

IVBA procedure that simulated unfed conditions, both Abrahams

et al. [2] and Smith et al. [53] highlighted the potential of ingested

soils in supplying a significant amount of Fe to the geophagist.

Other research (e.g., [5,27–28]) has also suggested this, though

a criticism that can be directed to these investigations is that the

laboratory methodology is too simplistic compared to the human

GI environment.

The importance of ingested Calabash chalk as a potentially

deleterious source of Co, Cr, Fe, Mn or Ni can be evaluated by

making reference to the Safe Upper Levels (SULs) or Guidance

Levels (GLs) outlined in Table 7. Determined by the UK Expert

Group on Vitamins and Minerals (EVM, [6]), SULs represent an

intake that can be consumed daily over a lifetime – and note,

many geophagists do not deliberately consume earth materials

throughout their life, but instead partake only during certain

periods such as pregnancy. Our questionnaire survey undertaken

in Nigeria indicates that the pregnant women commence

geophagia at the onset of vomiting/perceived over-salivation

about two months into their pregnancy, ceasing the practise some

4–6 months later – without significant health risk, while GLs

(which are based on more limited data) give an approximate

indication of levels that would not be expected to cause adverse

effects. Previous research [2] has shown that geophagists can

potentially exceed the GL for Fe, but the rate of ingestion of

Calabash chalk and its bioaccessible Fe content would seem to

pose little threat to humans consuming such materials: the MAP of

3.16 mg/day noted in Table 7 is 18.6% of the GL associated with

this chemical element. Of the five chemical elements detailed in

Table 7, it is the MAP of Mn (3.74 mg/day) that is the nearest to

the threshold levels provided by the EVM (who consider that

a supplemental intake of up to 4 mg Mn/day in addition to the

diet would be unlikely to produce adverse effects).

As previously highlighted, the Undongo contains elevated

pseudo-total concentrations of Cr and Ni. However, regarding

this soil material, the MAP of Cr is ,0.056 mg/day, well below

the GL of 10 mg Cr/day (Table 7). The EVM [6] could not

establish a SUL or GL for the supplemental intake of Ni, but noted

that dietary intakes of this metal can cause flare-ups of dermatitis

since it is a potent skin sensitizer. Certain foodstuffs such as soya

beans typically contain elevated concentrations of Ni, and

a supplementary diet comprised of such constituents – that

provided an oral intake of 0.49 mg/day – was found to trigger

symptoms of hand eczema in Ni-sensitive female patients [54].

Assuming a 20 g/day ingestion of Undongo however, the

bioaccessible concentrations of Ni – from which a MAP of

,0.02 mg/day can be calculated – do not appear to be a threat to

the geophagist.

Conclusions
Any ingested geophagical material has the potential to release

mineral nutrients and PHEs when they come in contact with

digestive fluids. However, our investigations following the use of

two scenario’s associated with the FOREhST IVBA procedure,

indicate that at rates of consumption of 20 g/day, the Calabash

chalk materials on the whole are not a significant source of mineral

nutrients or PHEs to humans (this finding applies also to Undongo

despite the Fe enrichment stated on the labelling of the product).

Indeed, with many in vitro leachate solutions containing concen-

trations of, for example, Pb that are less than the blanks employed

in our analysis, the geophagical materials are capable of adsorbing

chemical elements, so preventing their absorption. Our results

further suggest that foodstuffs can be a sink for Pb in the GI

environment. Whilst the reported concerns about ingested

Calabash chalk may be lessened with such findings we would still

advocate caution about the use of such materials: their microbial

sterility, for example, is questionable and needs to be investigated.
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