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Towards Backward Fuzzy Rule Interpolation

Shangzhu Jin, Ren Diao and Qiang Shen

Abstract— Fuzzy rule interpolation (FRI) is well known for
reducing the complexity of fuzzy models and making inference
possible in sparse rule-based systems. However, in practical
fuzzy applications with inter-connected rule bases, situations
may arise when a crucial antecedent of observation is absent,
either due to human error or difficulty in obtaining data,
while the associated conclusion may be derived according to
different rules or even observed directly. To address such issues,
a concept termed Backward Fuzzy Rule Interpolation (B-FRI)
is proposed, allowing the observations which directly relate
to the conclusion be inferred or interpolated from the known
antecedents and conclusion. B-FRI offers a way to broaden the
fields of research and application of fuzzy rule interpolation
and fuzzy inference. The steps of B-FRI implemented using the
scale and move transformation-based fuzzy interpolation are
given, along with two numerical examples to demonstrate the
correctness and accuracy of the approach. Finally, a practical
example is presented to show the applicability and potential of
B-FRI.

I. INTRODUCTION

The Compositional Rule of Inference (CRI) [17] plays a
predominate role in fuzzy systems, where fuzzy rules are
typically interpreted as fuzzy relations. Many different CRI
implementations have been proposed by employing different
t-norms and s-norms [8]. However, all such implementations
are only applicable for problem domains where significantly
dense rule bases are available. Fuzzy rule interpolation
(FRI) has been introduced to address this limitation [10],
and is well known for reasoning in the presence of in-
sufficient knowledge commonly referred to as sparse rule
bases. Various interpolation methods have been developed
in the literature [7], [14], most of which can be categorised
into two classes with several exceptions (e.g. type II fuzzy
interpolation [4]).

The first category of approaches directly interpolates rules
whose antecedent is identical to the given observation. The
consequence of the interpolated rule is thus the logical
outcome. Most typical approaches in this group [2], [9], [10]
are based on the Decomposition Principle and Resolution
Principle, which assumes that a fuzzy set can be represented
by a series of α-cuts (α ∈ (0,1]). The α-cut of the interpo-
lated consequent fuzzy set is then calculated from the α-cuts
of the observed antecedent fuzzy sets, and all the fuzzy sets
involved in the rules used for interpolation. Having found the
consequent α-cuts for all α ∈ (0,1], the consequent fuzzy set
can be easily assembled by applying the Resolution Principle.

The second category is based on the analogical reasoning
mechanism [3], usually referred to as “analogy-based fuzzy
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interpolation”. These approaches [1], [5], [6] first interpo-
late an artificially created intermediate rule, such that the
antecedent of the intermediate rule is “closer” to the given
observation. Then, a conclusion can be deduced by firing
this intermediate rule through the analogical reasoning mech-
anism. The shape distinguishability between the resulting
fuzzy set and the consequence of the intermediate rule, is
then analogous to the shape distinguishability between the
observation and the antecedent of the created intermediate
rule.

Fig. 1. A general backward fuzzy rule interpolation structure

Despite the numerous approaches present and their advan-
tages, FRI techniques are relatively rarely applied in practice
[12]. One of the main reasons is that many practical fuzzy
applications are multiple-input and multiple-output (MIMO)
systems. The rule bases involved may be irregular in nature,
and could be arranged in an inter-connected mesh, where
observations and conclusions in between different rule bases
could be overlapped, and yet not directly relative. For such
complex systems, any missing values in a given set of
observations could cause a complete failure in interpolation.
For instance, in Fig. 1, the conclusion Bn of the final rule Rn
can not be interpolated straightforwardly, because the three
missing observations cannot be deduced using conventional
means.

To dress this kind of problem, a novel concept termed
Backward Fuzzy Rule Interpolation (B-FRI) is proposed. B-
FRI argues that the unknown antecedents of observation can
be interpolated, provided that all other antecedents and the
conclusion are known. Being a beneficial addition to FRI,
B-FRI is an approach which achieves indirect interpolative
reasoning. Using the earlier example in Fig. 1, the unknown
antecedents An

r and An
p can be backward interpolated ac-

cording to rules R j and Ri, where the conclusions A j
1, Ai

q



and other antecedent terms are already known. The last
missing antecedent An

m can then be interpolated using R1,
and subsequently Bn can also be deduced, as now all required
antecedents are known for forward interpolation.

In this paper, B-FRI is implemented using the scale and
move transformation-based fuzzy interpolative reasoning (T-
FIR) [5], [6], which is an analogy-based approach. The
main reason for this adoption is that T-FIR offers a flexible
and complete means to handle both interpolation and ex-
trapolation involving multiple fuzzy rules. T-FIR guarantees
the uniqueness as well as normality and convexity of the
resulting interpolated fuzzy sets. It is also able to handle
interpolation of multiple antecedent variables with different
types of fuzzy membership function.

The rest of this paper is organised as follows. Section II
reviews the general concepts of the T-FIR. The proposed B-
FRI approach is given in Section III, including methods for
single and multiple antecedent variables, along with worked
examples. A possible application that reasons about terrorist
activities is provided in Section IV, to demonstrate the cor-
rectness and accuracy of this approach. Section V concludes
the paper and suggests possible future enhancements.

II. BACKGROUND OF TRANSFORMATION-BASED
INTERPOLATIVE REASONING

This section provides a general introduction of the proce-
dures involved in T-FIR [6], including the definition of the
underlying key concepts, and an outline of its interpolation
steps. Triangular membership functions are the most common
and widely used fuzzy set representation in fuzzy systems,
and they are also adopted in this paper for simplicity.

The key concept used in T-FIR is the representative value
Rep(A) of a triangular fuzzy set A. It is defined as the average
of the X coordinates of the triangle’s three points: the left and
right extreme points a0, a2 (with membership values = 0),
and the normal point a1 (with membership value = 1).

Rep(A) =
a0 +a1 +a2

3
(1)

µ a1

b1

µ A A
1.0

X

Y

a10 a11 a12 a0 a2 a20 a21 a22

b10 b11 b12 b0 b2 b20 b21 b22

1 A2

B1 B2

*

B*
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Fig. 2. Interpolation with triangular membership functions.

A. T-FIR with Two Single Antecedent Rules

1) Determination of Two Closest Rules
For single antecedent rules A⇒ B, the distances to the
observation A∗ can be computed using Eqn. 2.

d = d(A,A∗) = d(Rep(A),Rep(A∗)) (2)

2) Construct Intermediate Fuzzy Terms
Suppose that the two neighbouring rules after distance
comparison A1 ⇒ B1, A2 ⇒ B2, and the observation
A∗ are given as illustrated in Fig. 2. The intermediate
fuzzy term A

′
= (1−λA)A1+λAA2 can then be defined

according to the ratio of distances λA between their
representative values, and Rep(A

′
) = Rep(A∗):

λA =
d(A1,A∗)
d(A1,A2)

=
d(Rep(A1),Rep(A∗))
d(Rep(A1),Rep(A2))

(3)


a0
′ = (1−λA)a10 +λAa20

a1
′ = (1−λA)a11 +λAa21

a2
′ = (1−λA)a12 +λAa22

(4)

Similarly the fuzzy set B
′

on the consequence domain
can be obtained. In the single antecedent case, λB = λA.

B
′
= (1−λB)B1 +λBB2 (5)

3) Scale Transformation:
Let A

′′
= (a0

′′
,a1

′′
,a2

′′
) denote the fuzzy set generated

by the scale transformation. By using the scale rate sA,
A
′
’s current support (a0

′
,a2

′
) is transformed into a new

support (a0
′′
,a2

′′
), such that a2

′′−a0
′′
= sA×(a

′
2−a

′
0).

a0
′′ = a0

′(1+2sA)+a1
′(1−sA)+a2

′(1−sA)
3

a1
′′ = a0

′(1−sA)+a1
′(1+2sA)+a2

′(1−sA)
3

a2
′′ = a0

′(1−sA)+a1
′(1−sA)+a2

′(1+2sA)
3

sA = a2
′′−a0

′′

a2 ′−a0 ′

(6)

4) Move Transformation:
The current support of A

′′
is moved to (a0,a2) while

keeping its representative value, resulting in the fuzzy
set A∗. 

mA = a0−a0
′′

a1
′′−a0

′′
3

,a0 ≥ a0
′′

mA = a0−a0
′′

a2
′′−a1

′′
3

,otherwise
(7)

Given the move ratio mA, the transformed fuzzy set A∗

can be calculated using:




a0 = a0

′′+mA
a1
′′−a0

′′

3

a1 = a1
′′−2mA

a1
′′−a0

′′

3

a2 = a2
′′+mA

a1
′−a0

′′

3

mA ≥ 0 (8a)


a0 = a0

′′+mA
a2
′′−a1

′′

3

a1 = a1
′′−2mA

a2
′′−a1

′′

3

a2 = a2
′′+mA

a2
′′−a1

′′

3

otherwise (8b)



5) The above transformations from A
′

to A∗ can be
concisely represented by function T (A

′
,A∗). Similarly,

the function T is applied to transforming B
′

to B∗ such
that:

T (B
′
,B∗) = T (A

′
,A∗) (9)

where sB = sA and mB = mA for the current single
antecedent case.

B. T-FIR with Multiple Antecedent Variables

1) Determination of Two Closest Rules
Without losing generality, rules Ri, R j and observation
O can be represented in the following forms:

Ri: IF x1 is Ai
1, · · · , xk is Ai

k, · · · , xM is Ai
M ,

THEN y is Bi

R j: IF x1 is A j
1, · · · , xk is A j

k, · · · , xM is A j
M ,

THEN y is B j

O: A∗1, · · · , A∗l , · · · , A∗M

where Ai
k is the linguistic term of the Ri rule on the kth

antecedent dimension, k = 1, · · · ,M. A∗l , l = 1, · · · ,M
are the observed fuzzy sets of variable xl . and M is the
total number of antecedents. The distance dk between
the fuzzy sets Ai

k and A∗k can then be calculated as:

dAk =
d(Ai

k,A
∗
k)

maxAk −minAk

=
d(Rep(Ai

k),Rep(A∗k))
maxAk −minAk

(10)

where maxAk and minAk are the maximal and minimal
domain values of variable xk. This normalises the
absolute distance measure into the range [0,1], so that
distances are compatible with others measured over
different domains. From this, the distance d between a
rule and an observation can then be calculated as the
average of all variables’ distances. The two rules which
have the minimum distance are chosen, which are
located on both sides of the observation, respectively.

d =

√
dA1

2 +dA2
2 + · · ·+dAM

2 (11)

2) Interpolation between the Two Rules
Suppose that the two adjacent rules are Ri and R j, to
interpolate B∗, the values Ai

k and A j
k are used in Eqn. 3

and 4 to obtain the displacement factor λAk , and the
intermediate fuzzy terms A

′
k for each antecedent di-

mension xk. In conjunction with the given observation
terms A∗k , the scale and move transformation T (A

′
k,A
∗
k),

and the necessary parameters involved sAk and mAk are
calculated using Eqn. 6 and 7.
For the current scenario with multiple antecedent rules,
each antecedent dimension would have its own λAk ,
sAk , and mAk values. The following equations aggregate
them all in order to discover the intermediate fuzzy
term B

′
. The fuzzy set B∗ of conclusion can then be

estimated by the transformation T (B
′
,B∗) = {sB,mB}.

λB =
1
M

M

∑
k=1

λAk (12)

B
′
= (1−λB)Bi +λBB j (13)

sB =
1
M

M

∑
k=1

sAk (14)

mB =
1
M

M

∑
k=1

mAk (15)

III. BACKWARD FUZZY RULE INTERPOLATION

In this section, the concept of Backward Fuzzy Rule
Interpolation (B-FRI) is presented. Again, for simplicity, only
cases involving two adjacent rules are considered. In general,
any FRI can be represented as follows:

B∗ = fFRI(A∗1, · · · ,A∗l , · · · ,A∗M,(Ri,R j)) (16)

where fFRI denotes the entire process of the forward fuzzy
rule interpolation using rules Ri and R j, A∗l , l = 1,2, · · · ,M
are observed values of the antecedent variables and B∗ is the
interpolated conclusion, (Ri,R j) are the two adjacent rules.
Similarly, for B-FRI the following general form can be used:

A∗l = fB−FRI((B∗,(A∗1, · · · ,A∗l−1,A
∗
l+1, · · · ,A∗M)),(Ri,R j))

(17)
where fB−FRI denotes the entire process of backward fuzzy
interpolation, and A∗l is the unknown observation to be
backward interpolated.

A. B-FRI with Single Antecedent Variable

By definition of linear interpolation, the process of B-FRI
with single antecedent rules is identical to that of traditional
interpolation. The antecedents and consequence of rules are
simply positioned in the reverse order, and the observed
consequent variable becomes the new antecedent.

Example 3.1: An example is used here to illustrate the
process, as well as to provide an example of the T-FIR
procedures. The two original rules are given in Table I
and illustrated in Fig. 3, with the conclusion being given:
B∗ = (5.83,6.26,7.38). Note that in contrary to the notations
given in Section II-A, the conclusion B∗ is now known, and
A∗ becomes the targeted interpolation result.

TABLE I
EXAMPLE OF B-FRI, B∗ = (5.83,6.26,7.38)

Rule Antecedents Consequence
R1 A1 = (0,5,6) B1 = (0,2,4)
R2 A2 = (11,13,14) B2 = (10,11,13)

1) Construct Intermediate Fuzzy Terms B
′

and A
′
: The

relative placement factor λB = 0.481 is calculated
first using Eqn. 3. The intermediate fuzzy term
B
′
= (4.811,6.330,8.330) is constructed according to

Eqn. 4, which has the same representative value as



Fig. 3. Example of B-FRI with single antecedent

the conclusion B∗, Rep(B
′
) = Rep(B∗) = 6.490. Ac-

cording to Eqn. 5, work out the intermediate value
A
′
= (5.292,8.849,9.849).

2) Calculate Scale Rate: The scale rate sB is calculated
using Eqn. 6, resulting in sB = 0.440. The second
intermediate term B

′′
= (5.75,6.42,7.30) denote the

fuzzy set generated by the scale transformation. This
transformation rescales the support of B

′
, (b

′
0,b

′
2) =

(4.81,8.33) into a new support b
′′
0,b

′′
2 = (5.75,7.30),

such that the length of support is modified by sB:
(7.30−5.75) = 1.55 = 0.440× (8.33−4.81).

3) Calculate Move Ratio: According to Eqn. 7, mB =
0.357 can be deduced that will shift (b

′′
0,b

′′
2) =

(5.75,7.30) to (b∗0,b
∗
2) = (5.83,7.38). The result of the

above scale and move transformation should success-
fully transform B

′′
back to B∗.

4) Scale and Move Transformation A
′

to A∗: Having dis-
covered sB and mB, the reverse transformation of Eqn. 9
can be performed. The scale transformation is first
applied to A

′
using sA = sB = 0.440, resulting in the

second intermediate term A
′′
= (6.805,8.372,8.812).

In the end, A∗ = (6.992,7.999,8.999) is a result from
the move transformation from A

′′
using move ratio

mA = mB = 0.357, hereby completing the backward
transformation process T (A

′
,A∗) = T (B

′
,B∗).

The correctness and accuracy of backward interpolation
can be easily proven by doing conventional T-FIR using A∗=
(6.992,7.999,8.999) as the observed value. The conclusion
B∗ = (5.8304,6.2604,7.3803) consistent with the originally
given observation.

B. B-FRI with Multiple Antecedent Variables

A close examination of the T-FIR algorithm reveals that
all the parameters in association with the calculation of the
consequence variable, namely λB, sB and mB, are algebraic
averages of the parameters from individual antecedent terms
according to Eqn. 12, 14 and 15. Thus, it has an intuitive
appeal to assume that, in order to perform backward in-
terpolation, the consequent variable should be treated with
a biased weight that is the sum of all antecedent weights.
The parameters for the missing antecedent should then be

calculated by subtracting parameter values of the known
antecedents from the consequent values. The following sum-
marises the proposed B-FRI algorithm that reflects this
intuition:

1) Determination of Closest Rules In reference to the
earlier definition of the B-FRI process in Eqn. 17, when
B∗,(A∗1, · · · ,A∗l−1,A

∗
l+1, · · · ,A∗M) are given, in order to

interpolate the unknown antecedent A∗l , the discovery
of the closest rules Ri and R j are required. In contrary
to the plain distance measure introduced in Eqn. 10 and
11, a modified scheme is proposed which reflects the
biased consideration toward the consequent variable:

d =

√√√√(
M

∑
k=1

wAk)×dB
2 +

M

∑
k=1,k 6=l

(wAk dAk
2) (18)

When used purely for the choice of closest rules, the
square root stated in the original distance measure
becomes unnecessary, as only the ordering information
is recognised. Further more, for general backward
interpolation without sufficient knowledge on the ac-
tual level of importance of different antecedents, all
antecedents should be treated equal, that is:

wA1 = wA2 = · · ·= wAM = 1 (19)

wB =
M

∑
k=1

wAk = M (20)

The above formula can therefore be simplified into:

d̂ = M×dB
2 +

M

∑
k=1,k 6=l

dAk
2 (21)

For better illustration of the later interpolation
procedures, the two adjacent rules Ri and R j, and the
observation O are represented as follows:

Ri: IF x1 is Ai
1, · · · , xk is Ai

k, · · · , xM is Ai
M ,

THEN y is Bi

R j: IF x1 is A j
1, · · · , xk is A j

k, · · · , xM is A j
M ,

THEN y is B j

O: A∗1, · · · , A∗l−1, A∗l+1, · · · , A∗M , B∗

where Ai
k and A j

k denote the kth terms of rules Ri and
R j respectively. The missing antecedent value in the
observation is denoted by A∗l .

2) Construct the Intermediate Fuzzy Terms The first step
of the actual interpolation process is to compute the
intermediate fuzzy terms for each antecedent and the
consequent variable, including A

′
l for the missing lth

antecedent. For this, λAl is needed to be calculated.
Recall Eqn. 12 where λl was part of the ∑

M
k=1 λAk on the

right hand side. Now that B∗ is already known, λB can
be easily calculated from Eqn. 22. It is then possible
to deduce λAl according to Eqn. 23, where each λAk



for the other known antecedents Ak is calculated using
the generalised version of Eqn. 3, shown in Eqn. 24.
The intermediate fuzzy terms A

′
k, k = 1,2, · · · ,M and

B
′

can now be computed according to Eqn. 4.

λB =
d(Rep(Bi),Rep(B∗)
d(Rep(Bi),Rep(B j))

(22)

λAl = M×λB−
M

∑
k=1,k 6=l

λAk (23)

λAk =
d(Ai

k,A
∗
k)

d(Ai
k,A

j
k)

=
d(Rep(Ai

k),Rep(A∗k)

d(Rep(Ai
k),Rep(A j

k))
(24)

3) Scale and Move Transformation Having the intermedi-
ate fuzzy terms, the essential parameters sAl and mAl
involved in the transformation process can be derived.
Following the same reasoning and steps as that of
λAl , by reversing the forward transformation procedure
introduced in Eqn. 14 and 15, the required values can
be found as shown below according to Eqn. 25 and
26, where sB and mB are immediately obtainable by
evoking Eqn. 6 and 7. The generalised formulae for
sAk and mAk can be derived similarly to Eqn. 24, such
that:

sAl = M× sB−
M

∑
k=1,k 6=l

sAk (25)

mAl = M×mB−
M

∑
k=1,k 6=l

mAk (26)

4) Finally with all parameters acquired, the scale and
move transformation on A

′
l can be performed as shown

in Eqn. 27, resulting in the (backward) interpolated
value A∗l , that was originally missing.

T (A
′
l ,A
∗
l ) = {sAl ,mAl} (27)

Example 3.2: This example illustrates backward interpo-
lation of multiple antecedent variables with triangular mem-
bership functions. The two adjacent rules are given in Table II
and Fig. 4, with the observation being

A∗1 = (4,5,6),A∗2 = (5,6,7),B∗ = (10.23,11.80,13.73)

TABLE II
TWO CLOSEST RULES FOR OBSERVATION

Rule Antecedents Consequence
Rule 1 A1

1 = (1,2,3), A1
2 = (2,3,4),

A1
3 = (2,4,5)

B1 = (5,7,9)

Rule 2 A2
1 = (7,9,10), A2

2 = (8,9,10),
A2

3 = (9,10,11)
B2 = (15,17,19)

1) Construct Intermediate Fuzzy Terms:
The λB for the consequent dimension is 0.492 ac-
cording to Eqn. 22, the parameter for the missing
observation can then be calculated using Eqn. 23.

A2
1

X3

X2

0  1   2   3   4    5   6   7   8   9  10  11 12 13  14  15 

0  1   2   3   4    5   6   7   8   9  10  11 12 13  14  15 

1X

A1
1 A1

2
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µ
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*

Fig. 4. Example of B-FRI with multiple antecedents

λA3 = M × λB −∑
M
k=1,k 6=l λAk = 3× 0.492− (0.450 +

0.5) = 0.526, and the intermediate fuzzy set A
′
3 =

(5.684,7.158,8.158) can be obtained according to
Eqn. 4.

2) Scale and Move A
′
3 to A∗3:

The individual scale and move parameters can be
calculated according to Eqn. 6 and 7, resulting in
sB = 0.875, mB = 0.103. From Eqn. 25 and 26 it is
possible to obtain sA3 = 0.809 and mA3 = 0.153. The
second intermediate fuzzy term A

′′
3 can be computed to

be (5.934,7.126,7.934). Finally, according to Eqn. 27,
the transformed A∗3 = (5.995,7.004,7.995) can be ob-
tained.

Again the result can be validated by performing the
conventional T-FIR using the obtained A∗3, resulting in the
conclusion being (10.2301,11.8001,13.7298), which is con-
sistent with the given observed conclusion.

IV. EXPERIMENTATION AND DISCUSSION

A. Experimental Scenario

Consider a practical scenario that involves the possible
detection of terrorist bombing events. The likelihood of an
explosion can be directly affected by the number of people
in the area, a crowded place is usually more likely to attract
terrorists’ attention. The number of public warning signs
displayed in the area may also affect the potential outcome.
With many eye-catching warning signs, people may raise
their awareness of the surroundings, and may promptly report
suspicious individuals or items, giving less opportunities for
the terrorists to attack. Given such concepts regarding the
antecedent variables Crowdedness, Warning level, and the
consequent variable Explosion Likelihood, a rule base can
be established with example rules listed in Table III.

Additionally, there may exist another rule base that focuses
on the prediction of crowdedness. The number of people in
an area is directly related to the Popularity of the place, but



Crowdedness Warning Explosion Likelihood
C1 Very Low Moderate Very Low
C2 Moderate Moderate Low
C3 Moderate High Low
C4 High Moderate Moderate

TABLE III
EXAMPLE RULES FOR EXPLOSION LIKELIHOOD

Popularity Travel Warning Crowdedness
C1 Very Low Very Low Very High Very Low
C2 Very Low Very High Very Low Low
C3 Very Low High High Low
C4 Moderate Moderate High Low
C5 Moderate High Low Moderate
C6 High Very Low High Very Low
C7 High High Moderate Moderate
C8 High High Very Low High

TABLE IV
EXAMPLE RULES FOR CROWDEDNESS

it can also be affected by the level of Travel Convenience. A
well known place that is hard to get to by usual means, may
not have more people than an attraction that is less famous,
but very easy to reach. Moreover, considering the current
scenario, the crowdedness may also change in relation to
the Warning level. The less brave individuals may shy
away from places that are considered dangerous, judged by
the amount of explosion alerts in the surrounding areas.
Summarising the above information, the second rule base
may be derived. Table IV displays a subset of such rules.

It is easy to identify that both rule bases involved are fuzzy
and sparse. Fuzziness is naturally introduced by the presence
of linguistic terms used to describe the domain variables.
From the linguistic terms it can be deduced that the rule bases
contain substantial gaps amongst the underlying domains of
the variables concerned. The terms Low, Moderate, and High
although provide reasonable coverage of the entire domain,
but intermediate values such as Moderate Low, Moderate
High are not represented. By converting the linguistic terms
into fuzzy sets, the following two rule bases presented in
Table V and VI may be produced. These are used for later
experiments for illustrative purposes.

For traditional forward interpolative reasoning, in order to
interpolate Explosion Likelihood, the observed value for the

Crowdedness Warning Explosion Likelihood
E1 (0.0,1.0,2.0) (0.0,0.8,1.8) (0.0,0.9,1.9)
E2 (0.0,1.0,2.0) (3.4,4.4,5.4) (0.0,0.7,1.7)
E3 (0.1,1.1,2.1) (7.4,8.4,9.4) (0.0,0.6,1.6)
E4 (3.5,4.5,5.5) (0.0,0.5,1.5) (3.2,4.2,5.2)
E5 (3.7,4.7,5.7) (3.1,4.1,5.1) (2.3,3.3,4.3)
E6 (4.2,5.2,6.2) (6.9,7.9,8.9) (1.9,2.9,3.9)
E7 (7.6,8.6,9.6) (0.0,0.3,1.3) (7.2,8.2,9.2)
E8 (7.0,8.0,9.0) (3.5,4.5,5.5) (4.5,5.5,6.5)
E9 (7.7,8.7,9.7) (7.6,8.6,9.6) (3.7,4.7,5.7)

TABLE V
FUZZY RULE BASE FOR EXPLOSION LIKELIHOOD

Popularity Travel Warning Crowdedness
C1 (0.0,0.4,1.4) (0.0,0.5,1.5) (0.0,0.9,1.9) (0.0,0.8,1.8)
C2 (0.1,1.1,2.1) (0.0,0.6,1.6) (3.1,4.1,5.1) (0.0,0.8,1.8)
C3 (0.2,1.2,2.2) (0.0,1.0,2.0) (7.3,8.3,9.3) (0.0,0.7,1.7)
C4 (0.0,0.4,1.4) (3.0,4.0,5.0) (0.0,0.9,1.9) (0.8,1.8,2.8)
C5 (0.0,0.6,1.6) (3.6,4.6,5.6) (3.2,4.2,5.2) (0.5,1.5,2.5)
C6 (0.0,1.0,2.0) (3.8,4.8,5.8) (7.1,8.1,9.1) (0.4,1.4,2.4)
C7 (0.0,0.7,1.7) (7.6,8.6,9.6) (0.0,1.0,2.0) (1.8,2.8,3.8)
C8 (0.1,1.1,2.1) (7.1,8.1,9.1) (3.7,4.7,5.7) (1.3,2.3,3.3)
C9 (0.0,0.8,1.8) (7.1,8.1,9.1) (6.9,7.9,8.9) (0.7,1.7,2.7)
C10 (3.2,4.2,5.2) (0.0,1.0,2.0) (0.0,1.0,2.0) (1.1,2.1,3.1)
C11 (3.4,4.4,5.4) (0.0,0.8,1.8) (3.9,4.9,5.9) (0.5,1.5,2.5)
C12 (3.5,4.5,5.5) (0.0,0.9,1.9) (7.3,8.3,9.3) (0.3,1.3,2.3)
C13 (3.2,4.2,5.2) (3.7,4.7,5.7) (0.0,1.0,2.0) (3.2,4.2,5.2)
C14 (3.4,4.4,5.4) (3.2,4.2,5.2) (3.9,4.9,5.9) (2.0,3.0,4.0)
C15 (3.7,4.7,5.7) (4.0,5.0,6.0) (7.2,8.2,9.2) (1.7,2.7,3.7)
C16 (3.1,4.1,5.1) (7.4,8.4,9.4) (0.0,0.9,1.9) (4.5,5.5,6.5)
C17 (3.2,4.2,5.2) (7.5,8.5,9.5) (3.9,4.9,5.9) (3.1,4.1,5.1)
C18 (3.2,4.2,5.2) (7.7,8.7,9.7) (6.8,7.8,8.8) (2.5,3.5,4.5)
C19 (7.6,8.6,9.6) (0.2,1.2,2.2) (0.0,0.5,1.5) (2.3,3.3,4.3)
C20 (7.4,8.4,9.4) (0.1,1.1,2.1) (3.0,4.0,5.0) (1.4,2.4,3.4)
C21 (6.8,7.8,8.8) (0.0,0.5,1.5) (7.4,8.4,9.4) (0.5,1.5,2.5)
C22 (7.1,8.1,9.1) (3.9,4.9,5.9) (0.0,0.5,1.5) (5.0,6.0,7.0)
C23 (7.2,8.2,9.2) (3.4,4.4,5.4) (3.6,4.6,5.6) (3.2,4.2,5.2)
C24 (7.4,8.4,9.4) (3.3,4.3,5.3) (6.8,7.8,8.8) (2.5,3.5,4.5)
C25 (7.3,8.3,9.3) (7.2,8.2,9.2) (0.0,0.6,1.6) (6.7,7.7,8.7)
C26 (7.4,8.4,9.4) (6.8,7.8,8.8) (3.4,4.4,5.4) (4.7,5.7,6.7)
C27 (7.6,8.6,9.6) (7.0,8.0,9.0) (7.1,8.1,9.1) (3.6,4.6,5.6)

TABLE VI
FUZZY RULE BASE FOR CROWDEDNESS

Popularity Travel Warning Crowdedness
(6.3,6.8,7.4) (5.6,7.4,8.1) N/A (4.3, 5.3, 6.2)

Moderate High Moderate High N/A Moderate

TABLE VII
OBSERVATION

level of Crowdedness and Warning level are both required.
The antecedent variable Warning level is particularly im-
portant for it is required by both rule bases. Without it, no
matter what other information is there available, even with
the Crowdedness known, as illustrated in Table VII, forward
interpolation would still fail.

In order to interpolate Explosion Likelihood, it is essential
to determine the value of Warning using B-FRI. Following
the steps detailed in section III-B, the two closest rules are
first selected using the consequence-biased distance measure
stated in Eqn. 21, as shown in Table VIII. The intermediate
fuzzy term A

′
warning = (2.6,3.6,4.6) can be derived from

the two neighbouring terms Ai
warning = (3.4,4.4,5.4) and

A j
warning = (0.0,1.0,2.0), by using the relative displacement

factor λwarning calculated from Eqn. 23. It is then scaled and
moved using swarning, mwarning from Eqn. 25 and 26, produc-
ing the backward interpolated value A∗warning = (2.7,3.5,4.6).
Now with both antecedents A∗crowdedness = (4.3,5.3,6.2) and
A∗warning = (2.7,3.5,4.6) present, the second rule base can
therefore be evoked to produce the final interpolation result,
B∗explosion = (3.1,4.0,5.0), this time using the standard T-FIR.

If the normal distance measure in Eqn. 11 is used, the
rules will no longer be selected with biased focus on the
consequence, instead treating everything with equal weight.
The rules shown in Table IX will then be selected. Following



Popularity Travel Warning Crowdedness
(7.4,8.4,9.4) (6.8,7.8,8.8) (3.4,4.4,5.4) (4.7,5.7,6.7)
(3.2,4.2,5.2) (3.7,4.7,5.7) (0.0,1.0,2.0) (3.2,4.2,5.2)

TABLE VIII
TWO CLOSEST RULES USING BIASED DISTANCE MEASURE

Popularity Travel Warning Crowdedness
(7.1,8.1,9.1) (3.9,4.9,5.9) (0.0,0.5,1.5) (5.0,6.0,7.0)
(3.2,4.2,5.2) (7.5,8.5,9.5) (3.9,4.9,5.9) (3.1,4.1,5.1)

TABLE IX
TWO CLOSEST RULES USING PLAIN DISTANCE MEASURE

the backward interpolation process again, a different outcome
of A∗warning = (1.0,1.5,2.5) will be derived, followed by
B∗explosion =(3.6,4.5,5.5) interpolated using T-FIR on the sec-
ond rule base. Looking back at the original observation, given
the two known antecedent values A∗popularity = (6.3,6.8,7.4)
and A∗travel =(5.6,7.4,8.1), the intuitive deduction of Crowd-
edness should be quite high, as the place is both moderately
high in popularity and is moderately convenient to reach.
The only reason that the observed Crowdedness is having a
moderate value of (4.3,5.3,6.2) may well have been caused
by a reasonable level of Warning. Intuitively the outcome
A∗warning = (2.7,3.5,4.6) from the biased distance measure
is therefore more agreeable than A∗warning = (1.0,1.5,2.5)
from the plain distance measure. Further experiments show
that, by using A∗warning = (1.0,1.5,2.5) and the two known
antecedent values, T-FIR method interpolates Crowdedness
as (5.39,6.34,7.18), which is much further than the original
observation.

V. CONCLUSION

This paper has presented a backward fuzzy rule inter-
polative reasoning approach implemented using the scale
and move transformation-based fuzzy interpolation method.
It offers a means to broaden the application of fuzzy rule
interpolation and fuzzy inference. The proposed technique
allows flexible interpolation when certain antecedents are
missing from the observation, where traditional approach
fails. Two numerical examples are provided to illustrate
the operation of this approach. A practical application is
also included to demonstrate the feasibility of the proposed
approach in potentially addressing real-world problems.

Currently, the work is only applicable when using tri-
angular membership functions and two adjacent rules. It
does not cover the issue of extrapolation either. Extensions
which enables this approach to cover these important FRI
aspects remain as active research. Further more, it would
be useful to have a generalised approach that can be imple-
mented using other type of interpolation method (e.g. IMUL
[15], FIVE [11], or GM [1]), with results compared. The
proposed method may also be further generalised [13] and
combined with the adaptive fuzzy interpolation technique
which ensures inference consistency [16]. Finally, it is very
interesting to investigate how the proposed work may be used

to form a theoretical basis upon which a hierarchical fuzzy
interpolation mechanism could be developed, which would
allow more effective and efficient use of rule bases involving
fuzzy rules of different length or variables.
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interpolation for multidimensional input spaces with applications: A
case study,” IEEE Trans of Fuzzy Systems, pp. 809-819, 2005.

[16] L. Yang and Q. Shen, “Adaptive Fuzzy Interpolation,” To appear in
IEEE Transactions on Fuzzy Systems, 2011.

[17] L. A. Zadeh, “Outline of a new approach to the analysis of complex
systems and decision processes,” IEEE Trans. Syst., Man, Cybern, pp.
28-44, 1973.


