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Adaptive Fuzzy Interpolation and Extrapolation
with Multiple-antecedent Rules

Longzhi Yang and Qiang Shen

Abstract— Adaptive fuzzy interpolation strengthens the po-
tential of fuzzy interpolative reasoning owning to its efficient
identification and correction of defective interpolated rules
during the interpolation process [11]. This approach assumes
that: i) two closest adjacent rules which flank the observation or
a previously inferred result are always available; ii) only single-
antecedent rules are involved. In practice, however, variable
values of these rules may lie just on one side of the observation
or inferred result. Also, there may be certain rules with
multiple antecedents in the rule base. This paper extends the
adaptive approach, in order to cover fuzzy extrapolation and
to support rule base with multiple-antecedent rules. Adaptive
fuzzy interpolation and extrapolation complement each other,
which jointly improve the applicability of fuzzy interpolative
reasoning, as it significantly reduces the restriction over the
given rule base.

I. INTRODUCTION

Fuzzy rule interpolation enhances the robustness of fuzzy
reasoning. When given observations have no overlap with any
antecedent values, no rule can be fired in classical inference.
However, interpolative reasoning through a sparse rule base
may still obtain certain conclusions and thus improve the
applicability of fuzzy models. Also, with the help of fuzzy
interpolation, the complexity of a rule base can be reduced by
omitting those fuzzy rules which may be approximated from
their neighboring ones. A number of important interpolating
approaches have been presented in the literature, includ-
ing [1], [2], [3], [4], [7], [8], [9], [10]. In particular, the scale
and move transformation-based approach can handle both
interpolation and extrapolation which involve multiple fuzzy
rules, with each rule consisting of multiple antecedents. This
approach also guarantees the uniqueness as well as normality
and convexity of the resulting interpolated fuzzy sets. Yet,
it is possible that more than one object value of a single
variable may be derived or observed in fuzzy interpolation.
This implies that certain inconsistencies may result.

To address this problem, recently, adaptive interpolative
reasoning has been proposed [11]. This approach is capa-
ble of efficiently detecting inconsistencies, locating possible
fault candidates and modifying the candidates in an effort
to remove all the inconsistencies. It works by artificially
viewing the interpolative inference procedures as system
components, and then utilizing an assumption-based truth
maintenance system (ATMS) [5] to record the dependencies
between an interpolated value (including any contradiction)
and its proceeding interpolation components. From this, the
classical algorithm of general diagnostic engine (GDE) [6] is
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employed to manipulate the sets of dependent components
of contradictions to hypothesize all possible candidates of
defective rules.

However, the adaptive approach of [11] is limited in its
implementation in that fuzzy models are assumed to involve
only single-antecedent rules and to reason only based on
neighboring rules which strictly flank the given observation
or a previously inferred result. Nevertheless, fundamentally,
this is not restricted by the underlying approach. This work
extends that of [11], in order to allow for the use of rules with
multiple antecedents and to reason based on two rules both
of which lie on one side of the observation or the inferred
result. This will considerably widen the scope of the existing
approach for adaptive fuzzy interpolation. This is because
in many practical applications of fuzzy systems, multiple-
antecedent rules are common and distributions of rules in a
rule base can be very irregular.

The rest of this paper is structured as follows. Sec. II re-
views the background of adaptive fuzzy interpolation. Sec. III
describes the generalization of the existing approach to
allow multiple-antecedent rules and cover fuzzy extrapolative
reasoning. Sec. IV gives an example to illustrate the utility
of this work. Sec. V concludes the paper and points out
important future research.

II. OVERVIEW OF ADAPTIVE INTERPOLATION

Adaptive interpolative reasoning [11] provides a way to
ensure inference results being consistent during the fuzzy
interpolative process. In implementing fuzzy interpolation,
each pair of neighboring rules is defined as a fuzzy reasoning
component which takes a fuzzy set (an observation or a
previously inferred result, which is hereafter referred to
as an observation for simplicity) as input and produces
another (the consequent of the interpolated rule) as output.
The process of adaptive interpolation can be summarized in
Fig. 1. Firstly, the interpolator carries out interpolation and
passes the interpolated results to the ATMS for dependency-
recording. Then, the ATMS relays any β0-contradictions (i.e.
inconsistency between two different values for a common
variable at least to the degree of a given threshold β0

(0 ≤ β0 ≤ 1)) as well as their dependent fuzzy reasoning
components to the GDE which diagnoses the problem and
generates all possible component candidates. After that, a
modification process takes place to correct a certain candidate
to restore consistency. A brief description of each of these
key methods is given below.
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Fig. 1. Adaptive interpolative reasoning

A. Truth maintenance

ATMS is utilized to record the dependency of the interpo-
lated results, including any contradictions, upon those fuzzy
reasoning components from which they are inferred. Any
ATMS node with an inferred proposition is represented by
an ATMS justification:

O,RiRj ⇒ C, (1)

where RiRj stands for the fuzzy reasoning component
containing the two neighboring rules Ri and Rj (i �= j) that
have been used to infer the outcome C from the observation
O. Accordingly, a β0-contradiction is represented as:

P, P ′ ⇒β0 ⊥. (2)

In ATMS terms, a label is a set of environments, each
supporting the node that it is associated with. An environ-
ment contains a minimal set of fuzzy reasoning components
that jointly entail the concerned node, thereby describing
how the node ultimately depends on those fuzzy reasoning
components. An environment is said to be β0-inconsistent if
β0-contradiction is derivable propositionally by the environ-
ment and a given justification. An environment is said to be
(1− β0)-consistent if it is not β0-inconsistent.

The label of each node is guaranteed to be (1 −
β0)-consistent, sound, minimal and complete by the algo-
rithm that ATMS updates node labels, except that the label
of the special “false” node is guaranteed to be β0-inconsistent
rather than (1−β0)-consistent. In particular, the label of the
special “false” node gathers all β0-inconsistent environments.
Its corresponding label-updating process is given as follows.
Whenever a β0-contradiction is detected, each environment
in its label is added into the label of “false” node and all such
environments and their supersets are removed from the label
of every other node. Also, any such environment which is
a superset of another is removed from the label of the node
“false”.

B. Candidate generation

A candidate in GDE [6] is a set of assumptions which may
be responsible for the whole set of current contradictions.
GDE generates minimal candidates by manipulating the
label of the specific “false” node. Because a β0-inconsistent
environment indicates that at least one of its assumptions is
faulty, a candidate must have a nonempty intersection with
each β0-inconsistent environment. Thus, each candidate is
constructed by taking one assumption from each environment
in the label of “false” node. Supersets removal then ensures
such generated candidates to be minimal. In light of this, a
successful correction of any single candidate will remove all
the contradictions (see later).

C. Candidate modification

Consistency can be restored by successfully correcting any
single candidate because each such candidate explains the
entire set of current contradictions. Suppose that MODIFY(f )
is the modification procedure for a given fuzzy reasoning
component (f ), which returns true when the modification
succeeds and false otherwise. Let Q be a priority queue
whose elements are ordered such that those of the smallest
cardinality have the highest priority. Given a set of candidates
S, each of which (C) is a set of fuzzy reasoning components,
the modification procedure is shown in Fig. 2.

CONSISTENCYRESTORING(S)

(1) foreach C ∈ S
(2) Q.Enqueue(C)
(3) success← false
(4) do
(5) C ← Q.Dequeue()
(6) foreach f ∈ C
(7) success← MODIFY(f)
(8) if (success ==false)
(9) break
(10) until ((success ==true) or (Q == ∅))
(11) return success

Fig. 2. The CONSISTENCYRESTORING procedure

For convenience, in the rest of this paper, let A∗
ij denote

the modified consequence of a culprit interpolated rule whose
consequent value is Aij , and A∗

ij
′ and λ∗ij denote the cor-

responding modified intermediate rule consequence and the
relative placement factor of A∗

ij , respectively. Suppose that
the neighboring rules (x1 = A11)⇒ (x2 = A21) and (x1 =
A1n) ⇒ (x2 = A2n) are the two rules used by a defective
fuzzy reasoning component, that A12, A13, ..., A1(n−1) are
observations located between A11 and A1n, and that A1j

(2 ≤ j ≤ n−1) is the middle most one. In carrying out inter-
polation, the presumed linear relation between an antecedent
variable and the corresponding consequent variable can be
represented by a line segment which starts from (A11, A21)
and ends by (A1n, A2n) in the x1, x2-plane. The modification
breaks this straight line segment into two connected straight
line segments: one from (A11, A21) to (A1j , A2j) and the
other from (A1j , A2j) to (A1n, A2n). That is, it uses a first-
order piecewise linear approximation to replace the original
linear method. The modification procedure for a single fuzzy
reasoning component is summarized as follows.

1. Find the rule (A1j ⇒ A2j) whose antecedent locates
in the middle most of the neighborhood of the antecedents
of any two rules that may be used for interpolation, with
respect to their representative values. Assume that the relative
placement factor of its consequence λ2j is modified to λ∗2j .

2. Calculate the correction rate pair according to the
relative placement factor modification of rule A1j ⇒ A2j :⎧⎨⎩c− = λ∗2j

λ2j

c+ = 1−λ∗2j

1−λ2j
.

(3)
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3. Calculate the modified relative placement factors of
consequences of all other interpolated rules which are gen-
erated from the same defective fuzzy reasoning component
as per the correction rate pair computed above, where i ∈
{2, 3, ..., j − 1} and k ∈ {j + 1, j + 2, ..., n− 1}:{

λ∗2i = λ2i · c−
1− λ∗2k = (1− λ2k) · c+.

(4)

4. Calculate the modified consequences of all interpolated
rules which are generated from the same defective fuzzy rea-
soning component in accordance with their modified relative
placement factors:{

A∗
2x
′ = (1− λ∗2x)A21 + λ∗2xA2n

T (A1x
′, A1x) = T (A∗

2x
′, A∗

2x),
(5)

where x ∈ {2, 3, ..., n − 1}, and T (A′, A) represents scale
and move transformations from fuzzy set A′ to A.

5. Restrict the modified consequence to be consistent with
the context. Suppose that m object values Ai1, Ai2, ..., Aim

are obtained for variable xi. If they are (1− β0)-consistent,
they must satisfy:

m⋂
j=1

(Aij)β0 �= ∅, (6)

where (Aij)β0 denotes the β0-cut of fuzzy set Aij .
6. Restrict the propagations of all modified consequences

to be consistent with the context. For simplicity, let function
I(Aij , RlRr) = Akj denote the standard interpolation from
the antecedent fuzzy set Aij to the consequent value Akj ,
based on fuzzy reasoning component RlRr. Suppose that m
object values Ai1, Ai2, ..., Aim of variable xi are modified
which are located between the antecedent values of rules Rl

and Rr, that the corresponding modified object values of
variable xk are A∗

kj , j ∈ {1, 2, ...,m}, and that n object
values Akl, l ∈ {1, 2, ..., n}, of variable xk are already
obtained one way or another. If the modified consequences
A∗

kj are all (1− β0)-consistent, then they must satisfy:⎧⎪⎨⎪⎩
A∗

kl = I(A∗
ij , RlRr)(

m⋂
j=1

(A∗
kj)β0

)⋂( n⋂
l=1

(Akl)β0

)
�= ∅.

(7)

7. Solve all these simultaneous equations as generated
above. The result is the modified solution which ensures
inconsistency-free.

III. EXTENSIONS

The approach described above assumes that each rule in
the rule base involves only one antecedent variable. Also,
the two closest adjacent rules must flank the observation.
These limitations inevitably restrict the potential application
of the existing techniques. However, the present approach
is readily extendable to deal with these situations. Thus,
the work [11] is extended herein to allow both interpolation
and extrapolation with rules that involve multiple-antecedent
attributes.

A. Interpolation with multiple-antecedent rules

If only one antecedent is involved in each rule in the
rule base, given an observation, it is straightforward to find
the flank rules to fire in the rule base. However, when
multiple conditional variables are involved, the situation is
rather different. It is too restrict to find such a pair of rules
that every pair of their counterpart antecedents flanks the
corresponding term of the observation, also in the same order.
In order to remove such limitations, two closest rules rather
than strictly two flanked rules are employed for multiple-
antecedent rule interpolation. Once the two closest rules are
chosen, the intermediate rule can then be constructed. From
this, the resultant fuzzy set can be transformed from the
consequent of the intermediate rule. The procedures of how
to achieve these are briefly outlined as follows:

1. Choose the closest two rules: Without losing generality,
suppose that a rule and an observation are represented by:

Rule Ri : If x1 is A1i, ..., xm is Ami, then xn is Ani (8)

Observation : x1 is A1x and ... and Xm is Amx. (9)

According to the work in [7], the distance d(Aki, Akx) (k ∈
{1, 2, ...,m}) between two fuzzy sets Aki and Akx can be
calculated by:

dk = d(Aki, Akx) = d(Rep(Aki),Rep(Akx)), (10)

where Rep(Aki) and Rep(Akx) are the representative val-
ues of fuzzy sets Aki and Akx, respectively. As attributes
have different domains, the absolute distances may not be
compatible with each other. Therefore, a normalized distance
measure (range of 0 to 1) is defined by:

d′k =
d(Aki, Akx)
maxk −mink

=
d(Rep(Aki),Rep(Akx))

maxk −mink
, (11)

where maxk and mink are the maximal and minimal values
in the domain of attribute k, respectively. The distance d
between the antecedents of a rule and an observation can be
calculated in accordance with the weights of the antecedent
attributes. If all attributes are of the same importance, the
distance d is defined as the average of its all normalized
attributes’ distances:

d =
√

d′1
2 + d′2

2 + · · ·+ d′m
2. (12)

With the above definition, the distances between a given
observation and the antecedent values of all those rules which
involve the same antecedent attributes in the rule base can
be calculated. The two rules which have minimal distances
are chosen as the closest two rules from the observation.
Note that each pair of antecedent values of the two closest
rules does not necessarily flank its corresponding term in the
observation. In the extreme case, all the conditional attribute
values of the two closest rules may locate in one side of
the given observation, resulting in extrapolation rather than
interpolation (see Sec. III-B).

2. Construct the intermediate rule: Having chosen the two
closest rules, the next step is to construct the intermediate
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rule. Suppose that rules Ri and Rj are the two closest rules
for a given observation:

If x1 is A1i and ... and xm is Ami, then xn is Ani;
If x1 is A1j and ... and xm is Amj , then xn is Anj .

When an observation (A1x, A2x, ..., Amx) is given, by
analogy to the single antecedent case, the object values Aki

and Akj (k ∈ {1, 2, ...,m}) of antecedent variable xk of
those two rules are used to obtain the new intermediate fuzzy
set A′

kx:
A′

kx = (1− λkx)Aki + λkxAkj , (13)

where λkx is the relative placement factor associated with
the value Akx of the kth antecedent variable, that is:

λkx =
d(Aki, Akx)
d(Aki, Akj)

. (14)

It can be shown that the representative value of A′
kx remains

the same as that of Akx. From this, the relative placement
factor λnx of the consequent is computed by the average of
λkx:

λnx =
1
m

m∑
k=1

λkx. (15)

Then the consequent of the intermediate rule is calculated
by:

A′
nx = (1− λnx)Ani + λnxAnj . (16)

3. Scale and move transformations: The main issue that
remains is how to calculate the transformation rates after the
intermediate rule has been constructed. The scale rate skx

and move rate mkx of each term Akx of the observation and
its corresponding fuzzy set A′

kx in the intermediate rule can
be calculated in a way which is exactly the same as that of
single-antecedent rule interpolation. From this, the combined
scale rate snx and move rate mnx over the m conditional
attributes are calculated as the arithmetic averages of skx

and mkx, k ∈ {1, 2, ...,m}:

snx =
1
m

m∑
k=1

skx, (17)

mnx =
1
m

m∑
k=1

mkx. (18)

Note that, other than using arithmetic average, different
methods such as the medium value operator or weighted
average operator may be employed for this purpose. Once
the scale rate and move rate of the consequent are worked
out, the rest of the interpolation process remains the same as
that of single-antecedent rule interpolation, which is omitted
here due to space limit.

These transformations can be concisely represented by an
integrated transformation function T such that the transfor-
mation from (A1x

′, ...., Amx
′) to (A1x, ...., Amx) is denoted

by T ((A1x
′, ...., Amx

′), (A1x, ...., Amx)). Note that the com-
bined scale rate snx and move rate mnx reflect the similarity
degree between the observation and the antecedent values

of the intermediate interpolated rule. The fuzzy set Anx of
the conclusion can then be estimated by transforming the
consequent A′

nx of the intermediate interpolated rule via the
application of the same snx and mnx. Thus, the resultant
fuzzy set Anx can be transformed from its intermediate rule
consequent by the same transformation function:

T (Anx
′, Anx) = T ((A1x

′, ...., Amx
′), (A1x, ...., Amx)).

(19)

B. Fuzzy extrapolation

The extension of the above to perform extrapolation is
readily attainable. Computationally, it can be treated as a
special case of fuzzy interpolation. Indeed, when all the
object values of the conditional variables of the two closest
rules lie on just one side of the given observation, the
interpolation problem becomes extrapolation. However, other
than such a strict extrapolation case, the problem becomes
somewhat more complex when certain antecedent values lie
between the two closest rules while the others lie on one side
or another. Nevertheless, both choosing the closest rules and
constructing the intermediate rules for these situations are
carried out in exactly the same way as it for interpolation as
described in the above subsection.

C. Truth maintenance and candidate generation

In order for the adaptive approach to handle interpolation
based on rules with multiple antecedents, the concept of fuzzy
reasoning component therefore is generalized as shown in
Fig. 3. Here, Rules i and j are the two closest ones to the ob-

        Rule i

        Rule j

Inputs Outputs nxA
Fuzzy 

Component
 A    A   mx )1x ,    ,...,   (A   

(Inferred result)( Observation or
previously inferred result)

2x Reasoning 

Fig. 3. Fuzzy reasoning component

servation (A1x, A2x, ...Amx) according to the distance mea-
sure given in Eq. 12, and Anx is the inferred result based on
these two rules from the observation. The truth maintenance
and minimal candidate generation procedures of adaptive
fuzzy interpolation/extrapolation with multi-antecedent rules
are basically the same as the one used for fuzzy interpolation
with single-antecedent rules. The difference only exists in the
representation of fuzzy reasoning component. Thus they are
omitted here (refer to Sec. II or [11] for details).

D. Candidate modification

The consistency-restoring algorithm outlined in Fig. 2,
which is used for single-antecedent rule interpolation can
also be used in principle, for multiple-antecedent inter-
polation with the generalized fuzzy reasoning component.
However, it is not straightforward when it comes to the
correction procedure for individual defective fuzzy reason-
ing component in a multiple-antecedent rule environment.
There are more sophisticated situations which complicate the
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choosing procedure of the first rule to modify and thereby
the correction rate pair. In particular, three cases need to be
considered: i) strict interpolation, that is all observations lie
on between the two rules; ii) strict extrapolation, that is all
observations lie on one side or another but not in between;
iii) mixed interpolation and extrapolation, that is observations
may lie anywhere, but not as cases i and ii.

x2

p3

A3n

Ack

Acj

A3j
A*3i

A3i

11 A21, ,(A )A31

A2j

A2i

A2k

1iA1jA A1k 1nA

Aci

>AA   , A   =1n 3n2n =
2n(A   ,A ,A   )3n1n

x3

A   ,A   =21 31>A11 =

5p
A2n

x1

p2

*A
A

*A

3k
3k

3j

0p

p1

Fig. 4. Defective fuzzy reasoning component modification for interpolation

The problem space of n-antecedent (n ≥ 1) rule interpo-
lation is (n + 1)-dimensional. Without losing generality, for
simplicity, two-antecedent rules are taken here as an example.
Suppose that (A12, A22), (A13, A23), ... , (A1(n−1), A2(n−1))
are observations, and that the neighboring rules A11, A21 ⇒
A31 and A1n, A2n ⇒ A3n are the two closest rules to these
observations. It is interesting to observe that in computing
interpolation involving two antecedent variables, the pre-
sumed linear relation between the antecedent variables and
the corresponding consequent variable can be represented
by a line in a 3-dimensional space (line P0P1 in Fig. 4) if
fuzzy sets are represented using their representative values.
Line P0P5, the projection of line P0P1 onto plane x1x2,
provides a partial order of all possible antecedent value
pairs of variables x1 and x2 by mapping them onto line
P0P5. In particular, as shown in Fig. 4, it has mapped
observations (A1i, A2i), (A1j , A2j) and (A1k, A2k) to points
Aci, Acj and Ack, respectively, on the line P0P5. This is
done by the combined relative placement factor λ3x (x ∈
{2, 3, ..., n − 1}) calculated from λ1x and λ2x (Eq. 15).
Note that it is not necessary that A1i ≤ A1j ≤ A1k and
A2i ≤ A2j ≤ A2k though Aci ≤ Acj ≤ Ack.

Suppose that Acj (2 ≤ j ≤ n − 1) sits in the middle
most within all the observations on the line P0P5. Then,
interpolated rule A1j , A2j ⇒ A3j will be modified first.
The modification breaks the straight interpolation line P0P1

into two connected straight line segments P0P3 and P3P1 as
illustrated in Fig. 4. The effect of this proposed modification
method is to refine the defective fuzzy reasoning component
by dividing it into two more accurate fuzzy reasoning com-
ponents. This corresponds to refining the fuzzy reasoning
component represented by P0P1 into two represented by

P0P3 and P3P1. All interpolated rules based on the original
defective fuzzy reasoning component need to be modified by
the two replacement fuzzy reasoning components.

In order to facilitate the modification from the result of the
original defective fuzzy reasoning component to the result of
either of the new two replacements, a pair of correction rates
are defined as follows: ⎧⎨⎩c− = λ∗2j

λ2j

c+ = 1−λ∗2j

1−λ2j
.

(20)

where c− represents the modification rate of those interpo-
lated rules whose antecedents are less than the antecedent of
the first modified rule (i.e. (A1j , A2j)) by the partial order,
and c+ represents the same meaning for the greater ones. In
other words, c− measures the difference of the interpolated
results by interpolation lines P0P1 and P0P3 from those
antecedent pairs which are greater than (A11, A21) and less
than (A1j , A2j) according to the partial order, while c+ does
the same but by interpolation lines P0P1 and P3P1 from
those pairs which are between (A1j , A2j) and (A1n, A2n).

Ack

x3

A2n

A2k

A2i

1nA 1iA A1k

A3k

*A3j

A3j

*A3k

A*3i
A3i

A3n

x2

A2j

1jA

1p

p2

p3

0p

Aci

Acn

Acj 5p

x1

Fig. 5. Defective fuzzy reasoning component modification for extrapolation

The case discussed above covers the first kind of distri-
bution of observations. For strict extrapolation, where all
observations lie on just one side of the the two closest rules in
accordance with the partial order, the linear relation between
the antecedent variables and the corresponding consequent
variable can also be represented by a straight line. However,
all the extrapolated rules lie on the extension (i.e. line P1P2

in Fig. 5) of the line segment which connects the two closest
rules in the problem space (i.e. line P0P1 in Fig. 5). Because
no interpolation is possible between the two closest rules, the
extrapolated rule whose antecedent is located farthest from
both antecedents of these two rules is deemed to be the most
dissimilar to them and hence, should be modified the most.

Continue the example, and suppose that all interpolated
rules lie on just one side of the two rules for interpolation
and that Acj (2 ≤ j ≤ n − 1) sits in the farthest place
to these two rules on the extension of line P0P1 (∀x ∈
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{2, 3, ..., n− 1}, Acj 
 Acx by the partial order). Therefore,
interpolated rule A1j , A2j ⇒ A3j will be modified first. The
modification replaces the interpolation line P1P2 with P1P3.
All other interpolated rules based on the same fuzzy reason-
ing component will be modified by the same correction rate.
Particularly in this example, all the observations are greater
than the corresponding antecedent values of these rules with
respect to the partial order, the correction rate is the same
as c+ in Eq. 20. If all the observations are less than the
corresponding antecedent values of these rules, the correction
rate is equal to c− in Eq. 20. For situations where certain
observations are greater than the corresponding antecedent
values of these rules while the others are less than such
values, then the correction rate pair is the combination of
the above, that is, (c−, c+).

x2

x3
*A3k

*A3j

A3j

A3n

A3i
A*3i

31A 1p

p0

p5

1nAA11

A2n

A21

Acn
Ack

A3k

Acj

Ac1

Aci

p4

Acm

p2
A3m

A3m

A3h
A3h

p3

x1

p5

Ach

*

*

p6

Fig. 6. Defective fuzzy reasoning component modification

Finally, when some of the observations are located be-
tween the corresponding antecedent values of the two rules
for interpolation and all others are located outside with
respect to the partial order, the interpolated rule whose
antecedent sits in the middle most of the neighborhood
of the two rules will be modified first. Suppose that Acj

(2 ≤ j ≤ n − 1) sits in the middle most on the line P0P1,
then the original interpolation line P2P3 is replaced by two
line segments P4P5 and P5P6 as illustrated in Fig. 6. In this
case, the correction rate pair is still the same as the strict
interpolation situation, that is Eq. 20.

Having chosen the first rule to modify and calculated the
correction rate pair, the rest of the modification is exactly
the same as that with single-antecedent situation, which is
outlined in Sec. II-C and thus omitted here.

IV. AN ILLUSTRATE EXAMPLE

To illustrate the potential of this extended adaptive
fuzzy interpolation and extrapolation method for multiple-
antecedent rules, the example given in [11] is extended. The
rule base is given as follows:
R1: If x1 is A11 and x2 is A21, then x3 is A31;

R2: If x1 is A12 and x2 is A22, then x3 is A32;
R3: If x3 is A35, then x5 is A51;
R4: If x3 is A36, then x5 is A52;
R5: If x3 is A33, then x4 is A41;
R6: If x3 is A34, then x4 is A42;
R7: If x5 is A53 and x6 is A61, then x7 is A73;
R8: If x5 is A54 and x6 is A62, then x7 is A74;
R9: If x4 is A43, then x7 is A71;
R10: If x4 is A44, then x7 is A72.

Given β0 = 0.5 and six observations: x1 = A13 =
(2.0, 3.0, 4.0), x1 = A14 = (2.6, 3.6, 4.6), x2 = A23 =
(18.0, 19.0, 20.0), x4 = A45 = (9.5, 10.5, 11.5), x5 =
A55 = (8.0, 9.0, 10.0), and x6 = A63 = (12.0, 13.0, 14.0),
the original observations as well as interpolated results by
scale and move transformation-based interpolation technique
are presented in Fig. 7 and the interpolation procedures are
illustrated in Fig. 8. Here, rules R1, R2, R7 and R8 are
of two antecedents each. For observations (A13, A23) and
(A14, A23), R1 and R2 are the two closest rules while for
(A55, A63) and (A56, A63), R7 and R8 are the two closest.
Once obtaining the two closest rules, the relative placement
factor, scale rate and move rate of the consequent of each
observation can be calculated by following Eqs. 15, 17 and
18, respectively. From this, the rest of the interpolation
procedure is the same as that of the single-antecedent one.

Fig. 7. Fuzzy sets used in the example

A. Dependency recording by ATMS

In Fig. 8, an arrowed line flanked by two rules Ri and Rj

represents a fuzzy reasoning component, which is denoted
as RiRj , where Ri and Rj are the neighboring rules used
for interpolation. ATMS nodes and contradictions are repre-
sented by circles. Particularly, each of Fi, i ∈ {1, 2, ..., 5},
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Fig. 8. Discrepancy records in ATMS

is a node denoting a fuzzy reasoning component; each of
Pj , j ∈ {1, 2, ..., 16}, is a node denoting a proposition; and
each of ⊥k, k ∈ {1, 2, ..., 9}, denotes a β0-contradiction.
These ATMS nodes and contradictions are listed as follows,
with all justifications omitted:
F1 : 〈R1R2, {{R1R2}}〉; F2 : 〈R3R4, {{R3R4}}〉;
F3 : 〈R5R6, {{R5R6}}〉; F4 : 〈R7R8, {{R7R8}}〉;
F5 : 〈R9R10, {{R9R10}}〉; P1 : 〈x1 = A13, {{}}〉;
P2 : 〈x1 = A14, {{}}〉; P3 : 〈x2 = A23, {{}}〉;
P4 : 〈x3 = A37, {{R1R2}}〉; P5 : 〈x3 = A38, {{R1R2}}〉;
P6 : 〈x5 = A55, {{}}〉;
P7 : 〈x5 = A56, {{R1R2, R3R4}}〉;
P8 : 〈x6 = A63, {{}}〉;
P9 : 〈x4 = A47, {{R1R2, R5R6}}〉;
P10 : 〈x4 = A45, {{}}〉;
P11 : 〈x4 = A46, {{R1R2, R5R6}}〉;
P12 : 〈x7 = A76, {{R1R2, R5R6, R9R10}}〉;
P13 : 〈x7 = A77, {{R9R10}}〉;
P14 : 〈x7 = A75, {{R1R2, R5R6, R9R10}}〉;
P15 : 〈x7 = A78, {{R7R8}}〉;
P16 : 〈x7 = A79, {{R1R2, R3R4, R7R8}}〉;
⊥1 : 〈⊥, {{R1R2, R5R6}}〉;
⊥2 : 〈⊥, {{R1R2, R5R6}}〉;
⊥3 : 〈⊥, {{R1R2, R5R6, R9R10}}〉;
⊥4 : 〈⊥, {{R1R2, R5R6, R7R8, R9R10}}〉;
⊥5 : 〈⊥, {{R1R2, R5R6, R7R8, R9R10}}〉;
⊥6 : 〈⊥, {{R7R8, R9R10}}〉;
⊥7 : 〈⊥, {{R1R2, R3R4, R5R6, R7R8, R9R10}}〉;
⊥8 : 〈⊥, {{R1R2, R3R4, R7R8, R9R10}}〉;
⊥9 : 〈⊥, {{R1R2, R3R4, R5R6, R7R8, R9R10}}〉.

The label of node P6 is {{}}. This is because: a) the
observation (always supported by an empty set environ-
ment), represented by node P6, is identical as the derived
result from node P5 by fuzzy reasoning component F2

(with environment {R1R2, R3R4}), and b) the environment
{R1R2, R3R4} is a superset of the environment {} and
is thus removed. Similarly, the labels of node P15 and
contradictions ⊥4, ⊥5 and ⊥6 are also minimized above. A

specific ATMS node “false”, denoted by P⊥, represents all
the contradictions listed above from ⊥1 to ⊥9, collectively.
There are just two minimal environments in the label of the
“false” node:
P⊥ : 〈⊥, {{R1R2, R5R6}, {R7R8, R9R10}}〉.
The label of P⊥ means that at least one element of the set
{R1R2, R5R6} and one element of the set {R7R8, R9R10}
are faulty simultaneously.

B. Candidate generation by GDE

Four minimal candidates are generated, each of which is
composed by taking one element from each environment in
the label of the “false” node:

C1 : [R1R2, R7R8]; C2 : [R1R2, R9R10];
C3 : [R5R6, R7R8]; C4 : [R5R6, R9R10].

C. Candidate modification

Any one of these four minimal candidates can be taken
for modification first because they are of the same size
in cardinality. Particularly in this example, C3 is taken
randomly to modify first. Four rules have been interpolated
through the two fuzzy reasoning components that comprise
the candidate:
IR1: If x3 is A37, then x4 is A46;
IR2: If x3 is A38, then x4 is A47;
IR3: If x5 is A55 and x6 is A63, then x7 is A78;
IR4: If x5 is A56 and x6 is A63, then x7 is A79.

For fuzzy reasoning component R5R6, the culprit interpo-
lated rule IR1 will be modified first because fuzzy set A37 is
located nearer the middle than A38. Suppose that the relative
placement factor of the modified consequence is λ∗46. Then
the correction rate pair is:{

c−R5R6
= λ∗46

λ46

c+
R5R6

= 1−λ∗46
1−λ46

.

Accordingly, IR2 will be modified with respect to the
generated correction rate pair (c−R5R6

, c+
R5R6

). The relative
placement factor λ∗47 of the modified consequence satisfies:

1− λ∗47 = (1− λ47) · c+
R5R6

.
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The interpolated rule consequences after modification, A∗
46

and A∗
47 can thus be expressed by:⎧⎪⎪⎪⎨⎪⎪⎪⎩

A∗
46
′ = (1− λ∗46)A41 + λ∗46A42

A∗
47
′ = (1− λ∗47)A41 + λ∗47A42

T (A37
′, A37) = T (A∗

46
′, A∗

46)
T (A38

′, A38) = T (A∗
47
′, A∗

47).

Fuzzy sets A∗
46 and A∗

47 must satisfy the following con-
straints if they are (1− β0)-consistent:

(A∗
46)β0 ∩ (A∗

47)β0 ∩ (A45)β0 �= ∅.

Similarly, the culprit interpolated rules IR3 and IR4

are also modified by following the modification procedure
outlined in Sec. III-D. The following constraints are hence
generated:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c−R7R8
= λ∗79

λ79

c+
R7R8

= 1−λ∗79
1−λ79

(1− λ∗78) = (1− λ78) · c+
R7R8

A∗
78
′ = (1− λ∗78)A73 + λ∗78A74

A∗
79
′ = (1− λ∗79)A73 + λ∗79A74

T ((A55
′, A63

′), (A55, A63)) = T (A∗
78
′, A∗

78)
T ((A56

′, A63
′), (A56, A63)) = T (A∗

79
′, A∗

79)
(A∗

78)β0 ∩ (A∗
79)β0 ∩ (A77)β0 �= ∅.

The propagations of all these modified rules need to be (1−
β0)-consistent as well, which can be ensured by introducing
the following simultaneous equations:⎧⎪⎨⎪⎩

A∗
75 = I(A∗

46, R9R10)
A∗

76 = I(A∗
47, R9R10)

(A∗
75)β0 ∩ (A∗

76)β0 ∩ (A∗
78)β0 ∩ (A∗

79)β0 ∩ (A77)β0 �= ∅.

One of the solutions led by solving these simultaneous
equations is illustrated in Fig. 9. It is clear from this
result that there is no β0-contradiction any more and thus
consistency has been restored. This means that the original
inconsistent interpolation process has been corrected with
consistent interpolated results throughout.

V. CONCLUSIONS

This paper has generalized the recent work on adaptive
fuzzy interpolation [11]. This is achieved by introducing
fuzzy extrapolation to the adaptive approach and extending
the approach to involving multiple-antecedent rules. The
work first uses the classical ATMS-based GDE approach
to detect and locate faults during the process of fuzzy
interpolation/extrapolation. It then modifies the identified
culprit interpolated or extrapolated rule consequents by re-
placing the original linear interpolation/extrapolation with
first-order piecewise linear approximation, in an effort to
restore consistency. The working of this method is illustrated
with a practically significant example.

Whilst the proposed work is promising, it relies upon
the assumption that all rules for interpolation/extrapolation
which are provided in the initial rule base are totally true

Fig. 9. The solution for the running example

and fixed. This may not be the case in some real-world
problems, despite the fact that it is a common assumption
made in the literature of interpolative reasoning. Thus, further
development on the work may be desirable in allowing such
rules to become themselves diagnosable and modifiable. It
is also very interesting to develop an unified inconsistency
diagnosis and fault correction mechanism on a fuzzy reason-
ing platform that implements both standard fuzzy inference
and fuzzy interpolation/extrapolation.
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