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Extreme Learning Machine for Mammographic Risk Analysis

Yanpeng Qu, Qiang Shen, Neil Mac Parthalain, and Wei Wu

Abstract— The assessment of mammographic risk analysis
is an important issue in the medical field. Various approaches
have been applied in order to achieve a higher accuracy in such
analysis. In this paper, an approach known as Extreme Learning
Machines (ELM), is employed to generate a single hidden layer
neural network based classifier for estimating mammographic
risk. ELM is able to avoid problems such as local minima,
improper learning rate, and overfitting which iterative learning
methods tend to suffer from. In addition the training phase
of ELM is very fast. The performance of the ELM-trained
neural network is compared with a number of state of the
art classifiers. The results indicate that the use of ELM entails
better classification accuracy for the problem of mammographic
risk analysis.

I. INTRODUCTION

Breast cancer is a major health issue, and perhaps the
most common amongst women in the EU. It is estimated
that between 8% and 13% of all women will develop breast
cancer at some point during their lives [1], [2]. Furthermore,
in the EU and US, breast cancer is acknowledged as the
leading cause of death of women in their 40s [1], [2],
[3]. Although increased levels of the occurrence of breast
cancer have been recorded, so too has the level of early
detection by screening using mammographic imaging and
expert opinion. However, even expert radiologists sometimes
fail to detect a significant proportion of mammographic
abnormalities. In addition to this, a large number of detected
abnormalities are usually discovered to be benign following
medical investigation.

Existing mammographic Computer Aided Diagnosis
(CAD) systems [4], [S] concentrate on the detection and
classification of mammographic abnormalities. As breast
tissue density increases however, the effectiveness of such
systems in detecting such abnormalities is considerably re-
duced. Also, there is a strong correlation between mammo-
graphic breast tissue density and the risk of development
of breast cancer. Automatic classification which has the
ability to consider tissue density, and minimise human bias
when searching for mammographic abnormalities is therefore
highly desirable.

The extreme learning machine (ELM)-based classification
approach was proposed in [6] with randomly assigned input
weights and bias. Neural networks trained using ELM do not
require adjustment of the input weights in the same way as
with those using the backpropagation. Experimental results
show that it works well when compared with backpropaga-
tion neural networks. A search of the ISI Web of Science has
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indicated that there are no current applications of ELM for
mammographic analysis. This paper explores the potential
of the ELM for mammographic risk analysis, an area where
significant application studies have been reported [7], [8],
[9].

The remainder of the paper is structured as follows. An
outline of ELM for multi-class classification is presented in
Section II. The data used for the experimental evaluation
is described in Section III. The experimental results are
discussed in Section IV. Section V concludes the paper, with
further work pointed out.

II. ELM FOR MULTI-CLASS CLASSIFICATION

The ELM-based classifier implements multiple class
recognition problems by employing a single-hidden layer
feedforward neural network (SLEN) structure. For a dataset
which contains N distinct objects: (x;,t;), where x; =
[.’Eil, Ti2y ey Iin]T € R" and t; = [tila tioy ..., tim]T S
R™, the relationship between the (actual) outputs of the
SLEFN, with an infinite differentiable activation function
g(x), and the target outputs t, is given by

N
S Bglwioxj+b)=t;, j=1,....N. (1)
i=1

Here, N is the number of hidden nodes, w; =
[wit, iz, . .., win]" and B; = [Bi1, Bias - - ., Bim]" are the
weight vectors connecting inputs to the ith hidden neuron
and the ith hidden neuron to output neurons, respectively,
and b; is the bias of the ith hidden neuron.

Equation (1) can be written compactly as

H7 =T,
where
g(wy - x1 4 b1) g(Wx -x1 +b5)
H= :
9wy -xn +bg)

g(w1 Xy +br) NxN

is called the hidden layer output matrix of the neural network
[6], and

B= (5 B R
T=[t1 - tN] -

Traditionally, training of SLFN has typically applied the
backpropagation learning algorithm to adjust the set of
weights (w;, 5;) and biases (b;). It is common knowledge
that the appropriate design of a backpropagation neural
network is problem-dependent and, in most cases, a single
hidden layer is sufficient (see [10] for example). However,



there is no clear guide to the determination of either the
network structure or the parameters necessary to obtain an
optimal neural network classifier. Although successful in
many applications, several significant issues remain with
backpropagation learning for neural networks:

1) The use of backpropagation requires the user to specify
the value of the learning rate, whilst an improper
setting for this rate will cause the algorithm to converge
at a low speed or become unstable and divergent.

2) As a gradient descent-based method, learning with
backpropagation may stop at a local minimum.

3) SLEN may be over-trained using backpropagation,
resulting in poor generalisation and overfitting.

4) As with all gradient descent-based methods, learning
using backpropagation can be time consuming.

In addressing these issues, it has been established that for
SLFNs with additive or RBF hidden nodes, the hidden node
parameters may be randomly specified initially. The output
weights can then be analytically determined when the are
used to approximate any continuous target function [6]. Also,
it is shown that the upper bound of the required number
of hidden nodes is the number of distinct training objects
(i.e. N < N). Thus, given (a pre-specified) N, associated
with parameters (w;, b;), the hidden nodes can be randomly
generated. Determining the output weights 3 is as simple as
finding the least-square solutions to the given linear system.

3=H'T,

where H' is the Moore-Penrose generalised inverse [11],
[12] of the hidden layer output matrix H. Such [ has
following important properties [6]:

1) Minimum training error. The special solution 3 =
H'T is one of the least-squares solutions of a general
linear system H3 = T, meaning that the smallest
training error can be reached by this special solution:

|HG = T = [HH'T — T|| = win [H5 - T,

Although almost all learning algorithms are intended
to reach the minimum training error, however, most
of them can not reach it because of local minimum
or infinite training iterations is usually not allowed in
applications.

2) Smallest norm of weights. Further, the special solution
B = H'T has the smallest norm among all least-
squares solutions of HG = T

181l = BT < ||l
vg e {3:|HB - T| < [Hz — T, vz € RVN}.

3) The minimum norm least-squares solution of HG = T

is unique, which is 5 = HIT.

Calculation of the weight between hidden layer and output
layer is done in a single step. This avoids any lengthy
training procedure where the network parameters are adjusted
iteratively.

Following the above discussion, a three-step ELM algo-
rithm can be summarised as follows:

ELM(N,g,N)

N, the training set {(x;,t;)|x; € R™,t; €¢ R™i =
17 cee N},

g, the activation function,

N, the number of hidden nodes.

(1) Randomly assign hidden node parameters (w;,b;),
i=1,---,N,

(2) Calculate the hidden layer output matrix H,

(3) Calculate the output weight .

Fig. 1. The ELM Algorithm

III. EXPERIMENTAL DATA

The data used for the experimental evaluation in this
paper is derived from features extracted from images in the
Mammographic Image Analysis Society (MIAS) database
[13]. Medio-Lateral-Oblique (MLO) left and right mam-
mograms of 161 women (322 objects). Each data object
or mammogram is represented by 280 features, 10 which
relate to morphological characteristics, and the remaining
270 from the extracted image texture information. The spatial
resolution of the images is 50um x 50um and quantised to
8 bits with a linear optical density in the range 0-3.2.

The class labels for each mammogram are assigned using
the consensus opinion (via majority voting) of three expert
radiologists. Figure 2 shows 4 mammograms covering a
range of breast tissue density [14]. Each of these images
represents a different BI-RADS class. The American Col-
lege of Radiology BI-RADS [15] is a widely used risk
assessment model. It aims to classify a mammogram into
one of four classes according to breast density. The classes
can be explained as follows. BI-RADS I: an almost entirely
fatty breast, not dense; BI-RADS II: some fibroglandular
tissue is present; BI-RADS III: the breast is heterogeneously
dense; BI-RADS IV: the breast is extremely dense. Although
BI-RADS is becoming a radiological standard, other risk
assessment models exist that aim to classify breasts according
to different aspects or features present in the mammogram
[16].

IV. EXPERIMENTAL RESULTS
A. Experimental Set-up

The set-up employed for the experimental evaluation in
this paper is shown in Figure 3. Note that the feature extrac-
tion technique employed here is that which is used in [14].
The initial stages of this feature extraction technique involve
the segmentation and filtering of the mammographic images:
all mammograms are pre-processed to identify the breast
region and remove image background, labels, and pectoral
muscle areas. The segmentation step results in a very minor
loss of skin-line pixels in the breast area, however these



(@) {b)

(c) (d)

Fig. 2. Mammograms showing 4 different breast densities ranging from
low density (a) to high density (d).

pixels are not required for tissue density estimation. Then, a
feature extraction step is performed, where the fuzzy c-means
(FCM) algorithm is employed which results in the division of
the breast into two clusters. A co-occurrence matrix (which is
essentially a 2D histogram) is then used to derive a feature
set which results in 10 features to describe morphological
characteristics and 216 for the texture information (226 total).
This feature set is then labelled using the consensus opinion
of 3 experts to assign a label to each object mammogram
using the BI-RADS [15] classification.

The design of the ELM-based learning requires the setting
of one user-defined parameter: the number of nodes in the
hidden layer. A series of experiments were carried out in
order to ascertain the variation in the resulting classification
accuracy by changing N, with it ranging from 10 to 322.
Figure 4 shows the relationship between /N and the resulting
classification accuracy. Since ELM-based learning is stochas-
tic, the variance over 10 runs has also been included and is
represented by the error bars. Note that the accuracy begins

to decline when the number of nodes is greater than 50.
The computational cost also increases if more hidden nodes
are used. Thus, in Figure 4, only the results obtained using
50 hidden nodes are analysed. Note that leave-one-out cross
validation (LOOCYV) is employed for model selection such
that the results can be compared with existing work.

B. Performance Evaluation

To evaluate the performance of applying ELM to train
SLEN on the mammographic dataset, the experimental re-
sults are compared with those obtained by fuzzy-rough
nearest-neighbour FRNN [17], fuzzy nearest-neighbour
(FNN) [18], vaguely quantified nearest-neighbour (VQNN)
[19], and other popular classifiers. Classification accuracy,
standard deviation (std dev) and confusion matrices are used
to support such comparison, as shown in Table I. As can
be seen, a classification accuracy of 73.91% and std dev of
2.0135 were achieved by ELM in comparison to 69.90%
and 45.84 by FRNN, 71.75% and 45.43 by VQNN, 62.42%
and 48.39 by FNN, 66.78% and 47.73 by JRip and 63.98%
and 47.97 by PART. The results suggest that the ELM-
trained network gives the best and most stable performance.
The results for each of the classifiers were also compared
statistically using a paired t-test. The result returned by
the ELM trained classifier was not statistically insignificant,
while performing considerably better than some learners, e.g.
FNN.

Perhaps most important however is that ELM-based clas-
sifier manages to reduce the class confusion between classes
II and III. Indeed, if these results are compared with those of
[14], it can be seen that the work here offers a considerable
improvement in the ability to distinguish between classes 11
and III. It should be noted that the work of [14] is the current
state-of-the-art for mammographic risk assessment.

V. CONCLUSION

This paper has presented an effective classification method
for Mammographic risk analysis. Its performance has been
compared with state-of-the-art classifier learning methods.
The ELM-based neural network approach can perform the
multi-category classification directly, without any modifica-
tion of the initial parameter settings. Experimental results
show that the ELM-trained classifier achieves a higher clas-
sification accuracy than other algorithms. Also, unlike a
backpropagation neural network, the performance of ELM
is affected by only one user-defined parameter, which can
be determined through trial-and-error for a particular dataset
with an identified upper bound.

Note that in this paper, work is focused on classification.
The effect of feature selection on the learned classifiers is
not investigated. A further extension to this research would
be to explore how ELM-trained classifiers would perform
following dimensionality reduction using various feature
selection methods. This could form the basis for an integrated
learning framework approach which takes advantage of the
improved performance of ELM.
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Another important area for future work includes the in-

depth investigation of the level of agreement between indi-

TABLE I vidual expert classification of mammographic risk for each
image and those obtained by the ELM classifier.

Finally, a more complete comparison of ELM with other
techniques for classifier learning, over different datasets from
other application domains, would form the basis for a wider

ELM series of topics for future studies.
(Classification accy = 73.91%, std dev = 2.0135)
I Il 11 v

CONFUSION MATRICES, CLASSIFICATION ACCURACIES AND STANDARD
DEVIATION FOR THE MIAS DATASET CLASSIFICATION USING ELM AND
OTHER FIVE DIFFERENT CLASSIFIER LEARNERS
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