
Aberystwyth University

Deterministic Parameter Control in Harmony Search
Diao, Ren; Shen, Qiang

Published in:
2010 UK Workshop on Computational Intelligence (UKCI)

DOI:
10.1109/UKCI.2010.5625576

Publication date:
2010

Citation for published version (APA):
Diao, R., & Shen, Q. (2010). Deterministic Parameter Control in Harmony Search. In 2010 UK Workshop on
Computational Intelligence (UKCI) https://doi.org/10.1109/UKCI.2010.5625576

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 11. Dec. 2021

https://doi.org/10.1109/UKCI.2010.5625576
https://pure.aber.ac.uk/portal/en/persons/qiang-shen(695ae0bf-c764-425b-9496-cca71f02cb57).html
https://pure.aber.ac.uk/portal/en/publications/deterministic-parameter-control-in-harmony-search(a170d3b8-416b-43d5-b8ab-a32b04253413).html
https://doi.org/10.1109/UKCI.2010.5625576

Deterministic Parameter Control in Harmony Search

Ren Diao and Qiang Shen

Abstract— Harmony search is a recently developed meta
heuristic capable of solving discrete and continuous valued opti-
misation problems. However, the nature of pre-defined constant
parameters limits the exploitation of the algorithm. This paper
proposes a number of deterministic parameter control rules
to fine-tune these parameters individually and dynamically,
making Harmony Search a more dynamic algorithm which
is able to achieve better results. A combined approach that
implements all the proposed rules is then applied to various
benchmarks and engineering problems. Experimental results
reveal that the combined approach can find better solutions
when compared to the original harmony search and several
other heuristics, making harmony search a strong mechanism
to perform optimisation tasks.

Key words: Harmony Search; Meta Heuristics; Constrained
Optimisation; Parameter Control

I. INTRODUCTION

Harmony Search (HS) is an evolutionary algorithm devel-
oped in [9]. As a meta-heuristic-based algorithm, conceptu-
ally, it mimics the improvisation process of music players.
HS algorithm has been very successful in a wide variety
of optimisation problems (e.g. [3], [17]), presenting several
advantages over traditional optimisation techniques. In par-
ticular, it imposes fewer mathematical requirements and is
not sensitive to the settings of initial parameter values. This
makes its application implementation fairly straightforward.
As the algorithm essentially performs stochastic random
search, derivative information is also unnecessary.

Although it is also a population-based approach, the HS
algorithm works by generating a new vector that encodes
a candidate solution, after considering all of the existing
vectors. This forms a sharp contrast with conventional evolu-
tionary approaches such as genetic algorithms that consider
only two (parent) vectors in order to produce a new vector.
It increases the robustness and flexibility of the underlying
search mechanism and hence, ensures better solutions. How-
ever, the nature of pre-defined constant parameters limits the
exploitation of the algorithm.

Parameter tuning and parameter control are two different
types of approach commonly used algorithm adaptation and
search optimisation. The former means finding appropriate
values for the parameters of an algorithm before running
it, with such fine-tuned parameters fixed during the run.
The latter starts with initial parameter settings which are
then modified during the run. In particular, deterministic
parameter control uses predefined parameter alteration strate-
gies to modify parameters deterministically. Usually a time-
dependent schedule is used, i.e. the modification rule will be
used after a set number of iterations have elapsed since the

Ren Diao and Qiang Shen are with the Department of Computer Science,
Aberystwyth University, UK (email: {rrd09, qqs}@aber.ac.uk).

last time the rule was activated. This is in contrast to adaptive
parameter control, where feedback from the search is utilised
to further determine the direction and/or magnitude of any
changes made to the parameters. [8]

Recently, deterministic parameter control has been used
to modify the pitch adjusting rate and bandwidth parame-
ters of HS dynamically [14]. Although these modifications
show promising results, the performance of the algorithm
is still limited due to the constant setting of the remaining
parameters. This paper proposes a number of deterministic
rules to adjust HS parameters. It also suggests the use of
scalable bandwidths in proportional to the value ranges for
each variable. A combined approach that implements all the
rules is also proposed, making HS a more dynamic and
efficient algorithm that is capable of finding better solutions.

The rest of this paper is structured as follows. Section
II introduces the main concepts of harmony search. Section
III describes the parameter control rules for each indi-
vidual parameters and the combined parameter adjustment
approach. Section IV shows the experimentation carried out
using the combined approach on various constrained and
unconstrained optimisation problems, including real-world
engineering designs, and discusses the experimental results.
Section V concludes the paper and proposes further work in
the area.

II. THE PRINCIPLES OF HARMONY SEARCH

Harmony Search mimics the improvisation process of
musicians, during which, each musician plays a note for
finding a best harmony all together. When applied to op-
timisation problems, the musicians represent the decision
variables of the cost function, and HS acts as a meta heuristic
algorithm which attempts to find a solution vector that
optimises this function. In the process, each decision variable
(musician) generates a value (note) for finding a global
optimum (best harmony). The Harmony Search algorithm has
a novel stochastic derivative (for discrete variable) based on
musician’s experience, rather than gradient (for continuous
variable) in differential calculus.

A. Key Concepts

The key concepts of HS algorithm are musicians, notes,
harmonies and harmony memory. In most optimisation prob-
lems solvable by HS, the musicians are the decision variables
of the function being optimised. The notes played by the
musicians are the values each decision variable can take.
The harmony contains the notes played by all musicians,
or a solution vector containing the values for each decision
attribute. The harmony memory contains harmonies played
by the musicians, or a storage place for solution vectors.

A more concrete representation of harmony memory is a
two dimensional matrix, where the rows contain harmonies
(solution vectors) and the number of rows are predefined
and bounded by the harmony memory size. Each column is
dedicated to one musician, and the entire column stores all
the notes played by him in all harmonies, referred to as the
note domain for each musician in this paper.

B. Iteration Steps and Algorithm Illustration

Fig. 1. Harmony Search Illustrated

Harmony Search can be divided into two core phases,
initialisation and iteration, as shown in Fig. 1. A simple ex-
ample problem taken from [9] is used for a better illustration:
Minimise (a − 2)2 + (b − 3)4 + (c − 1)2 + 3 where a, b, c
∈ {1,2,3,4,5}

1) Initialisation:
a) Initialise Problem Domain: The parameters of HS

are assigned according to the problem, including: size of
harmony memory, number of musicians, max iteration, and
optionally, the harmony memory considering rate (HMCR),
and the pitch adjustment rate (PAR). In the example, the
number of musicians is 3, each corresponds to the decision
attributes a, b and c. The harmony memory size is 3, and the
objective function is the function to be minimised, the lower
the better.

b) Initialise Harmony Memory: Harmony memory is
filled with randomly generated solution vectors. In the ex-
ample problem, 3 randomly generated solution vectors are
{2,2,1}, {1,3,4} and {5,3,3}.

2) Iteration:
a) Improvise New Harmony: A new value is chosen

randomly by each musician out of their note domain, and
together forms a new harmony. In the example, musician a
may randomly choose 1 out of {2,1,5}, b chooses 2 out of
{2,3,3} and c chooses 3, forming a new harmony {1,2,3}.

There are two factors which affect the note choice of a
musician, HMCR and PAR. HMCR, range from 0 to 1, is the
rate of choosing one value from the historical notes stored
in the harmony memory, while (1 − HMCR) is the rate
of randomly selecting one value from all possible range of

values. If HMCR is set low, the musicians will constantly
explore other areas of the solution space, and a higher HMCR
will restrict the musicians to historical choices. The PAR pa-
rameter causes the musicians to select a neighbouring value
based on the following formula a± (random∗BW), where
BW is an arbitrary distance bandwidth, while (1 − PAR)
is the probability of using the chosen value without further
alteration. The pitch adjustment is applied after a note is
chosen by the musician, either from the harmony memory
or all possible value range.

Given the above example, with HMCR = 0.9, and
PAR = 0.1, musician a will choose out of all possible
values with a probability of 10%. PAR will then force
the musician to choose a neighbouring value with 10%
probability, each of the two neighbours will then have equal
chances being chosen. A wrap around approach may be taken
for the edge values, 1 and 5, to ensure 2 neighbours for each
value.

b) Update Harmony Memory: If the new harmony is
better than the worst harmony in the harmony memory,
judged by the objective function, the new harmony is then
included in harmony memory and the existing worst harmony
is removed. The new harmony {1,2,3} has the evaluation
score of 9, making it better than the worst harmony in the
memory {1,3,4} which has a score of 16, therefore the
harmony {1,3,4} is removed from memory, replaced with
{1,2,3}. If {1,2,3} had a larger score than 16, it would be
the one being discarded.

The algorithm continues to iterate until the maximum
number of iterations has been reached. In the example, if
the musicians later choose {2,3,1}, which is very likely as
those numbers are already in the note domains, the problem
will be solved with a minimal score of 3.

C. A Probabilistic View of Harmony Search

In order to demonstrate the convergence capability of
harmony search, consider the harmony memory with the
following parameters: the size of the harmony memory (the
number of harmonies in harmony memory) = M , the number
of instruments (variables) = N , the number of possible
notes (values) of an instrument = L, the number of optimal
note (value) of instrument i in the harmony memory = Hi,
HMCR = Hr, and the optimal harmony is (x,y,z). The
probability of finding the optimal harmony is Pr(H) =⊆N

i=1[
HrHi

M + (1−Hr) 1
L

]
[9] where the pitch adjusting rate is

not considered because it is an optional operator.
Initially, the harmony memory is filled with random har-

monies. If there is not any optimal note of all instruments
in the harmony memory, H1 = H2 = ... = HN = 0 and
Pr(H) =

[
(1−Hr) 1

L

]
This means that the probability

Pr(H) is very low. However, if the schema of optimal
harmony such as (*,y,z), (x,*,z), (x,y,*) have better evaluation
than others, the number of optimal notes of instrument i
in the harmony memory, Hi will be increased iteration by
iteration. Consequently, the probability of finding the optimal
harmony, Pr(H) will be increased.

III. DETERMINISTIC PARAMETER CONTROL IN HS

Traditional HS uses fixed, pre-defined parameters through-
out the entire search process, making it hard to determine
a good setting without a good amount of trial runs. The
search results give no hint on which parameter should
be adjusted in order to gain better performance. However,
simple statistics gathered from the search process can yield
useful information:
• Best Score (BS) indicates the fitness function evaluation

of the search result, a search that finds better solution
is deemed more favourable.

• Update Count (UC) is the number of better harmonies
being included during the iterations. A higher UC
shows a more successful improvisation process, with the
overall quality of the harmonies stored in the harmony
memory being improved more frequently.
Note that in HS, if a newly improvised harmony evalu-
ates worse than the ones stored in the harmony memory,
it will be discarded completely. In another sense, the
entire iteration is wasted, contributing nothing to the
final solution.

• Last Best Iteration (LBI) is the iteration where the final
optimal solution is found. A larger LBI indicates that
the best solution was found later during the iteration
process. This implies that a larger percentage of itera-
tions were exploited to make contribution to the final
solution.
When performing a search, the number of iterations,
i.e. the number of fitness function evaluations, is fixed
based on the maximum number of iterations (Kmax).
The quality of candidate solutions has no impact on the
run time of the search process. This typically means
two things: 1) The optimal solutions are found well
before Kmax, and the remaining iterations contribute
nothing to the final result and are therefore wasted. 2)
The algorithm did not find a better solution within the
maximum number of iterations and has been forced to
terminate; with better pre-defined parameters, and more
iterations, a better result can be achieved.

A number of deterministic parameter control rules are here
proposed to fine-tune HS parameters dynamically, in order to
address these issues raised due to fixed parameters. The aim
is not only to produce a better search result at the end, but
also to maximise the use of every iteration, i.e. higher UC,
and larger LBI. The effect of these rules is demonstrated
in comparisons with the original algorithm, using a min-
imisation problem fully described in [11]. The results were
averaged across 100 runs under the same parameter settings.
A relatively small Kmax = 2000 is purposely chosen to
demonstrate how much faster the dynamic approaches can
converge.

A. Dynamic Harmony Memory Considering Rate

Harmony Memory Considering Rate (HMCR) is the core
parameter of HS. It determines whether the new note value
should be chosen from the harmony memory, or randomly

selected from the range of all possible values. HS with a low
HMCR takes less consideration of the historical values but
focuses more on the entire value range when improvising
new harmonies. HS with a high HMCR tries to produce a
new harmony out of existing values stored in the harmony
memory, and explores less outside. A dynamic HMCR that
increases its value as the search progresses can be formulated
such that
HMCR(K) = HMCRmin+

HMCRmax−HMCRmin

Kmax
×K

TABLE I
IMPACT OF DYNAMIC HMCR

HMCR Best Score S.D. Update Count Last Best Iteration
0.5–1 7867.32 271.43 164.78 1671.86

0.5 9378.50 729.45 96.22 972.63
0.6–1 7887.69 328.40 166.43 1727.07

0.6 9416.34 713.45 97.72 1055.8
0.7–1 7870.75 269.39 163.88 1707.07

0.7 9358.83 764.44 95.17 982.74
0.8–1 7929.26 335.72 161.66 1682.02

0.8 9279.76 763.93 94.5 916.93
0.9–1 7887.82 302.40 162.34 1687.96

0.9 9341.67 694.85 97.45 1052.1

Table I shows the differences between the HS results using
fixed and dynamic HMCR.

B. Dynamic Harmony Memory Size

Harmony Memory Size (HMS) controls the maximum
number of best solutions that can be stored during the
search process. A small HMS gives each musician less
choices when improvising a new harmony. In the extreme
case, where HMS = 1, HS keeps the best solution and
discards the rest, with the musicians picking up the same note
every time, unless otherwise forced to change by HMCR.
A large HMS on the other hand, gives the musicians more
choices. The other extreme case involves an infinitely large
harmony memory which stores all the possible values for
each variable, making the improvisation process the same as
generating a new random harmony.

At the beginning of a search, as the musicians just start
exploring the solution space, they do not have many good
solutions. A small HMCR may cause them to randomly
select values outside the harmony memory. Therefore, a large
harmony memory is not required. In most of such cases,
having a large pool of indecent harmonies only confuses
the musicians, preventing them from choosing good values
during improvisation. As the search approaches the end, the
musicians have found many sub-optimal harmonies. In such
cases, given a high HMCR, they will almost exclusively
choose values out of the harmony memory when improvising
new harmonies. Thus, a large pool of good results may
contribute to a better solution.

From the above observation, a good dynamic HMS can
be defined as

TABLE II
IMPACT OF DYNAMIC HARMONY MEMORY SIZE

HMS Best Score S.D. Update Count Last Best Iteration
10–20 7625.04 229.61 165.12 1581.58

20 7646.35 281.04 196.82 1594.93
15–30 7658.61 241.14 213.33 1450.18

30 7730.75 241.02 250.44 1553.89
20–40 7740.16 247.81 252.92 1500.9

40 7747.32 228.10 294.83 1525.12
25–50 7754.72 243.29 290.2 1416.99

50 7864.44 259.76 336.11 1538.25
30–60 7815.98 289.56 326.98 1446.94

60 7900.25 280.82 374.86 1462.44

HMS(K) = HMSmin + HMSmax−HMSmin

Kmax
×K

Table II illustrates the effect of having a dynamically
sized harmony memory. For each pair of tests, the dynamic
approach sets its maximum memory size HMSmax =
HMSfixed, and HMSmin = 1

2HMSmax. For all pairs,
the dynamic approach finds better averaged best scores.
Despite having a lower total number of harmony memories
throughout the search, the dynamic schema have comparable
update counts and last best iterations. This indicates more
iterations were exploited to make contribution to the final
solution.

C. Dynamic Pitch Adjusting Rate and Scalable Bandwidth

Pitch Adjusting Rate (PAR) and Bandwidth (BW) are
two important parameters which mostly affect the rate
of finding and converging to the optimal solution. They
show the greatest impact when solving continuous valued
optimisation problems. Traditional HS uses pre-defined
and fixed PAR and BW throughout the search. This either
results in slow initial exploration in the solution space, or
inefficiency in searching for the optimal solution. Dynamic
PAR and BW adjustment methods have been proposed to
address this issue [14]. This can be outlined as follows:

PAR(K) = PARmin +
PARmax − PARmin

Kmax
×K

BW (K) = BWmax × exp(
ln(

BWmin

BWmax
)

Kmax
)×K

However, when assigning the BW values, neither the
original HS nor IHS takes the value ranges of each variable
into consideration. As such, an adjustment too small will
make very little impact upon values with a large range.
For example, shifting variable x from 100 to 100.01 given
the possible range of x being {-1000, +1000} makes little
change, whilst a 0.01 adjustment is rather significant for
a variable with a value range of {0, 1}. In this paper, a
modified BW which scales with the ranges of each variable
is used. When doing pitch adjustment, the new value
assignment formula is thus changed herein into:

Xnew = Xold ±RANDOM()×BW ×RANGEX

where

BW (K) = BWmax × exp(
ln(

BWmin

BWmax
)

Kmax
)×K

0 ≤ BW ≤ 1, 0 ≤ RANDOM() ≤ 1.

D. A Combined Approach

All aforementioned individual parameter adjustment
strategies can be combined together for a greater perfor-
mance gain, allowing different sets of parameter settings
for different search stages, as summarised in Table III.
After initialisation, the algorithm employs a large harmony
memory, with a large chance of randomly selecting new
values, a small chance of selecting neighbouring values, and
a large neighbour distance bandwidth. Towards the inter-
mediate stage, the algorithm uses a medium sized harmony
memory, with a balanced possibility between choosing values
from the harmony memory and the range of all possible
values, and with more frequent pitch adjustment and a lower
distance bandwidth. Finally, towards the termination of the
process, the algorithm utilises a small harmony memory, with
the values chosen almost purely from stored good solutions,
and very frequent pitch adjustment with a tiny distance
bandwidth. It is worth mentioning that these stages are listed
here for purely conceptual reasons, with no clear boundaries
in between, as the algorithm shifts from one stage to another
gradually during the search.

TABLE III
PARAMETER SETTINGS IN DIFFERENT SEARCH STAGES

Initialisation Intermediate Termination
HMCR Small Medium Large

MS Small Medium Large
PAR Small Medium Large
BW Large Medium Small

Effect High Diversity Steady Improving Fine Tuning
More Exploration Harmonies Fast Convergence

The combined approach offers a better exploration of the
initial solution space, a steady improvement to the overall
quality of harmonies throughout the search, and a fine tuning
stage towards termination that allows better convergence to
the optimal solution. This is confirmed by the following
experimental evaluations.

IV. EXPERIMENTATION AND DISCUSSION

Several optimisation problems taken from the literature are
used to show the performance of the combined parameter
adjustment method, including: two unconstrained (IV-A, IV-
B) and two constrained (IV-C, IV-D) mathematical function
optimisations, and two constrained engineering optimisations
(IV-E, IV-F).The experimentation results are then compared
with the solution achieved using IHS and original HS, along
with the optimal solution, if known. The parameters settings
used for all the example problems are listed in Table IV.

TABLE IV
PARAMETERS USED

HMCR HMS PAR Scalable BW Kmax

0.5 – 0.95 10 – 20 0.35 – 0.99 0.00001 – 0.01 50,000

Fig. 2. Goldstein & Price Function I

A. Unconstrained Function: Goldstein & Price Function I

Minimise

f(~x) = { 1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2

+6x1x2 + 3x22) } × { 30 + (2x1 − 3x2)
2(18

−32x1 + 12x21 + 48x2 − 36x1x2 + 27x22) } (1)

Search domain: −2 ≤ xi ≤ 2, i = 1, 2.

TABLE V
GOLDSTEIN & PRICE I RESULT COMPARISON

Variables Combined IHS HS Optimal
x1 0.000000 0.000000 -0.0000087289 0
x2 -0.999999 -1.000001 -1.0000001192 -1
f(~x) 3.000000 3.000000 3.000000000 3

This function is an eighth-order polynomial with two
variables [10]. As shown in Fig. 2 (taken from [13]), the
function has 4 local minima, one of which is the global
best, f(0, 1) = 3. The best result achieved by the combined
method found f(x) = 3.0000000000032303 which is less
than 1× 10−11 in terms of error with respect to the optimal
value.

B. Unconstrained Function: Goldstein & Price Function II

Fig. 3. Goldstein & Price Function II

Minimise

f(~x) = exp { 1

2
(x21 + x22 − 25)2 }+ sin4(4x1 − 3x2)

+
1

2
(2x1 + x2 − 10) (2)

TABLE VI
GOLDSTEIN & PRICE II RESULT COMPARISON

Variables Combined IHS HS Optimal
x1 3.000002 3.00000 2.9998245239 3
x2 3.999999 3.99999 4.0001201630 4
f(~x) 1.000000 1.00000 1.000000000 1

This function [10] has many local minima. The global
minimum is f(3, 4) = 1, with the function values illustrated
in Fig.3 (taken from [14]). The search regions of the two
variables are bounded between {-50, 50}.

C. Constrained Function: Disjoint Feasible Region

Maximise

f(~x) =
100− (x1 − 5)2 − (x2 − 5)2 − (x3 − 5)2

100
(3)

This problem, originally discussed in [15], has three
variables (x1, x2, x3), one nonlinear inequality constraint
g(~x) = (x1 − p)2 + (x2 − q)2 + (x3 − r)2 − 0.0625 ≤ 0,
and bounded search domains 0 ≤ xi ≤ 10, i = 1, 2, 3. A
solution is only feasible if and only if there exist p, q, r such
that p, q, r = 1, 2, ..., 9 which jointly satisfy the inequality
constraint. The optimal solution is f(5, 5, 5) = 1.

TABLE VII
DISJOINT FEASIBLE REGION RESULT COMPARISON

Variables Combined IHS Coello Koziel et al.
x1 4.999510 5.000000 5.0000 N/A
x2 4.999709 4.999999 5.0000 N/A
x3 4.999629 5.000001 5.0000 N/A
f(~x) 0.999999 0.9999999 1.000000 0.9999998

A variety of methods [14], [2], [12] have been used to
solve this problem, their results are listed in Table VII.

D. Constrained Function II

Minimise

f(~x) = (x21 + x2 − 11)2 + (x1 + x22 − 7)2 (4)

Subject to:

g1(~x) = 4.84− (x1 − 0.05)2 − (x2 − 2.5)2 ≥ 0
g2(~x) = x21 + (x2 − 2.5)2 − 4.84 ≥ 0
0 ≤ xi ≤ 6, i = 1, 2

This minimisation problem has two variables, two inequal-
ity constraints and four boundary conditions. As illustrated in
Fig. 4 (taken from [14]), the unconstrained global minimum
is at f(3, 2) = 0. However, the added constraints make it
no longer feasible. The actual feasible solutions only occupy
approximately 0.7% of the total search space [14].

Fig. 4. Constraint Function II

TABLE VIII
CONSTRAINT FUNCTION II RESULT COMPARISON

Variables Combined IHS HS Deb
x1 2.246827 2.2468258 2.246840 N/A
x2 2.381877 2.381863 2.382136 N/A
f(~x) 13.590842 13.590841 13.590845 13.59085

Constraints All None All All

This problem has been addressed by a number of tech-
niques [14], [5], [9]. The result reported by IHS was found
with no constraints active. The combined approach achieved
f(x) = 13.590841721017531 with all constraints active.

E. Engineering Optimisation I: Spring Weight Minimisation

Fig. 5. Spring Weight Minimisation

This problem consists of minimising the weight of a
tension spring subject to constraints on shear stress, surge
frequency and minimum deflection [1], as shown in Fig. 5.
The three variables are the mean coil diameter D, the
wire diameter d, and the number of active coils N . The
constraints are defined as follows:

Minimise
f(~x) = (x3 + 2)x2x

2
1 (5)

Subject to

g1(~x) = 1− x32x3
71785x41

≤ 0,

g2(~x) =
4x22 − x1x2

12566(x2x31 − x41)
+

1

5108x21
− 1 ≤ 0,

g3(~x) = 1− 140.45x1
x22x3

≤ 0,

g4(~x) = 1− x2 + x1
1.5

− 1 ≤ 0,

The solutions found using different approaches are listed
in Table IX. The combined method found a better solution of
f(~x) = 0.012672871994187039 with all constraints active.
The ever reported best result f(~x) = 0.0126706 [14] has a
different evaluation of 0.0128874 in the experiment which
actually violated the g3 constraint (g3(~x) = 0.01367 ≥ 0),
and is therefore not suitable for use in result comparison.

TABLE IX
WEIGHT OF SPRING RESULT COMPARISON

Variables Combined IHS Belegundu Coello
d 0.052310123 0.05115438 0.050000 0.051989
D 0.37183077 0.34987116 0.315900 0.363965
N 10.45541634 12.0764321 14.25000 10.890522

f(~x) 0.012673 0.0126706 0.012833 0.012681
Constraints All None All All

F. Engineering Optimisation II: Welded Beam Design

Fig. 6. The Welded Beam Structure

The welded beam [16] shown in Fig. 6 is a practical
design problem often used as a benchmark for optimisation
methods. The objective is to find the minimum fabricating
cost of the welded beam subject to constraints on shear
stress τ , bending stress σ, buckling load Pc, end deflection
δ plus other side constraints. The four variables in the
function represent the dimensions h, l, t and b of the welded
beam assembly. The problem can be formulated as follows:

Minimise

f(~x) = 1.10471x21x2 + 0.04811x3x4(14 + x2) (6)

Subject to

g1(~x) = τ(~x)− τmax ≤ 0,
g2(~x) = σ(~x)− σmax ≤ 0,
g3(~x) = x1 − x4 ≤ 0,
g4(~x) = 0.10471x21 + 0.04811x3x4(14 + x2)− 5 ≤ 0,
g5(~x) = 0.125− x1 ≤ 0,
g6(~x) = δ(~x)− σmax ≤ 0,
g7(~x) = P − Pc(~x) ≤ 0,

where

τ(~x) =

√
(τ ′)2 + τ ′τ ′′

x2
R

+ (τ ′′)2

τ ′ =
P√
2x1x2

, τ ′′ =
MR

J
,M = P (L+

x2
2
)

R =

√
x22
4

+ (
x1 + x3

2
)2

J = 2

{√
2x1x2

[
x22
12

+ (
x1 + x3

2
)

]}
τ(~x) =

6PL

x4x23
, δ(~x) =

4PL3

Ex33x4

Pc((~x)) =
4.013E

√
x23x

6
4

36
L2

(1− x3
L

√
E

4G
)

P = 6000lb, L = 14in, E = 30× 106psi,G = 12× 106psi
τmax = 13, 600psi, σmax = 30, 000psi, δmax = 0.25in

A number of different optimisation techniques [6], [4]
have been used to solve this problem, with results shown in
TableX. The combined method found the best result f(~x) =
2.175095482060236 with all constraints being active. The
better results reported in [14], [4] were obtained with no
constraints active (both violating g1).

TABLE X
WELDED BEAM DESIGN RESULT COMPARISON

Variables Combined IHS HS Deb Coello
h 0.21225574 0.20573 0.2442 0.2489 0.2088
l 8.04586947 3.47049 6.2231 6.1730 3.4205
t 7.88399070 9.03662 8.2915 8.1789 8.9975
b 0.21240242 0.20573 0.2443 0.2533 0.2100

Cost 2.175678 1.7248 2.3807 2.4328 1.7483
Constraints All None All All None

V. CONCLUSION

This paper has discussed the impact of constant parameters
in harmony search, and suggested several strategies for
tuning them individually and dynamically. The improvements
include better exploration of the solution space, maximised
use of all iterations, and fine-tuning towards optimal solution.
Dynamically tuned HS is good at locating global optimal
region and producing optimal solution. A combined method
that exploits all the individual parameter tuning strategies is
also proposed. A number of optimisation benchmarks tests
have been carried out on the combined method, including
both unconstrained and constrained mathematical functions,
and also real world engineering optimisation problems. Ex-
perimental results have demonstrated the performance of the
combined method, especially when dealing with real world
constrained optimisation problems, supported with compar-
ative studies. A more comprehensive experimentation is still
needed for a through analysis of the algorithm performance.
Each parameter control rule needs to be studied further for
a better understanding of their effects. Further statistical
measures are also necessary to better justify the significance
of these improvements.

Instead of using a predefined set of parameter adjustment
rules, HS may perform even better if the parameters are
dynamically adjusted at run time with respect to actual search
performance, i.e. by adaptive parameter control. The adaptive
HS will not only find optimised solution, but also learn the
problem at hand as the search progresses. For example, if the

UC did not increase, and no better solution was found for a
large number of iterations, it might indicate that the algorithm
had converged prematurely. As the optimal solution will
always be preserved in the harmony memory, it is safe
to restart the search and explore alternative regions of the
solution space. This may be done by adjusting parameters
significantly towards the original setting for initialisation, in
order to ensure that the algorithm is not stuck at a local
optimal. A better stopping criterion can also be adapted on
the basis of UC and LBI, allowing an earlier termination
if the algorithm has already converged. Alternatively, prede-
fined Kmax may be further extended if the search increases
UC and refreshes LBI frequently even at final iterations
(as the algorithm is still actively searching for the optimal
solution). Work is on-going along these directions to improve
the current research.

REFERENCES

[1] A.D. Belegundu, A Study of mathematical programming methods for
structural optimization, PhD thesis, Department of Civil an Environ-
mental Engineering, University of Iowa, 1982.

[2] C.A.C. Coello, Constraint-handling in genetic algorithms through the
use of dominance-based tournament selection, Advanced Engineering
Informatics, vol. 16, pp. 193–203, 2002.

[3] C.A.C. Coello, Constraint-handling using an evolutionary multiobjective
optimization technique, Civil Engineering and Environmental Systems,
vol. 17, pp. 319–346, 2000.

[4] C.A.C. Coello, Use of a self-adaptive penalty approach for engineering
optimization problem, Computers in Industry, vol. 41, no. 2, pp. 113–
127, 2000.

[5] K. Deb, An efficient constraint handling method for genetic algorithms,
Computer Methods in Applied Mechanics and Engineering, vol. 186,
pp. 311–338, 2000.

[6] K. Deb, Optimal design of a welded beam via genetic algorithm,
American Institute of Aeronautics and Astronautics Journal, vol. 29,
no. 11, 1991.

[7] K. Deb and A.S. Gene, A robust optimal design technique for me-
chanical component design, Evolutionary Algorithms in Engineering
Applications, Springer, Berlin, pp. 497–514, 1997.

[8] A.E. Eiben, R. Hinterding and Z. Michalewicz, Paramter Control in
Evolutionary Algorithms, IEEE Transactions on Evolutionary Compu-
tation, vol. 3, no. 2, pp. 124–141, 1999.

[9] Z.W. Geem, J.H. Kim and G.V. Loganathan, A new heuristic optimiza-
tion algorithm: harmony search, Simulation, vol. 76, no. 2, pp. 60–68,
2001.

[10] A.A. Goldstein and J.F. Price, On descent from local minima, MATH-
EMATICS OF COMPUTATION, vol. 25, pp. 569–574, 1971.

[11] B.K. Kannan and S.N. Kramer, An augmented lagrange multiplier
based method for mixed integer discrete continuous optimization and
its applications to mechanical design, Journal of mechanical design, vol.
116, pp. 318–320, 1994.

[12] S. Koziel and Z. Michalewicz, Evolutionary algorithms, homomor-
phous mappings, and constrained parameter optimization, Evolutionary
Computation, vol. 7, no. 1, pp. 19–44, 1999.

[13] K.S. Lee and Z.W. Geem, A new meta-heuristic algorithm for con-
tinues engineering optimization: harmony search theory and practice,
Computer Methods in Applied Mechanics and Engineering, vol. 194,
pp. 3902–3933, 2004.

[14] M. Mahdavi, M. Fesanghary and E. Damangir, An improved harmony
search algorithm for solving optimization problems, Applied Mathemat-
ics and Computation, vol. 188, pp. 1567–1579, 2007.

[15] Z. Michalewicz and M. Schoenauer, Evolutionary algorithms for
constrained parameter optimization problems, Evolutionary Computing,
vol. 4, no. 1, pp. 1–32, 1996.

[16] J.N. Siddall, Analytical Decision-Making in Engineering Design,
Prentice-Hall, Englewood Cliffs, New Jersey, 1972.

[17] A. Vasebi, M. Fesanghary and S.M.T. Bathaeea, Combined heat and
power economic dispatch by harmony search algorithm, International
Journal on Electric Power, vol. 29, pp. 713–719, 2007.

