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Fuzzy Model Fragment Retrieval

Xin Fu and Qiang Shen

Abstract— Given a set of collected evidence and a knowledge
base, Fuzzy Compositional Modelling (FCM) begins by retriev-
ing model fragments which are the most likely to be relevant
to the available data. Since FCM often involves imprecise and
uncertain information, a match between the available data and
the knowledge base cannot in general be done precisely, partial
matching may suffice. This paper proposes a more flexible
fuzzy model fragment retrieval mechanism to match data
items with broader, including possibly subjective information
in the knowledge base. It is capable of retrieving those model
fragments that can approximately match the collected evidence,
when no exact match occurs. The retrieval process and its
capability is illustrated by means of an application example.

I. INTRODUCTION

Compositional Modelling (CM) [7], [12] has been devel-
oped to synthesize and store plausible scenario spaces in
many problem domains with promising results. However, for
applications like crime detection and prevention, the notion
of vagueness and uncertainty is often involved. Vagueness
concerns concepts for which there are no exact definitions,
such as high explosive materials, extremist organizations and
substantial amount of fibers. When it comes to uncertainty,
often, due to lack of knowledge, propositions can not always
be stated as true or false. They can only be estimated to which
probability/possibility degree they are true or false.

Given a set of collected evidence and a knowledge base,
Fuzzy Compositional Modelling (FCM) [8] begins by retriev-
ing model fragments which are the most likely to be relevant
to the concepts/predicates involved in the set of collected
evidence. As aforementioned, the degree of precision of the
available data can be very variable, the collected evidence
and model fragments in the knowledge base involve both
vague and uncertain information, so that finding a match
between them cannot in general be done precisely. The
retrieval mechanism developed in this work aims to match
specific data items with broader and possibly subjective
information in the knowledge base and to pick up those
matches exceed a predefined threshold. For example, when
a car is observed on a CCTV camera, some identifying
information can be collected but this may be insufficient
to identify the exact model of the car. Therefore, model
fragments which involve similar or more specific features
to those of the observed car should also be retrieved.

The proposed mechanism consists of three component
approaches: the search component, the match component
and the aggregation component. The computation cost of the
model fragments retrieval process is highly relevant to the
search strategy used as well as the data structure employed
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Fig. 1. Portion of a weighted taxonomy

to store information. Thus, in building the knowledge base,
the atomic concepts/predicates are hierarchically structured
in weighted taxonomies and a hash table is employed to
establish a link between the atomic concepts/predicates and
their related model fragments. Then, two different levels of
match, namely sematic matching and fuzzy set matching, are
performed by the match component. Finally, the individual
fuzzy matching degrees are aggregated in a hierarchical
manner to produce the final Retrieval Status Value (RSV)
to evaluate the relevance of the candidate model fragments.

The reminder of this paper is organized as follows. Section
II presents the predefined knowledge representation in FCM
and a brief overview of fuzzy information retrieval models.
Second III proposes a flexible scenario fragments retrieval
mechanism. This is followed by an illustrative example in
Section IV. Section V concludes this paper and points out
future research.

II. BACKGROUND

A. Knowledge Representation

In order to increase the flexibility of automatically generat-
ing plausible scenario spaces, when given pieces of evidence,
fuzzy set theory has been applied to the creation of a
structured knowledge representation scheme which is capable
of storing and managing vague and uncertain data in CM [8].
In particular, a knowledge base consists of the following:

1) Weighted taxonomy: A number of weighted tax-
onomies are employed to represent a set of concepts or states
and their relationships within a given problem domain. There
may be many concepts that share structural similarities,
therefore, those concepts share something in common or
highly relevant are naturally grouped into the same class.
Fig. 1 shows an example of (part of) such a weighted
taxonomy for the problem domain of counter terrorism.

Note that, not only nodes but also arcs in a given taxonomy
can carry semantic information. A weight attached to each
arc expresses the degree of relevance between a chid node
and its parent. In other words, it indicates to what extent the
child node can be classified as an element of the domain
of its parent node. The higher weight a concept receives,
the more common features it inherits from its parent. These
weights are assigned by experts. Note that, since a concept
can be classified into different categories, the sum of the
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arc weights of subtype concepts do not have to be 1. Each
arc weight can be assigned independently, and subjectively,
without taking into account its sibling nodes. Also, the
weighted taxonomy is independent of whether the concepts
are fuzzy or not. Several taxonomies without the weighting
factor which concern with fuzzy concepts such as length,
height and level have been defined in [8].

2) Model fragments: For CM, the scenario elements/states
and their relationships are modelled as generic and reusable
fragments in the knowledge base. A scenario fragment,
interchangeably termed model fragment, μ is itself a partial
description of a certain scenario, which is defined in a tuple
〈Cs, Ct, φs, φt, A〉 as follows:

If {φs}

Assuming {A}

Then {φt}

Distribution φt {υs
1, . . . , υs

n+s → υt
1, · · · , υt

m : q} where
• Cs(μ) = {cs

1
, · · · , cs

k
} is a set of source-participants, referring to

already identified objects/concepts in the partial scenario.
• Ct(μ) = {ct

1, · · · , ct
q} is a set of target-participants, representing

new objects/concepts that will be added to the partial scenario
description if the model fragment is instantiated.

• φs(μ) = {φs
1
, · · · , φs

n} is a set of relations called structural
conditions, whose free variables are elements of Cs. Normally, they
are represented by predicates or nested predicates.

• φt(μ) = {φt
1
, · · · , φt

m} is a set of relations called post-conditions,
whose free variables are elements of Cs

S
Ct. Normally, they are

represented by predicates or nested predicates.
• A(μ) = {a1, · · · , as} is a set of assumptions, which may be

established to be true or false.
• υs = {υs

1 , · · · , υs
n+s} are the values of the antecedent predicates

and assumptions.
• υt = {υt

1
, · · · , υt

m} are the values of the consequent predicates.
• q summaries the probability distributions over the possible assign-

ments of φt.

The If statement describes the required conditions for a
partial scenario to become applicable and the Assuming
statement indicates the reasoning environment. With the pur-
pose of performing hypothetical reasoning, this environment
specifies the uncertain events and states which are presumed
in a partial scenario description. The Then statement de-
scribes the consequent when the conditions and presumed
assumptions hold. The Distribution statement indicates the
probability distributions of the consequent predicate or those
of their relations. It is worth noting that the likelihood is
represented as subjective linguistic probabilities such as slim
chance, very likely and good chance [11].

Since such constructed knowledge representation formal-
ism involves both vague and uncertain information, fuzzy
predicates are also allowed to appear in model fragments.
This implies that a fuzzy matching degree (within [0, 1]) will
be assigned when performing matching between observed
evidence and a given model fragment.

3) Hash table: Once a concept/predicate in weighted
taxonomies is required, a hash table is employed to support
an efficient look up to retrieve the corresponding model frag-
ments. Compared to other associative array data structures,
hash tables are most useful when large numbers of records
are to be stored. For example, Fig. 2 shows a hash table that
associates the fuzzy predicates Height and Degree of fight
with their relevant model fragments in the knowledge base.

Fig. 2. Example of hash table

It works by assigning an unique index number to each
model fragment in the knowledge base, this index number
is used to establish a link explicitly between the con-
cept/predicate and the model fragment. In addition, each
concept/predicate is attached an index link which stores a
sequence of index numbers of those model fragments which
involve the defined concept/predicate.

B. Fuzzy Information Retrieval

The goal of an Information Retrieval (IR) system is to
automatically retrieve information which satisfies a user’s
query. Generally, in IR, information is managed at two
distinct levels [3]:

• Representation of information source (typically in the form of

documents)

• Information request represented through queries

The Boolean IR model [16] is perhaps, one of the most
commonly used models in commercial IR systems. Both
the documents and queries are represented as sets of index
terms. Also, those terms in query are logically connected via
boolean operators such as AND, OR and NOT. This model
produces an exact answer to indicate a document is relevant
or not. However, this crisp behaviour is liable to ignore useful
information whereas possibly picking up useless information
as a result of selection conditions which are too restrictive. To
address this problem, substantial efforts have been devoted
in an attempt to develop more flexible IR systems, including
systems built on fuzzy set theory [2], [5], [13].

1) Fuzzy extension of document representation: In fuzzy
IR systems, a document is typically represented as a fuzzy set
of terms - {F (d, t)/t} and the definition of the indexing func-
tion F (d, t) has drawn much attention to the development
of fuzzy IR systems. For instance, a new indexing function
has been proposed in [2], which computes the significance
of a term in a document by considering the different roles
of term occurrences. More precisely, the weight of a term
t in a given document d is computed by firstly calculating
the weight of t in each subsection individually and then by
aggregating the resulting scores using a user-defined function
(in order to reflect the varying degrees of significance of
different subsections).

Obviously, the incorporation of weighed document repre-
sentation softens the crisp boolean match, thereby allowing
for partial matching. A Retrieved Status Value (RSV) is
employed to evaluate the degree of relevance of a document
with respect to a given query. In doing so, a ranking of the
retrieved documents can be presented in decreasing order of
their RSVs. This is more convenient for the user to access
the most relevant documents.
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2) Fuzzy extension of query representation: Query terms
formulated in Boolean IR models are being treated equally
and connected by boolean operators. Fuzzy extension of such
a query representation involves two stages:

The first is to extend the selection criteria (to determine
which documents to retrieve) by attaching a weight to each
search term in a query. A user can provide a quantitative
description of the “weights”of that term in the search doc-
uments. The weight in the query can be interpreted as an
important weight, as a threshold, or as a description of the
“ideal” document. Weights have been initially denoted by nu-
meric values. However, the use of numeric weights requires
clear knowledge of their semantics to translate fuzzy concept
into a precise numeric value. So in [1], the numeric query
weights are replaced by linguistic descriptors which specify
the degree of importance of the term. Linguistic weights such
as important and fairly important are formalized.

The second stage is to soften the aggregation process
where query evaluation is done firstly for each weighted
term and then combining such evaluation according to the
query structure. Various aggregation operators can be used to
combine single selection criteria to represent more complex
query requests. The degree of relevance of each single
selection criterion are aggregated together to compute the
final RSV of the document with respect to the query. Re-
cently, more and more efforts have been made to define new
aggregation operators as a compromise between the AND
and OR operators. For instance, the linguistic quantifiers (e.g.
at least k) in [2], the Ordered Weighted Averaging (OWA)
operators in [17] and the and possible operator in [18].

III. THE APPROACH

Given a set of collected evidence, the model fragment
retrieval mechanism proposed herein plays the role of retriev-
ing a set of the relevant model fragments ordered according
to their RSVs from the knowledge base. This is of course
the same in principle as with existing fuzzy IR techniques,
but the details of the approach are of its own characteris-
tics. These are described below (using crime detection and
prevention as the problem domain).

A. Representation of model fragments

The general form of model fragments has been presented
in section II-A.2. Each model fragment consists of three
components: antecedent, assumption and consequent. Each
component consists of one or more atomic predicates. Since
the basic inference methods used in FCM are backward
chaining and forward chaining in which only one component
per fragment will be examined at a time. These components
are of equal importance. However, different search priorities
may be assigned to different components with regards to
different inference methods. For example, in backward chain-
ing, a priority vector [0, 0, 1] can be assigned, which indicates
only the consequent component alone is used to perform the
match. Also, in forward chaining, a priority vector [1, 1, 0]
may be given.

B. Representation of collected evidence

Given a new or ongoing investigation, an initial set of ev-
idence has been collected by investigators and this collected
evidence is entered into the system, triggering the need to
generate a space of possible scenarios. The set of collected
evidence E can be represented by:

E = {e1, e2, . . . , en} (1)

where e1, e2, . . . , en are atomic pieces of information that
are considered to be observed consequences of a possible
crime scenario.

Similar to the weighted IR model, every piece of evidence
is attached with a weight in the present work. Such a weight
is interpreted as confidence weight which associates a degree
of certainty with the collected evidence. For example, if a
piece of evidence is a clear CCTV camera observation, it may
be assigned a high confidence weight. On the other hand, if
a piece of evidence is collected by interviewing a possible
witness, this evidence may only receive a relatively low
confidence weight. Confidence weights are initially assigned
by investigation experts. Such assessment typically reflects
the expertise and knowledge of the investigators and is
naturally represented in linguistic terms.

C. Outline of model fragment retrieval system

The input to the proposed retrieval system in Fig. 3 is a
set of collected evidence E. This model is composed of three
main components: search, matching and aggregation. They
interact with each other in the following steps:

Initially, the collected evidence goes through the sys-
tem one piece at a time. Given the knowledge base, the
search component efficiently identifies the position of the
required concept/predicate in the corresponding taxonomy.
After that, the resulting information (part of the taxonomy)
and the piece of evidence are both fed into the matching
component. Atomic matching degrees are generated by this
process and are then aggregated together, deriving an overall
degree of match for the given evidence. Next, the degree
of match is fed back to the search component to guide
further search. During this process, the search mechanism
keeps those concepts/predicaters whose degree of match is
above a predefined threshold for further search only. At the
next search stage, it focuses on picking up model fragments
which are related to the selected concepts/predicaters. These
retrieved model fragments are then stored in a candidate pool
for final creation of the possible scenarios along with other
candidates to be retrieved by repeating this cycle.

The above process continues until all evidence in E is
examined sequentially. The aggregation component will then
be employed to update and calculate the final RSV of each
candidate model fragment. Finally, the output of this system
is an ordered set S of retrieved model fragments, which have
been at least partially instantiated in relation to the collected
evidence. Technical details for implementing the main steps
are described in the following subsections.
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Fig. 3. Model fragment retrieval system
D. Searching through taxonomies

In the IR literature, most efforts have been devoted to
calculating the degree of relevance with limited consideration
of the search process for efficient matching. They often store
all the documents in the disk; then, given a query, check
every document in the disk one by one. This exhaustive
process works, but it is inefficient and can be computationally
prohibitive. However, fetching the ”right” information from
storage is not an easy task. This is because the knowledge
base may well contain several hundreds or sometimes even
tens of thousands of model fragments along with further
basic concepts/predicates that describe states and events
appearing in the model fragments that are structured in
weighted taxonomies. The efficiency of fuzzy model frag-
ment retrieval is therefore crucially related to the systems’s
capability to search for the most relevant model fragments
on the basis of RSV. For this purpose, a search algorithm is
developed to improve the efficiency of the overall system.

Algorithm : SearchTaxonomy(E, KB)

1) Extract the atomic concepts in E

2) Count the number of occurrences of each atomic concept
3) Store the atomic concepts (c) in a queue Q, in decreasing order of the

numbers of their occurrences
4) Take the first node ci of Q

• Assign by expert which taxonomies (Ti) ci might belong to
• Perform the breadth-first-search(ci, Ti) and return its position in

Ti or “Not found”

5) Repeat Step 4 until Q is empty

For example, given a set of evidence E = {e1, e2, e3}
where
e1 = (height(human being(John)) = tall) → somewhat certain
e2 = (height(human being(Dave)) = short) → good chance
e3 = (employ(human being(John), human being(Dave)) = true)
−→ extremely likely

It is obvious that the atomic concepts in E are hu-
man being, height and employ and the number of their
occurrences are 4, 2 and 1 respectively. Thus, a queue Q
is constructed as:

Q = {human being, height, employ}

The predefined weighted taxonomies are employed to
guide the retrieval system to more relevant part of the
knowledge base. Take the first concept in Q, human being,
expertise is required to identify which taxonomy it might
belong to. The search starts from the root node of a selected
taxonomy and breadth-first search is employed to identify
the position of the required concept in the given taxonomy.

In order to reduce the number of search iterations and
improve the retrieval efficiency, when retrieving a concept
which has already existed in E, rather than searching it
from scratch each time, it has a natural appeal to save the
previous retrieval results in the cache, such that, the search

results of these concepts can be retrieved directly for the
next iteration. This is why the number of occurrences is
counted in the algorithm. More broadly, the results of most
frequently used concepts/predicates such as human being,
place, time can be recorded in one mapping table and stored
in the knowledge base. Also, these high-frequency retrieval
concepts are ordered according to their retrieval frequency.
The more frequently they are required, the higher ranking
they appear in the mapping table, such that retrieval time is
reduced. Therefore, repeated search and retrieval for those
most frequent concepts can be avoided.

Note that, the above search mechanism is implemented
based on exact word matching, it suffers from the prob-
lem that concepts which are semantically similar might be
missed. In order to overcome this problem, an enhanced
semantic matching mechanism will be integrated in next step.

E. Semantic matching

In this step, the concepts/predicates appearing in the col-
lected atomic evidence are matched with predefined weighted
taxonomies at a semantic level in order to calculate the
semantic similarity Sv between them.

Recently, many approaches concerning semantic matching
have been proposed, represented by the work done is se-
mantic web area. For example, Giunchiglia [10] presented a
structure level semantic matching algorithm to find semantic
correspondences between elements of two graph-like struc-
tures. Another group of approaches focus on the extension
of the original query terms. For instance, Miyamoto [15]
proposed a fuzzy association mechanism for generating a
fuzzy thesaurus for all pairs of keywords in a given set of
documents based on their frequency of occurrence. More
recently, some approaches start to move away from word
occurrences but onto concept occurrences [9].

In this paper, given a weighted taxonomy T , so long as two
concepts have overlapping semantics, the semantic matching
degree is set to be greater than 0. For example, in Fig. 1,
the “Coke” and “Liquid” should have a non-zero semantic
matching degree, since they share something in common in
respect of their ingredients. The semantic matching degree
between any two nodes within a given taxonomy T can
be derived via the weighted length of the shortest path
connecting them. This is because the arc weight indicates
the semantic distance between two connecting nodes. That
is, the semantic similarity between c and c′ is defined by:

Sv(c, c′) =

„
1 −

Np

Nt

«
∗

S

Np

∗ G|dc−dc′ | (2)

where Np is the number of edges of the shortest path
connecting c and c′ in T and Nt is the number of total edges
of T . Obviously, (1 −

Np

Nt
) indicates the semantic distance

between c and c′. S represents the sum of arc weights
attached on the shortest path. S

Np
stands for the normalized

weight of the shortest path. Also, the level difference is
taken into consideration as | dc − dc′ | is the absolute level
difference between c and c′ in T . G is a parameter which
inversely signifies the importance of level difference in the
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sematic matching. The larger its value the less important the
level difference.

This definition captures intuition well. Take Fig. 1 for
example, suppose that G = 0.95, then the semantic matching
degree between “Coke” and “Liquid” is obtained by using
Equation (2):

Sv(Coke, Liquid) =

„
1 −

2

11

«
∗

0.95 + 1.0

2
∗ 0.952 = 0.72

Through the use of this similarity measure, once the
required concept, c, is identified in T , its semantic similarity
with other concepts in T can be obtained. Those concepts
that have a similarity degree larger than a given threshold will
be selected. It is inefficient to traverse the whole taxonomy,
since if the similarity between c and a node in T is smaller
than the threshold and this node is located at the same level
as c or lower, then the whole branch can be pruned.

F. Finding relevant model fragments

Based on the above semantic match, an involved concept
c in a given piece of evidence can be expanded to a
broader set, covering those concepts that all have a semantic
similarity degree with c that is larger than the threshold.
As a piece of evidence may involve nested proposition
(or instantiated predicates), each atomic concept/predicate
should be expanded individually. After that, with the help
of the predefined hash table, the index numbers of those
model fragments which are relevant to the interested con-
cepts/predicates can be easily determined. In addition, the
semantic similarity degree can also be attached to each of
such model fragments.

This step is set to retrieve model fragments which are
relevant to the whole evidence proposition rather than atomic
elements. Thus, intersection (∩) is imposed over those in-
dividually determined model fragment sets to retrieve the
model fragments that jointly involve all concepts/predicates
in the given piece of evidence.

Of course, the semantic similarity degrees associated with
the atomic predicates should also be aggregated. The overall
semantic similarity degree between the retrieved model frag-
ment (φ′) and evidence (φ) can be obtained by aggregating
the semantic similarity values of atomic predicates.

Sv(φ, φ′) = Sv(p1, p′1) ⊕ · · · ⊕ Sv(pm, p′m) (3)

Here, the aggregation operator (⊕) is interpreted as average
to avoid the semantic similarity degree rapidly degrading at
the very beginning, otherwise very limited candidate model
fragments can be forwarded to the following steps.

In summary, given a piece of evidence ei, at the end
of this step, those model fragments that possess an overall
proposition semantic similarity with ei which is larger than
a predefined threshold are selected and stored in a candidate
pool for further reduction.

G. Fuzzy set matching

According to the representation of fuzzy model fragments
in section II-A.2, the distribution component consists of a set
of rules of the following form:

If φs
1

is υs
11

and · · · and φs
n is υs

1n Then φt
1

is υt
11

and · · · and φt
m is υt

1m

· · · · · ·
If φs

1
is υs

r1
and · · · and φs

n is υs
rn Then φt

1
is υt

r1
and · · · and φt

m is υt
rm

Without losing generality, each rule has n antecedent
predicates and m consequent predicates. φs

1, · · · , φs
n and

φt
1, · · · , φt

m are predicates/functions and υs
11, · · · , υs

rn and
υt

11, · · · , υt
rm are their established values. The predicates in

fuzzy model fragments are allowed to be precise or imprecise
or mixed. The precise predicate can only be evaluated to
be true or false, whereas the value of an imprecise predi-
cate/function may be represented by a fuzzy set defined on
a suitable universe of discourse.

Given an atomic evidence, φ is υ, the semantic match
between φ and φs/φt is performed in the last step. In this
step, the similarity of predicate values is calculated. If φ is
a precise predicate, the value of φ always exactly matches
the value of φs/φt, the matching degree between them is
either 1 or 0. For an imprecise predicate or function, the
fuzzy set matching degree takes values from a continuous
range [0, 1], where 1 indicates two predicates are completely
matched and 0 indicates they are not matched at all. Note
that, according to the definition of fuzzy taxonomy in [8],
although the fuzzy concepts involved may not be exactly
the same, their values which are represented by fuzzy sets
defined in the same normalized universe of discourse are still
comparable. The degree of overlap between a pair of such
fuzzy sets reflects the similarity between them. Thus, the
fuzzy set matching degree, Sf , between the evidence and a
model fragment can be obtained.

In this paper, the technique reported in [14] is used to
measure fuzzy set similarity. This measure of similarity is
based upon two measures, possibility Pos and necessity
Nec. This method can be used consistently for all possible
combinations of precise and imprecise propositions, regard-
ing pieces of evidence and model fragments. Formally, the
similarity measure, Sf , is defined by:

Pos(υm|υe) = max(min(μυm (u), μυe (u))) ∀u ∈ U (4)

Nec(υm|υe) = 1 − max(min(1 − μυm (u), μυe (u))) ∀u ∈ U (5)

Sf =

(
Pos(υm

˛̨
υe) if Nec(υm

˛̨
υe) > 0.5

(Nec(υm

˛̨
υe) + 0.5) × Pos(υm

˛̨
υe) else

(6)

where U is the universe of discourse and Pos the maximum
value among the intersection point of υe and υm (represent-
ing to what extent υe and υm overlap).

Based on the above semantic and fuzzy set matching, the
overall fuzzy matching degree between “φ is υ” and “φ′ is
υ′” are then aggregated by using the product operator:

S(φ : υ, φ′ : υ′) = Sv(φ, φ′) ⊕ Sf (φ : υ, φ′ : υ′) (7)

Here, the product operator is adapted for aggregation be-
cause crisp predicates are often involved, such that the Sf of
crisp predicates is either 1 or 0. It is obvious that if Sf = 1,
then the use of other aggregation operators such as plus
or Max may lead to the Sf of crisp predicates dominating
the overall aggregation process and weakening the effect of
sematic similarity Sv. On the other hand, if Sf = 0, the
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overall fuzzy matching degree tends to be 0 by using product
operator. This clearly reflects the intuition well.

H. Rule level aggregation

Since each model fragment employs a set of generic rules,
given an atomic piece of evidence e, more than one rule
can usually be fired with different fuzzy matching degrees.
This step aims to combine the individual fuzzy matching
degrees to derive an overall relevant degree for a model
fragment. In other words, after this step, for a given e, each
model fragment in the candidate pool will have an overall
relevant degree attached, which signifies how relevant the
model fragment is to the given evidence.

The individual fuzzy match degree of the fired rules in one
model fragment, S1, S2, · · · , Sn, is herein aggregated as:

fi = fi−1 + Si − fi−1 × Si (8)
where f0 = S0 = 0 and i = 1, 2, . . . , n, with n being the
number of fired rules in one model fragment and fn being the
overall relevant degree of a candidate model fragment. The
resulting value is bounded by the maximum individual fuzzy
match degree and 1. Again, this well reflects the intuition
in that the more rules are fired with respect to a single
model fragment, the higher relevant degree exists between
this fragment and the given piece of evidence.

I. Model fragment level aggregation

The above steps will be iteratively carried out until all
atomic pieces of evidence in E have been examined. For
each ei, a set of relevant model fragments are obtained
and each model fragment will attach a relevant degree (the
output of last step) with ei. However, a model fragment
normally consists of several atomic predicates which are con-
nected by conjunctive operators, whilst it has been assumed
that each atomic piece of evidence can only activate one
atomic predicate/function at a time. In addition, each atomic
evidence has a confidence weight associated, denoting the
degree of certainty of that piece of evidence. Importantly, the
confidence weights are generally given in linguistic terms for
the application problem at hand. Therefore, if a single model
fragment is matched by more than one atomic evidence, their
individual relevant degrees should be aggregated.

For computational simplicity, in this work, a finite and
totally ordered linguistic term set, L = {li}, i ∈ H =
{0, · · · , T }, is employed to cover permissible linguistic
terms. That is, it takes the ordinal fuzzy linguistic approach
[4], [6], where any linguistic term li in L represents a
possible value for a linguistic variable. As with the existing
work, the term set L must satisfy [4]:

• Totally ordered: li ≥ lj if i ≥ j.
• Symmetry: Neg(li) = lj if j = T − i.
• Maximization: Max(li, lj) = li if li ≥ lj .
• Minimization: Min(li, lj) = li if li ≤ lj .

In particular, the confidence weights are described using a
set of linguistic probability terms L, as defined as follows:
L = {l0 = Impossible, l1 = Extremely unlikely, l2 = Slim chance,

l3 = Small chance, l4 = Somewhat certain, l5 = Good chance,
l6 = Most likely, l7 = Extremely likely, l8 = Certain}

This final step is desired to combine the numerical relevant
degree and linguistic confidence weight to create the final
RSV for a candidate model fragment:

RSVMFj
= f(〈l1, RMFj1

〉, 〈l2, RMFj2
〉, · · · , 〈ln, RMFjn

〉)

where j is the index number of a model fragment in the
candidate pool, n is the total number of atomic pieces of
evidence in E, li is the confidence weight of the ith piece of
evidence in E and RMFjn

stands for the relevant degree of
jth model fragment with respect to the nth atomic evidence.

Traditionally, when a given pattern expresses the conjunc-
tion of certain elementary requirements, Min operation is
typically performed in aggregation. However, the use of Min
often leads to a very small value dominating the aggregation
function and forcing a conclusion to be drawn based on the
least relevant proposition, which is just the opposite of what
is desired by the user for the present application.

Instead, the calculation of the final RSV for a candidate
model fragment is herein done by the following procedure.
First, calculate the individual relevant degree of MFi with ei

using the above steps. Note that, if the jth model fragment
has not been matched by the ith evidence, RMFji

= 0.
Second, the individual relevant degrees are aggregated using
the Induced OWA (IOWA) Operators [19] such as:

RSVMFj
= fω(〈l1, RMFj1

〉, . . . , 〈ln, RMFjn
〉) = ω

T B (9)

where ω = (ω1, ω2, · · · , ωn) is the weighting vector with
ωi ∈ [0, 1] and

∑n

i=1 ωi = 1. This is well suited to the
present work, since the relevant degrees to be aggregated can
be ordered according to their attached linguistic confidence
weights. Indeed, the confidence weight li of this research is
the so-called order-inducing variable in [19], which is used
to reorder the aggregated objects, RMFji

is the argument
variable, and B is a reordered argument vector so that bk is
the RMFji

value of the aggregated object having the kth

largest l value. Third, construct the weighting vector ω.
Normally, the weighted vector is assigned by expert or by
learning from historical records. In this research, the weights
in ω reflect the confidence degrees; it is therefore nature to
normalize the index number of each evidence’s confidence
weight in L to construct ω.

This aggregation scheme once again reflects the intuition
that the more evidence there exists to support a model
fragment, the higher is the relevance of that model fragment
likely to involve in the scenario to build. The final RSV
is used as a criterion to select those most relevant model
fragments in the candidate pool. This hierarchical aggrega-
tion procedure is summarized in Fig. 4. For this to work, a
threshold is predefined to indicate the minimum acceptance
level for the RSV of a model fragment, to be selected.
Those selected model fragments are then used to construct
the scenario description.

IV. ILLUSTRATIVE EXAMPLE

In the wake of recent terrorist atrocities, intelligence
experts have commented that failures in detecting terrorist
activities are not so much due to a lack of data, as they are
due to difficulties in relating and interpreting the available
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Fig. 4. Hierarchical aggregation structure

intelligence data. For example, it is obvious that many
explosive ingredients and liquids can be combined to create
homemade liquid bomb. However, there are a lot of explosive
chemicals that can be concocted from some very common
items such as perfumes, drain cleaner and batteries and
they are innocent in themselves. This makes it very difficult
for intelligence analysts to detect a plausible threat. The
proposed model fragment retrieval system is designed to
support the selection of a broader set of relevant model
fragments, by matching observations with a knowledge base
when both imprecise and uncertain information is obtained,
in order to depict the likely scenarios which may well link
such instantiated fragments together. The retrieval process
described in the preceding section is illustrated by addressing
a simply application problem.

Assume that a suspect was trying to bring a bottle of coke
boarding a flight and a small bag of hair dyes was also found
in his suitcase. These two pieces of evidence were observed
by police and stored in E = {e1, e2}:

e1 = φe
1

: Amount(Coke(a)) = many → most likely (l6)
e2 = φe

2 : Amount(Hair dyes(b)) = a few → somewhat certain (l4)

Further, supposed that the knowledge base contains the
following two (candidate) model fragments MF1 and MF2:

If {φs
11

: Amount(Liquid(X)), φs
21

: Amount(Hydrogen peroxide(Y )}

Assuming {φs
31

: Mix(Liquid(X), Hydrogen peroxide(Y ))}

Then {φt
11

: Liquid bmob(B)}

Distribution Liquid bmob(B) {

Rule 1: a lot, a few, true → true: extremely likely (l7)

Rule 2: a few, a lot, true → true: slim chance (l2)

Rule 3: a number of, a number of, true →

true: somewhat certian (l4)} (MF1)

If {φs
12

: Pregnant woman(X)}

Assuming {φs
22

: Amount(intake(caffeine(Y )))}

Then {φt
12

: Cause miscarriage(X)}

Distribution Cause miscarriage(X) {

Rule 1: true, a lot → true: extremely likely (l7)

Rule 2: true, a number of → true: small chance (l3)

Rule 3: true, a few → true: slim chance (l2)} (MF2)

Given such two candidate model fragments and a prede-
fined fuzzy taxonomy (as shown in Fig. 1), the following
model fragment retrieval process then follows:

To start, e1 is firstly fed into the model fragment retrieval
system, the involved concept Coke is suggested to search
from the Substance taxonomy (see Fig. 1). This leads to the
following computation:

1) Calculate the semantic similarities: Suppose that G is
set to be 0.95 and the threshold to 0.7, the results of applying
Equation (2) are listed in the second column of Table I which

Fig. 5. Fuzzy set matching

lists the obtained semantic similarities between the desired
concepts in the set of collected evidence and other concepts
in the given taxonomy. After this, the original concept Coke
in e1 can be expanded to be as:

Exp(Coke) = {Liquid, Drink, Caffeine, Coke}

TABLE I

RESULTS OF SEMANTIC MATCH

Coke Hair dyes
Substance 0.65 0.49
Explosive integrate 0.52 0.61
Liquid 0.72 0.48
Hydrogen peroxide 0.46 0.73
Sulphuric acid 0.46 0.56
Oil 0.52 0.38
Drink 0.82 0.45
Hair dyes 0.40 1
Coke 1 0.40
Tea 0.68 0.38
Caffeine 0.73 —
Sugar 0.69 —

Applying the forward chaining inference mechanism leads
to both model fragments MF1 and MF2 being selected.
For illustrative simplicity, assume that the expanded sets for
other concepts Amount and Intake return themselves, i.e.
Sv(Amount, Amount) = 1 and Sv(Intake, Intake) = 1. From
this, the overall semantic similarities of these selected model
fragments with e1 can be obtained:
Sv(φs

11
, φe

1
) = (Sv(Amount, Amount) + Sv(Coke, Liquid))/2 = 0.86

Sv(φs
22

, φe
1
) = (Sv(Amount, Amount) + Sv(Intake, Intake)+

Sv(Coke, Caffaine))/3 = 0.91

2) Calculate the similarity of predicate/function values:
Suppose that the fuzzy variable Amount is defined as per
Fig. 5. Only two rules (Rule 1 and Rule 3) in MF1 and two
rules (Rule 1 and Rule 2) in MF2 are fired by e1 respectively.
Applying Equation(6) to the above leads to:

Sf (φs
11

: a lot, φe
1

: many) = 0.5625
Sf (φs

11 : a number of, φe
1 : many) = 0.125

Sf (φs
22

: a lot, φe
1

: many) = 0.5625
Sf (φs

22
: a number of, φe

1
: many) = 0.125

3) Calculate the overall fuzzy matching degree between
e1 and MF1: This is done by using Equation (7):

S(φs
11

: a lot, φe
1

: many)
= Sv(φs

11, φe
1) × Sf (φs

11 : a lot, φe
1 : many) = 0.48

S(φs
11

: a number of, φe
1

: many)
= Sv(φs

11
, φe

1
) × Sf (φs

11
: a number of, φe

1
: many) = 0.11

4) Calculate the overall relevant degree between MF1
and e1: This is computed by using Equation (8):

RMF11
= S(φs

11
: a lot, φe

1
: many)+

S(φs
11 : a number of, φe

1 : many)−
S(φs

11
: a lot, φe

1
: many)×

S(φs
11

: a number of, φe
1

: many) = 0.54

Similarly, repeat steps 2 to 4, the overall relevant degree
between MF2 and e1 results:

RMF21
= S(φs

22
: a lot, φe

1
: many)+

S(φs
22 : a number of, φe

1 : many)−
S(φs

22 : a lot, φe
1 : many)×

S(φs
22

: a number of, φe
1

: many) = 0.56
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5) Repeat the above steps until all evidence in E are
examined: As given in Table I (the third column), the
expanded set for Hair dyes in e2 is:

Exp(Hair dyes) = {Hair dyes, Hydrogen peroxide}

This is because the sematic similarities of between these
two concepts and Hair dyes are larger than 0.7. Note that,
since the concepts Coke and Hair dyes are both at the same
level and Sv(Coke, Hairdyes) < 0.7, the child node of
Coke has no chance to get a similarity value Sv with Hair
dyes which is larger than 0.7, the whole branch of Coke can
therefore be removed. Only one model fragment (MF1) is
thus activated by e2. From this, the overall relevant degree
between MF1 and e2 can be obtained:

RMF12
= S(φs

21
: a few, φe

2
: a few)+

S(φs
21

: a number of, φe
2

: a few)−
S(φs

21
: a few, φe

2
: a few)×

S(φs
21 : a number of, φe

2 : a few) = 0.93

6) Calculate the final RSV for each candidate model
fragment: This is accomplished by using Equation (9). In
this example, MF1 is fired by both e1 and e2 with relevant
degrees RMF11

= 0.54 and RMF12
= 0.93, respectively, and

MF2 is only fired by e1 with relevant degree RMF21
= 0.56.

It is known that the confidence weight of e1 is most likely
(l6) and that of e2 is somewhat certian (l4). Thus, the final
RSVs of MF1 and MF2 can be derived as follows:

The first step is to order the aggregation pairs, 〈li, RMFji
〉,

based upon the ordering inducing variable li. The reordered
aggregation pairs for MF1 are 〈l6, 0.54〉, 〈l4, 0.93〉 and this
order leads to the ordered argument vector B = [0.54 0.93].
In addition, the weighting vector ω is constructed as ω1 =
6/6+4 = 0.6 and ω2 = 4/6+4 = 0.4. Thus, ω

T = [0.6 0.4]
and the final RSVs of MF1 and MF2 are obtained as:

RSVMF1
= fω(〈l6, RMF11

〉, 〈l4, RMF12
〉) = 0.69

RSVMF2
= fω((〈l6, RMF21

〉, 〈l4, RMF22
〉) = 0.34

Obviously, given the collected evidence E, boolean re-
trieval model will ignore both model fragments MF1 and
MF2. However, if the suspect mixes the hair dyes and coke
together in a appropriate proportion, a liquid bomb might be
produced. Boolean retrieval model is incapable of detecting
and constructing this plausible threat, whilst the present
approach can assist in making such difficult decisions.

V. CONCLUSIONS

This paper has proposed an approach to develop flexible
model fragment retrieval systems which are capable of
performing partial matches among pieces of imprecise and
uncertain information. For a given set of collected evidence,
the retrieval procedure carries out following distinctive tasks:
1) semantic matching of atomic evidence predicates. 2) fuzzy
set matching of predicate values. 3) aggregation of individual
fuzzy matching degrees of those fired fuzzy rules in each
candidate model fragment. 4) aggregation of the final RSV
of each model fragment if it has been fired by more than one
atomic piece of evidence. Compared with boolean retrieval,
if a match between the collected evidence and the knowledge
base cannot be established precisely with full certainty, then

no result may be produced. However, the approach described
herein can pick up those relevant model fragments whose
RSV exceeds a given threshold.

In future work, an inference mechanism will be developed
to synthesise and store all combinations of instances of
these selected model fragments. For the application problems
considered, this will allow scenarios depicting plausible
terrorist attacks that might never be considered by analysts
to be created. Another interesting piece of further research
is to devised a mechanism to propagate computed fuzzy
matching degrees and linguistic probabilities from individual
model fragments to their related ones. How to best decide the
threshold value required by the retrieved process for a fresh
application domain also remains an important piece of further
research. Also, the numeric relevant weights in the present
weighted taxonomy may be more naturally represented by
fuzzy sets, especially in the present application domain.
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