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Abstract 

In chilling conditions (5ºC), salicylic acid (SA)-deficient mutants (sid2, eds5, NahG) of Arabidopsis 

thaliana produced more biomass than wild-type (Col-0), while the SA-overproducer cpr1 was 

extremely stunted. The hypothesis that these phenotypes were reflected in metabolism was explored 

using 600 MHz 
1
H NMR analysis of unfractionated polar shoot extracts. Biomass-related metabolic 

phenotypes were identified as multivariate data models of these NMR ‘fingerprints’. These included 

principal components that correlated with biomass. Also, partial least squares-regression models were 

found to predict the relative size of plants in previously unseen experiments in different light 

intensities, or relative size of one genotype from the others. The dominant signal in these models was 

fumarate, which was high in SA-deficient mutants, intermediate in Col-0, and low in cpr1 at 5ºC. 

Among signals negatively correlated with biomass, malate was prominent. Abundance of transcripts of 

the FUM2 cytosolic fumarase (At5g50950) showed strong positive correlation with fumarate levels 

and with biomass, whereas no significant differences were found for the FUM1 mitochondrial 

fumarase (At2g47510). It was confirmed that the morphological effects of SA under chilling find 

expression in the metabolome, with a role of fumarate highlighted.  

 

 

Abbreviations - CV, coefficient of variation; DW, dry weight; N0, transcript quantity measure; 

NMR, nuclear magnetic resonance; PCA, principal component analysis; PLS, partial least squares; 

qRT-PCR, quantitative reverse transcription-polymerase chain reaction; RGR, relative growth rate; 

SA, salicylic acid; TSP, trimethylsilylpropionate; X, predictor variables matrix; y, response variables 

vector.
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Introduction 

Understanding temperature responses of biomass and metabolism is important for modifying seasonal 

and geographical crop limits to meet production challenges of demographic and climate change 

(Humphreys et al. 2006), and in predicting biosphere impacts of global change (Enquist et al. 2007). 

The research model Arabidopsis thaliana belongs to the Brassicaceae, many members of which are 

adapted to seasonal cold (Griffith et al. 2007). It is typically a winter-annual, germinating in the fall 

and overwintering as a rosette to reproduce in spring, though this varies among populations (Griffith et 

al. 2004).  

Chilling (low but non-freezing) temperatures influence biomass allocation, though the 

mechanisms are poorly understood. A hormonal component in chilling-induced growth inhibition in 

Arabidopsis was found by Scott et al. (2004), who observed that salicylic acid (SA) and its glucoside 

slowly accumulated at 5ºC. Transgenic and mutant plants unable to accumulate SA had biomass 

2.7-fold that of wild-type after 2 months at 5ºC. SA-deficient genotypes exhibiting such responses 

include: NahG, in which SA accumulation is prevented by a bacterial hydroxylase transgene; the eds5 

(or sid1) mutant, which is defective in a putative plastid membrane protein homologous to MATE 

transporters; and the sid2 mutant, which is defective in the ICS1 isochorismate synthase that mediates 

SA biosynthesis (Kim et al. 2013, Scott et al. 2004). The ICS1 gene is induced by chilling (Kim et al. 

2013), and the enzyme has unusually high activity at chilling temperature (Strawn et al. 2007).  

Conversely, SA-overaccumulation and stunted growth at 5ºC were seen in mutants of the cpr1 

gene (Scott et al. 2004), which maps to a Resistance cluster and affects defense and growth via a 

temperature-responsive signaling pathway (Yang and Hua 2004). Kim et al. (2013) found the same 

high-SA, low-growth chilling syndrome in mutants of the CAMTA family of calmodulin-binding 

transcriptional activators, which may transduce the cold-induced spike in cytoplasmic calcium levels 

into CBF gene activation. CAMTA factors repressed ICS1, and hence SA biosynthesis at warm 

temperature. Microarray analysis suggested a major role for SA in configuring the low temperature 

transcriptome (Kim et al. 2013).  

Metabolism, the theme of this paper, is a major determinant of biomass accumulation.  

Interpreting the complexity of metabolite composition (or, the metabolome), however, remains a 

challenge in the field of metabolomics (Steinfath et al. 2008). There is evidence that metabolomics has 

predictive power for growth rate. Correlations of biomass with metabolites (Meyer et al. 2007, Sulpice 

et al. 2013, Sulpice et al. 2009), or coincidence of quantitative trait loci for biomass and metabolites 

(Lisec et al. 2008), have been sought in Arabidopsis. A motivation of these studies has been improved 

crop yields for bioenergy and food (Meyer et al. 2007).  

The hypothesis of the present study was that the remarkable biomass phenotypes of SA mutants 

under chilling could be mathematically modeled using their metabolomes. Irrespective of the nature 

and complexity of the underlying cause-and-effect mechanisms, demonstration that biomass could be 
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predicted from metabolite data confirms a relationship in the context of both low temperature and 

hormonal regulation. This has relevance for understanding stress-related geographical, seasonal or 

genetic limits to growth of crops or natural vegetation. 
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Materials and methods 

Plant material 

All Arabidopsis thaliana (L.) lines were in the Col-0 wild-type background (Scott et al. 2004). Growth 

stages were monitored as in Boyes et al. (2001). Seedlings germinated in compost (Scott et al. 2004) 

to growth stage 1.0 were placed in a Fisons 600G3/THTL chamber (Loughborough, UK) at 23ºC mean 

air temperature. At a mean growth stage of 1.04, plants were either kept in this chamber, or transferred 

to a similar one at 5ºC, and incubated up to a further 100 d. Within each chamber, genotypes were 

distributed in mixed assortments across six trays whose positions were exchanged twice weekly. No 

additional nutrients were provided. Daily light periods (16 h) were provided by Sylvania F36W/135 

fluorescent tubes (Raunheim, Germany), monitored with a Skye Instruments SKP 215 PAR Quantum 

light sensor (Llandrindod Wells, UK). Approximate maximum irradiances (400-700 nm) were 100, 55 

or 25 mol m
-2

 s
-1

, this range being low to minimize stress symptoms apparent in stronger light at 5ºC, 

especially for cpr1 (Scott et al. 2004). 

Growth conditions in the metabolomics experiments (coded A-G) are in Table 1. Shoots were 

harvested at stage 5.10 (first unopened flower buds), except for experiment G, in which flowers were 

allowed to open (growth stage 6.00-6.10). These growth stages were reached at the same time by all 

plants apart from the cpr1 mutants at 5ºC, which were infertile, forming minute, highly abnormal 

inflorescence-like structures before the other genotypes.  

Shoot vegetative tissues were sampled over 90 min in mid-light-period. Roots and inflorescence 

stems were quickly detached with a blade, and the rosette immediately plunged into liquid N2. 

Samples were freeze-dried for 48 h, then weighed to obtain ‘biomass’ as DW. Shoot biomass varied 

86-fold, so differing numbers were batched for NMR analysis: 46% of samples were single shoots, 

35% 2-4 shoots, and 19% 12 or more. Every sample had at least four biological replicates, 91% five or 

more, and 60% ten or more. Samples were stored with desiccant at -80
o
C until NMR analysis, which 

entailed shipment and laboratory processing over several days at ambient temperature. 

Plants for the quantitative real-time PCR analyses were similarly grown (62 d at 5ºC in 51 mol 

m
-2

 s
-1

), harvested (freeze-dried at stage 5.10), and stored (desiccated at -80
o
C).  

Nuclear magnetic resonance (NMR) fingerprinting 

Samples (15  0.03 mg) were extracted (50 ºC, 10 min) in 1 ml 80:20 D2O-CD3OD with 0.05% 

d4-TSP (trimethylsilylpropionate, sodium salt). After cooling and centrifugation, supernatants (850 l) 

were re-heated (90ºC, 2 min), refrigerated 45 min and re-centrifuged. 
1
H NMR spectra of supernatants 

(750 l) were acquired at 300 ºK on an Avance Spectrometer (Bruker Biospin, Coventry, UK) at 

600.05 MHz, with a 5 mm selective inverse probe. A water suppression pulse sequence with 5 s 

relaxation delay was used. Spectra, acquired using 128 scans of 64 000 data points with 7 309.99 Hz 
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spectral width, were Fourier transformed using an exponential window with 0.5 Hz line broadening. 

Phasing and baseline correction used instrument software. 
1
H chemical shifts were referenced to 

d4-TSP at 0.0. Spectra were reduced in Amix software (Bruker Biospin) to ASCII files containing 

integrated (‘binned’) regions of equal width (0.01 ppm), and intensities scaled to d4-TSP (0.05 to 

-0.05). Residual water (4.865-4.775), d4-MeOH (3.335-3.285) and d4-TSP signals were removed. 

Where sample quantities permitted (95% of cases), experimental variation was reduced by averaging 

spectra of 2-3 replicate extractions. The resultant spectra are hereafter called ‘fingerprints’. Metabolite 

assignments of spectral peaks were made using standard compounds. Individual metabolites were 

quantified relative to the d4-TSP internal standard using the following spectral ranges: fumarate 

(6.535-6.505); sucrose (5.435-5.405); malate (4.355-4.295); glutamine (2.465-2.425); citrate plus 

malate (2.605-2.475). 

Univariate statistics 

For full spectral datasets, one-way ANOVA (without assumption of equal group variances) was done 

in the R package FIEmspro (Enot et al. 2008), and correlation by the corrcoef function in MATLAB 

v.6.5 (The MathWorks, Natick, MA). Standard Bonferroni assessments of P values were made 

(Broadhurst and Kell 2006). Smaller datasets were analyzed using PAST v.1.91 (Hammer et al. 2001) 

for one-way ANOVA with Tukey post-hoc tests (where data passed Shapiro-Wilk, Jarque-Bera and 

Levene tests for normality and homogeneity of variance), Pearson and rank correlations, and non-

parametric Kruskal-Wallis and Mann-Whitney tests.  

Multivariate data modeling 

Principal component analysis (PCA) and partial least squares (PLS)-regression (Steinfath et al. 2008) 

were performed in SIMCA-P v.11.0 (Umetrics, Umeå, Sweden) on unscaled, mean-centered data 

matrices, whose columns were NMR fingerprints of 901 binned signals (of which 762 were non-zero), 

and whose rows were plant samples (numbering up to 183 in the full dataset). All reported PCs were 

‘significant’ in the standard SIMCA-P cross-validation. Cross-validation can also be used in SIMCA-P 

to optimize the number of components in PLS-regression models (Wold et al. 2001). Optimization 

avoids over-fitting variation spuriously correlated with y, the vector of ‘response’ variables (here, 

shoot biomass). In SIMCA-P, the data are divided into seven subsets, and a series of models 

developed with each subset missing is used to predict y for the held-out subset. Optimal models 

require a series of components that successively reduce the overall prediction error. We found one to 

three PLS components were optimal in exploratory analyses of individual growth experiments. In 

predictive modeling, however, optimization is problematical unless the test data (whose y variables are 

to be predicted) are excluded from this step of model development (Broadhurst and Kell 2006). To 

avoid this issue, all reported PLS analyses were conducted using a fixed number of two components.  
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PCR primer selection and design 

Four genes potentially suitable as internal references were identified by stable expression in the 

following cold- or salicylate-related experiments: EMBL-EBI ArrayExpress 

(http://www.ebi.ac.uk/arrayexpress/) E-MEXP-1345, E-TABM-51, E-TABM-52; NCBI Gene 

Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) GSE Series 5534, 5620-21, 5745, 6177, 

9955, 10522, 10646, 19255; NASCArrays (http://affy.arabidopsis.info/) 404. These yielded 83 

Affymetrix ATH1 Genome Array microarray plate records, which were normalized by robust multi-

array averaging in Robin (Lohse et al. 2010). ATH1 probe sets were ranked by coefficient of variation 

(CV) of normalized expression values across all plates, then compared with Czechowski et al. (2005). 

Stable expression (99th percentile of CV values) was confirmed for At1g13320, At4g32470 and 

At5g08290 (Czechowski et al. 2005). Also chosen was the traditional reference gene EF-1α (ATH1 

probe set 247644_s_at, 96th CV percentile), for which At1g07940 was used for primer design.  

Sequences for the reference genes, and the following genes of interest, were obtained from NCBI 

(http://www.ncbi.nlm.nih.gov/): At1g53310, At2g22500, At2g47510, At4g00570, At5g01340, 

At5g47560, At5g50950, At5g66760. Choices of genes over similar functional candidates involved 

preliminary assessment of their levels and inducibility in meta-analyses of the microarray experiments 

listed above, in addition to literature evidence. 

Parameters of primers, designed using Primer-BLAST (Ye et al. 2012), PrimerExpress 2.0 

(Applied Biosystems, Foster City, CA, USA) and NetPrimer (Premier Biosoft, Palo Alto, CA, USA), 

were: Tm 59  1ºC, amplicons 69-83 base pairs, primers 18-25 bases, GC contents 40-61%. Each 

primer pair was tested in PCR with and without cDNA template, and over a concentration range of 50 

to 900 nM. Primer pair 5'-3' sequences (forward and reverse) for each transcript were: 

At1g07940 (ACCGGAGCCAAGGTTACCA and ACCTGCGGCAGATAGAGTTTTG), 

At1g13320 (GATTCTTCGTGCAGTATCGCTTCT and TTACCGCAGGTAAGAGTTTGGAA), 

At1g53310 (GTTCTGGACACGTTTCATGTCATAG and 

GAAGGTGCAGTTGCCATAGAGATAA), At2g22500 (TGCGAGCGTTGCGAGTAAT and 

ACTCCAGCCACCACCTTCATATT), At2g47510 (CTCCGGCGGAACAACTGT and 

TCCCTAAACGAGGTCGAATAAGATC), At4g00570 (CTTCTCTCTGGTGCACGTATCG and 

GTCATGTAGGACGCAAGGCATT), At4g32470 (ATGGACATCAAAGAGGCTATGAACA and 

CACGCTTGAGACGCTGGTTA), 

At5g01340 (GAGACCGGAAAGGTCAGCAA and TGGCGAGAGCTTCAAGAACAC), At5g08290 

(GCGTCTCGTCGTCATTCGTT and CGCAAGCACCTCATCCATCT), At5g47560 

(GACAAACGGTGGGACAACAAC and GAGGACCAAGAGCGATGTAACAG), 

At5g50950 (AAGATGTGGTCTTGGTGAACTTTCT and TGTAGGATTTACCTTTCCAGGCATA), 

At5g66760 (CTCTTTGATGGCGTCTCTGGAT and GAGGATCTCGTATCGGTAGAACCA).  

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5621
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6177
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Quantitative reverse transcription (qRT)-PCR procedure 

Freeze-dried shoots were minced with a blade, and random portions (10 mg) sampled for total RNA 

extraction with the RNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA). RNA quantity and quality 

were assessed by UV spectra and agarose gels. The Qiagen QuantiTect Reverse Transcription Kit was 

used for genomic DNA elimination and cDNA synthesis from 9 µg RNA samples; controls without 

reverse transcriptase were included to confirm absence of genomic DNA.  

PCR reactions were performed in optical 96-well plates on an Applied Biosystems 7500 Real-

Time PCR System. Reactions contained 2 L cDNA, 7.9 l master mix of SYBR Green PCR Core 

Reagents (Applied Biosystems), and 400 nM each of forward and reverse primers in a final volume of 

25 l. The thermal program was 40 cycles of 95ºC (15 s) and 60ºC (1 min), after initial steps of 50ºC 

(2 min) and 95ºC (10 min). Dissociation curves (60-95ºC) were recorded after each 40-cycle program.  

Amplication data were exported from the 7500 System SDS v.1.2.3 software as fluorescence 

ratios (of the SYBR Green reporter and ROX passive reference dyes) for each cycle. Transcript 

quantities (N0) per sample, in arbitrary fluorescence units, were obtained in LinRegPCR v.2012.2, 

using mean PCR efficiency per amplicon (Ruijter et al. 2009).  

Normalization of qRT-PCR data 

Potential reference genes At1g07940 (EF-1α), At1g13320 (PP2A3), At4g32470 (QCR7-1) and 

At5g08290 (YLS8) were evaluated, by average pairwise variations (M) in the cDNA samples between 

one gene and the others, calculated in geNorm v.3.5 (Vandesompele et al. 2002). Successive 

elimination of the less stable genes in geNorm indicated that the two references EF-1α and PP2A3 

were optimal (M = 0.20, r = 0.97, n = 16). All N0 values were therefore normalized using geNorm-

calculated geometric means of EF-1α and PP2A3 measurements in the same qRT-PCR plates and 

samples. Although YLS8 correlated with both these genes (r 0.91, 0.93), its inclusion caused 

insufficient variation of geNorm normalization factors (0.097) to justify an additional reference 

(Vandesompele et al. 2002). Quantifications of each transcript of interest were made on four biological 

replicates (different shoots), each measured in two qRT-PCR plates.  
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Results 

NMR fingerprints of SA mutants 

Over several weeks at 5ºC, relative shoot biomass of Arabidopsis genotypes correlated inversely with 

ability to accumulate SA (Fig. 1a). Thus, cpr1 mutants, which over-accumulate SA (Scott et al. 2004), 

were very stunted (Fig. 1a). Abnormally large shoots, on the other hand, were formed by the sid2, eds5 

and NahG genotypes, which fail to accumulate SA at 5°C (Kim et al. 2013, Scott et al. 2004).  

Chilling treatments in Arabidopsis are generally conducted in low light (Gilmour et al. 2000, 

Klotke et al. 2004). The maximum intensity that could be used without causing visible stress in every 

genotype at 5ºC was 100 mol m
-2

 s
-1

 (Scott et al. 2004). Light levels were experimentally varied 

down from this limit, and in fact the harvest growth stage was reached sooner at 55 mol m
-2

 s
-1

 

(Table 1). When levels were reduced to 25 mol m
-2

 s
-1

, the rate of development was sub-optimal, but 

long-term growth still occurred (Table 1). To evaluate the consistency of metabolic phenotypes, plants 

subjected to chilling at each light level were analyzed. Mutant biomass at 5ºC was significantly 

different to Col-0 in all light levels tested, but differentials were greater in the higher light range (Fig. 

1b). At 23ºC, NahG shoots were slightly smaller than Col-0 (Fig. 1b), as seen previously (Scott et al. 

2004).  

Shoot metabolites were analyzed by 600 MHz 
1
H NMR of unfractionated polar extracts. Spectra 

were binned to 0.01 ppm, which reduces resolution but resolves minor sample-to-sample peak shifts 

due to small pH changes and thus aids data mining. The resultant fingerprints were comparable to 

other NMR studies on Arabidopsis (Ward et al. 2003), with strong signals for organic acids, amino 

acids, and a complex sugar-dominated region (Fig. 2a). A sharp singlet around  6.5, from resonance 

of olefinic protons of fumarate (Ward et al. 2003), was prominent in an otherwise sparse spectral 

region (Fig. 2a), and showed striking variation among the 5ºC fingerprints. Fumarate was maximal in 

SA-deficient mutants (Fig. 2b), intermediate in Col-0 (Fig. 2c), and low in cpr1 (Fig. 2d). 

Phenotypic variation of each NMR signal (i.e., non-zero intensities of a 0.01 ppm bin) was tested 

by its F value in ANOVA of SA-deficient, wild-type, and cpr1 classes (Fig. 2). In ANOVA of all 5ºC 

fingerprints, many signals differed in SA-deficient/wild-type and wild-type/SA-overproducer 

comparisons; of these, 21% were stronger in the smaller phenotypes, and only 3% the converse. 

Among NMR signals showing correlation (Bonferroni-corrected significance, P < 1.510
-5

) with shoot 

biomass in each of the 5ºC experiments A-D, 31% were negatively correlated and only 2% positively.  

NMR signals were not numerically equivalent to metabolites, which mostly give multiple signals 

that can overlap in complex regions describing several metabolites. Prominent signals showing 

negative associations with biomass were, however, attributable to malate and glutamine (Fig. 2). 

Signals positively associated with biomass included putative sucrose peaks, though their statistical 

significance did not rival fumarate (Fig. 2).  
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Metabolomic comparisons between chilling or optimal temperatures were limited in this study. 

Growth at 5 and 23ºC differed so greatly that plants at similar growth stages were very different in age 

(Table 1). Low temperature affected many metabolites: 62% of NMR signals for Col-0 at 5ºC were 

stronger than at 23ºC, while the converse applied to only 2.0% (growth stage 5.10, 55 mol m
-2

 s
-1

 

light, ANOVA, n  9 plants, P < 10
-4

). Proline peaks, for example, were eight-fold larger at 5ºC in 

Col-0 (Fig. 2a,c).  

Quantifications of major metabolites, using spectral ranges of their NMR peaks (Table 2), 

confirmed that fumarate, sucrose, malate and glutamine showed significant (positive or negative) 

correlations with biomass in each of the 5ºC experiments. Citrate (not shown) was a major metabolite 

that did not correlate with biomass (mean values: 1.2-1.4 mg g
-1

 DW at 5ºC). At 23ºC, none of these 

metabolites differed significantly between Col-0 and NahG. Comparing Col-0 shoots at 5ºC and 23ºC, 

sucrose, malate and glutamine were more abundant at low temperature. Unlike studies with shorter 

cold-incubations (Cook et al. 2004, Kaplan et al. 2004), however, this was not the case for fumarate 

(Table 2). Fumarate was noteworthy for opposite extremes of variance according to phenotype. For the 

23ºC Col-0 and NahG shoots, fumarate measurements had proportionately greater SDs than sucrose, 

malate or glutamine, and showed even more variability for Col-0 shoots at 5ºC. In contrast, fumarate 

measurements in the SA-deficient mutants at 5ºC were remarkably uniform, across three genotypes in 

four experiments (Table 2), considering the varied growth conditions (Table 1).  

Biomass-oriented metabolic models of SA mutants 

Global comparison of metabolic phenotypes was made by PCA, which produces a series of linear 

combinations of correlated original variables (the PCs), ranked by the data variance each encapsulates. 

If variance in a PC reflects differences between sample classes, these may separate by their 

coordinates in PC space or ‘scores’ (Steinfath et al. 2008). Scores on the first PC separated 23ºC and 

5ºC plants, indicating temperature effects accounted for the greatest single source of variance (49%) in 

the NMR fingerprints (Fig. 3a). The second, PC[2], represented 30% of variance and, most relevant 

for the hypothesis, separated SA mutants at 5ºC (Fig. 3a). 

Data variables (here, NMR chemical shifts) have weight coefficients or ‘loadings’ on each PC. 

High positive or negative loadings mean strong contributions to positive or negative scores. Most 

PC[1] loadings were negative (Fig. 3b) and so contributed to the negative or low positive scores of 5ºC 

fingerprints (Fig. 3a). The positive PC[1] loadings of fumarate reflected the lack of a cold-induced 

increase in Col-0 (Table 2), in contrast to other prominent peaks including malate, sucrose, and several 

amino acids (Fig. 3b). PC[2] loadings were dominated by the positive contribution of fumarate (Fig. 

3c), reflecting its dramatic variation (Table 2) between the phenotypes that separated on this PC. 

The separation of phenotypes on PC[2] (Fig. 3) appeared to follow a biomass trend. Indeed, when 

PC[2] scores were plotted against log10-biomass of all experimental plants, the correlation was highly 

significant (Fig. 4a). PC[2] scores were thereby composite biomarkers for biomass at the harvested 
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developmental stage, despite the wide differences in growth periods and conditions in which plants of 

different experiments reached this stage (Table 1). The only outliers were the 5C Col-0 shoots grown 

in 100 mol m
-2

 s
-1

 light (Fig. 4a), which reflected the variability of fumarate contents noted in the 5C 

experiments (Table 2). 

To test more rigorously the hypothesis of a biomass-related component of metabolic phenotype, 

predictive data modeling was applied. NMR fingerprints were used to model biomass for subsets of 

the plant samples, e.g. for particular experiments or genotypes. Accurate prediction of biomass for 

experiments or genotypes not involved in model construction would then require meaningful 

consistency in the hypothetical phenotype. 

Properties of chemical samples can be related to their composition by regression, where a vector, 

y, of ‘response’ variables (here, biomass) is modeled from a matrix, X, of ‘predictor’ variables (here, 

NMR fingerprints). Where X comprises many intercorrelated variables, as here, traditional multiple 

linear regression is unsuitable. An alternative is PLS-regression, which assumes X and y are joint 

realizations of relatively few ‘latent’ factors underlying the investigated system (Wold et al. 2001). It 

seeks multivariate components (hypothetically reflecting latent factors) via coordinated algebraic 

decompositions of X and y into scores and weights matrices, which are constrained to maximize 

covariance of X and y. PLS-regression, like PCA, is suited to the systems biology philosophy (Janes 

and Yaffe 2006).  

Alternative tests were performed to validate PLS modeling of biomass data (expressed as 

rankings) from NMR fingerprints: 

(1) Cross-experiment predictions. Models were built on one 5ºC experiment, and used to predict 

the biomass data of the other three. Figure 4b shows the use of experiment D (in the lowest light) to 

predict the biomass data of experiments A, B and C (in the three light levels). Actual and predicted 

biomass ranks correlated well using PLS models of any experiment (r = 0.82-0.89; P < 10
-28

). This 

demonstrated consistency in the biomass-related metabolic ‘signature’ from one experiment to 

another, despite different growth conditions. 

(2) Cross-genotype predictions. For each 5ºC experiment, one genotype was held out in turn, and its 

biomass data predicted by models built on the other four genotypes (Fig. 4c). Prediction of cpr1 was 

demanding, as its phenotype was far more extreme than the others. Models consequently tended to 

overestimate cpr1 biomass, but predictions nonetheless correlated significantly with actual values 

(Fig. 4c). This supported a relationship between metabolome and biomass in different genotypes. 

Consistency was also seen in the NMR signals that were most important in both the PCA and 

PLS models of different 5ºC experiments. Mean Pearson correlation coefficients (r ± SD) for pairwise 

between-experiment correlations of relevant PC loadings were 0.80 ± 0.15, and those for PLS 

regression coefficients were 0.82 ± 0.10. Moreover, the PC loadings correlated with the PLS 

coefficients (mean rank correlation = 0.72 ± 0.16). Thus, the multivariate analyses indicated a 

biomass-correlated, NMR-detectable metabolic signature.  
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The most prominent features among the model coefficients were a positive contribution by 

fumarate, and negative ones by malate and glutamine (Figs. 3c & 5). Other positive signals (albeit 

minor relative to fumarate) were sucrose, glucose and other peaks in the spectral region attributable to 

sugars, and sinapoyl malate. 

The 23ºC experiments, in different lighting for different periods (Table 1), yielded a four-fold 

range in maximal biomass, due to treatment rather than genotype. Shoots reached growth stage 5.10 

earlier at 23ºC than at 5ºC (Table 1), and their harvest biomass was less (Fig. 4a). In one experiment 

(G), plants at 23ºC were left until flowers opened, so they were within the age range of the 5ºC plants 

(Table 1). All these 23ºC fingerprints, somewhat unexpectedly, fitted the PC[2] biomass-correlation 

(Fig. 4a). This was primarily due to fumarate, whose correlation to log10(biomass) at 23ºC was 

significant (r = 0.60, P < 0.001), albeit weaker than at 5ºC. Neither malate nor glutamine, on the other 

hand, exhibited comparable trends in relation to biomass at the two temperatures. Similarities between 

the biomass-correlations of 5ºC and 23ºC fingerprints were therefore incomplete. 

Expression of fumarate-related transcripts in SA mutants under chilling 

In addition to the formation of fumarate via mitochondrial succinate dehydrogenase (SDH), its 

diurnal accumulation in Arabidopsis is catalyzed by a recently characterized cytosolic fumarase, 

FUM2 (Pracharoenwattana et al. 2010). qRT-PCR analyses of relevant transcripts were consistent with 

the latter being responsible for the genotype-dependent fumarate levels at 5C. Expression of FUM2 

(At5g50950) was strongly elevated in the high-fumarate NahG and sid2 phenotypes, and strongly 

reduced in the low-fumarate cpr1 phenotype, relative to the wild-type (Fig. 6). Consequently, FUM2 

transcript levels correlated strongly with biomass of the shoots in which they were quantified. This 

pattern was not typical of the genes examined (Fig. 6). Negative correlation with biomass, for 

example, was observed for the AtPPC1 (At1g53310) transcripts of phosphoenolpyruvate carboxylase 

(Gregory et al. 2009), which represents a cytosolic route to malate production.  

Substantial proportions of cellular fumarate and malate occur in Arabidopsis vacuoles, and the 

tonoplast dicarboxylate transporter AtTDT (At5g47560) is one of the transport mechanisms (Hurth et 

al. 2005, Schulze et al. 2012). However, no significant differences or trends in AtTDT expression were 

found (Fig. 6). Regulation of this transporter might, of course, be post-translational. 

Transcript analyses did not implicate mitochondrial metabolism in the variations in fumarate. 

Expression of SDH1-1 (At5g66760), the major transcript for the succinate-binding flavoprotein 

subunit of SDH (León et al. 2007), was greater in the low-fumarate cpr1 mutants, and negatively 

correlated with biomass (Fig. 6). The FUM1 mitochondrial fumarase gene, At2g47510, showed no 

significant differences in expression (Fig. 6). The mitochondrial SFC1 succinate/fumarate 

(At5g01340) and DIC1 dicarboxylate (At2g22500) carrier transcripts (Palmieri et al. 2011) showed 

negative correlation with biomass (Fig. 6). The mitochondrial NAD-malic enzyme was studied, as 

effects on fumarate have been found in Arabidopsis plants lacking this function (Tronconi et al. 2008), 
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or over-expressing a maize malic enzyme (Fahnenstich et al. 2007). Significant variation was not seen 

for AtNAD-ME2 (At4g00570), which encodes a subunit of this dimeric enzyme (Fig. 6).   
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Discussion 

NMR fingerprinting revealed distinct metabolic phenotypes associated with the divergent 

morphologies of SA mutants under chilling. Fumarate and malate, prominent as NMR-detectable 

metabolites in Arabidopsis, differed in opposite directions in high- or low-SA shoots. SA-deficient 

phenotypes, with greater biomass at 5ºC (Scott et al. 2004), had abundant fumarate and low malate, 

relative to the Col-0 wild-type. The opposite held for the high-SA cpr1 phenotype.  

Of technical interest for breeding crops with increased biomass (Meyer et al. 2007, Steinfath et al. 

2010, Sulpice et al. 2013) was our use of NMR fingerprints to model shoot biomass. This supports the 

credibility of spectral fingerprinting (Scott et al. 2013, Scott et al. 2010), as a alternative to more time-

consuming chromatography (Lisec et al. 2008, Sulpice et al. 2013).  

Our metabolomic models were biomass-correlated PCs, and PLS models of relative biomass. 

Models should not be uncritically seen as biologically meaningful (Broadhurst and Kell 2006). 

Validity of our models was supported by consistent relations to biomass in different experiments, and 

by predictive testing. PLS models of NMR fingerprints from one experiment predicted the relative 

biomass of shoots in other experiments. Relative biomass of shoots of one genotype could be predicted 

from other genotypes.  

There is insufficient current evidence to generalize about particular metabolites in relation to 

different growth conditions (Sulpice et al. 2013). Other studies modeling Arabidopsis biomass from 

metabolites have focused on natural genetic variation or heterosis (Meyer et al. 2012, Sulpice et al. 

2013), instead of dramatic hormonal mutants. This may be why we found relatively strong biomass-

correlations of individual metabolites. One commonality with other studies was the preponderance of 

negative biomass-correlations among metabolites (Sulpice et al. 2013, Sulpice et al. 2009). Prominent 

metabolites negatively associated with biomass in this study and others were malate (Meyer et al. 

2007, Sulpice et al. 2013) and glutamine (Meyer et al. 2007). Most compounds with negative biomass-

correlation identified by Meyer et al. (2007) were intermediates of central metabolism, which they 

inferred was depleted by faster growth, rather than being driven by increased substrates. Accordingly, 

Cross et al. (2006) found accessions with larger rosettes had higher central metabolism enzyme 

activities, perhaps contributing to faster carbon utilization and growth. SA-deficient mutants at 5ºC 

had higher net assimilation rates than wild-type (Scott et al. 2004), so their generally weaker 

metabolite signals may have reflected faster conversion to structural biomass. 

Evidence has emerged for negative impacts of apoplastic malate (and fumarate) on growth, via 

reduction of stomatal apertures (Araújo et al. 2011). Malate contents were about 45% higher in cpr1 

than the wild-type at 5C, while combined levels of malate and fumarate were about 19% higher. 

Given the more potent stomatal effect of malate (Araújo et al. 2011), and depending on how these 

whole-shoot levels manifested in the relevant apoplastic compartment, it is conceivable that stomatal 

effects of metabolites might contribute to the biomass phenotypes.  
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There is also evidence that carboxylates, particularly citrate, can influence the Arabidopsis leaf 

transcriptome via unknown signaling pathways (Finkemeier et al. 2013). The lack of correlation with 

biomass suggested citrate was not a determinant of the SA chilling phenotypes. Potentially more 

relevant to the present study was the finding of Finkemeier et al. (2013) that malate treatment had 

effects on the transcriptome. 

Whereas previous studies reported a negative biomass-correlation for sucrose, we found the 

opposite. This difference may have been related to the chilling conditions in our study, given the roles 

of sucrose in low temperature physiology (Rekarte-Cowie et al. 2008). 

Our most distinctive finding, however, was the strong positive biomass-correlation of fumarate. 

Other studies found negative or non-significant biomass-correlation for fumarate (Cross et al. 2006, 

Meyer et al. 2007, Sulpice et al. 2013, Sulpice et al. 2009). Given the precursor/product relations of 

malate and fumarate, their pronounced opposite variation between the SA chilling phenotypes 

suggested a single causal enzyme. Several potentially relevant transcripts were therefore examined.  

The positive biomass-correlation of 0.84 for transcripts of the cytosolic fumarase FUM2 matched 

that of fumarate (0.90), its proposed product, and was the reverse of malate (-0.83), its proposed 

substrate. There were evident parallels in the characterization of FUM2 by Pracharoenwattana et al. 

(2010): in fum2 mutants, they found ten-fold less fumarate, but twice as much malate compared to the 

wild-type. Further evidence for the importance of FUM2 is that At5g50950 mapped within the sole 

quantitative trait locus for fumarate content identified in Arabidopsis by Lisec et al. (2008).  

While transcript abundance does not necessarily reflect enzyme activity, the FUM2 pattern we 

observed was distinct from other transcripts quantified. We found no comparable evidence, for causal 

roles in the variations in malate and fumarate, either for the FUM1 mitochondrial fumarase, or for 

SDH, the mitochondrial fumarate source. Transcriptome evidence to compare the two fumarases of 

Arabidopsis was not available, as FUM2 and FUM1 are detected by the same microarray probe (e.g., 

‘248461_s_at’ on the Affymetrix ATH1 GeneChip).  

Pracharoenwattana et al. (2010) found a fumarate-related effect on biomass in high-nitrogen 

conditions, where fum2 mutants grew abnormally slowly. High-nitrogen treatment increased fumarate 

several-fold in wild-type but not fum2 leaves, while malate increased to a greater extent in fum2 

mutants. Moreover, nitrogen limitation has been found to reduce the fumarate:malate ratio in wild-

type Arabidopsis (Kant et al. 2008, Tschoep et al. 2009). Pracharoenwattana et al. (2010) suggested 

fumarate’s greater acidity, and involvement in fewer metabolic processes, than malate might be 

advantages for a function in balancing proton consumption during nitrate reduction. Fumarate 

accumulation via FUM2 activity was thereby proposed to promote growth by facilitating nitrogen 

assimilation. If nitrogen assimilation were a factor in the differential growth of SA mutants at 5C, the 

higher glutamine levels in the low-biomass cpr1 mutants would not be inconsistent with observations 

on Arabidopsis in sustained nitrogen-limitation (Tschoep et al. 2009).  



                                                                                                                                                  16  

Evidence supports a role for fumarate as an alternative transient carbon store to starch. Fumarate-

deficient fum2 leaves accumulated twice as much starch as wild-type (Pracharoenwattana et al. 2010), 

while starchless pgm mutants accumulated excess fumarate (Chia et al. 2000). In wild-type 

Arabidopsis, respiratory quotients indicated a shift to organic acid substrates by night end, which was 

seen in short days from the low-biomass, carbon-starvation phenotype of plants unable to accumulate 

fumarate or malate due to a maize NADP-malic enzyme transgene (Zell et al. 2010).  

Schulze et al. (2012) found cold acclimation in Arabidopsis led to higher vacuolar concentrations 

of fumarate and malate, with increased abundance of the tonoplast dicarboxylate transporter AtTDT. 

We did not, however, find relevant variation in AtTDT transcripts between SA mutants at 5C.  

Another transcript that did not vary significantly between genotypes was AtNAD-ME2. 

Arabidopsis mutants lacking mitochondrial NAD-malic enzyme activity have reduced fumarate levels, 

though on the other hand no effects on growth were observed (Tronconi et al. 2008).  

Several transcripts showed negative biomass-correlation, due primarily to higher expression in 

the stunted, high-malate cpr1 phenotype. One was a phosphoenolpyruvate carboxylase (AtPPC1), 

which might have contributed to cytosolic malate production, subject to the multiple metabolic 

controls of this enzyme (Gregory et al. 2009).  

The negative biomass-correlation of SDH1-1 transcripts was not consistent with SDH being 

directly responsible for the opposite trend in its fumarate product. It has been observed in Arabidopsis 

(Fuentes et al. 2011) and tomato (Araújo et al. 2011) that genetic impairment of SDH resulted in 

increased biomass. Evidence in tomato suggested this was mediated by the effects of apoplastic malate 

and fumarate on stomatal aperture (Araújo et al. 2011).  

Given the strong profile of fumarate in our metabolic phenotypes, we investigated the 

mitochondrial carrier SFC1, which exchanges fumarate for succinate (Catoni et al. 2003). 

Developmental expression of SFC1 has suggested a role in import of succinate produced outside the 

mitochondrion (Catoni et al. 2003). Generally, SFC1 was less highly expressed than the other 

transcripts analyzed, but a negative biomass-correlation, with higher expression in the stunted cpr1 

phenotype, was again observed.  

Negative biomass-correlation was also seen for transcripts of DIC1, a mitochondrial 

dicarboxylate carrier (Palmieri et al. 2008). DIC1 substrates include malate and oxaloacetate, making 

it a mitochondrion/cytosol ‘redox shuttle’ candidate. It may also be involved in mitochondrial import 

of dicarboxylic acids as respiratory substrates, though not fumarate (Palmieri et al. 2008).  

DIC1 expression was high and variable, in accordance with its reported strong regulation in 

mitochondrial stress (Palmieri et al. 2011, Van Aken et al. 2009). The broad stress responses of this 

and other mitochondrial carriers suggest increased exchange of substrates under stress (Van Aken et 

al. 2009). The extremely high salicylate levels in cpr1 mutants at 5C (Scott et al. 2004) might 

provoke a mitochondrial stress response. The roles of SA as a stress signal (Rivas-San Vicente and 

Plasencia 2011) include induction of the mitochondrial alternative oxidase pathway (Norman et al. 
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2004). Moreover, at sufficient concentrations, SA might act as a mitochondrial stress factor in its own 

right, via uncoupling of respiration and inhibition of electron transport from SDH to the ubiquinone 

pool (Norman et al. 2004). Direct evidence of stress, as oxidative damage, has been described in the 

cpr1 chilling phenotype (Scott et al. 2004).  

In conclusion, identifiable metabolic phenotypes were found to characterize the abnormal 

morphologies of SA mutants under chilling. This was established using metabolomic models that 

could predict shoot biomass. Such models are, of course, correlative and do not identify underlying 

mechanisms. Different metabolomic techniques (Scott et al. 2010) would, moreover, undoubtedly 

characterize further metabolites showing biomass-related variation in this system. Nonetheless, the 

power of NMR fingerprint-modeling to guide future research was evident in its vivid demonstration of 

the importance of fumarate in Arabidopsis physiology.  
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Appendix S1. NMR data for experiments A-G.



                                                                                                                                                  24  

 

Table 1. Plant growth conditions for metabolomics experiments. Incubation period was from mean 

growth stage 1.04 (when seedlings were transferred to 5ºC, or kept at 23ºC), until harvest at mean 

growth stage 5.10 (coincident for all genotypes at 5C except the infertile cpr1 mutants). Experiment 

G was harvested at growth stage 6.00-6.10. 

Experiment Temperature Light (mol m
-2

 s
-1

) Incubation (d) 

A 5ºC 100 82 

B  55 42 

C  25 100 

D  25 98 

E 23ºC 55 22 

F  25 31 

G  25 50 
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Table 2. Metabolite quantifications in relation to biomass and genotype. Correlations of 

metabolite content and log10(biomass) shown as Pearson coefficients (r) for 5C experiments 

(asterisks: minimum significance among experiments A-D). Metabolite contents: asterisks 

denote significant difference from Col-0 (in Kruskal-Wallis and Bonferroni-corrected Mann-

Whitney tests on pooled data of all experiments at stated temperature). ***P < 0.001; 

**P < 0.01; *P < 0.05. 

 Fumarate Sucrose Malate Glutamine 

 Mean r log10(biomass) at 5C  SD (n = 4, experiments A-D) 

  0.90  0.05***  0.71  0.19* -0.83  0.21*** -0.91  0.11*** 

Genotype Mean contents (mg g
 - 1

 DW) at 5C  SD (n = 4, experiments A-D) 

NahG  0.95  0.09***  0.65  0.12  1.18  0.27***  0.31  0.06* 

eds5  0.97  0.03***  0.74  0.11**  1.36  0.27***  0.33  0.06* 

sid2  0.95  0.06***  0.70  0.08**  1.40  0.44*  0.33  0.09 

Col-0  0.45  0.29  0.61  0.10  1.77  0.43  0.36  0.09 

cpr1  0.07  0.02***  0.45  0.14***  2.57  0.25***  0.68  0.15*** 

 
Mean contents (mg g

 - 1
 DW) at 23C  SD (n = 3, experiments E-G) 

NahG  0.62  0.22  0.16  0.02  0.50  0.06  0.17  0.03 

Col-0  0.49  0.14  0.15  0.01  0.50  0.01  0.16  0.03 
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Figure legends 

Fig. 1.  Morphological chilling-phenotypes. (a) SA over-accumulator (cpr1) and SA-deficient (sid2, 

eds5, NahG) mutants, with Col-0, after 60 d at 5ºC in 55 mol m
-2

 s
-1

. Bar: 1 cm. (b) Mean biomass of 

shoot vegetative tissues relative to Col-0 in light (mol m
-2

 s
-1

) and temperatures indicated. Symbols: 

5C, colored (100 mol m
-2

 s
-1

, blue; 55 mol m
-2

 s
-1

, green; 25 mol m
-2

 s
-1

, red); 23C, black and 

white (55 mol m
-2

 s
-1

, large; 25 mol m
-2

 s
-1

, small); Col-0, filled circles; NahG, open circles; eds5, 

triangles; sid2, squares; cpr1, crosses. Bars: ± SE (n = 10). Data from experiments A, B, C, E, F 

(Table 1). Asterisks: significant difference from Col-0 (Kruskal-Wallis and Bonferroni-corrected 

Mann-Whitney tests): ***P < 0.001; *P < 0.05.  

Fig. 2.  Effects of temperature and genotype on metabolic phenotypes revealed by 
1
H-NMR. Spectra 

are mean (n  9) fingerprints (binned to 0.01 ppm) of 23 or 5ºC shoots (experiments B and E). Spectral 

intensities scaled to d4-TSP internal standard (0.0). Colored labels: significant associations with 5ºC 

phenotype in ANOVA (higher in greater-biomass phenotypes, blue; higher in low-biomass 

phenotypes, red), among 100 strongest signals. (a) Col-0 at 23ºC. (b) SA-deficient mutants (sid2, eds5, 

NahG) at 5ºC. F values compare fingerprints of these mutants with Col-0 in experiments A-D. (c) Col-

0 at 5ºC. (d) cpr1 at 5ºC. F values compare cpr1 and Col-0 fingerprints in experiments A-D. 

Bonferroni-corrected significances: ***P < 10
-5

; **P < 10
-4

; *P < 510
-4

. Ala, alanine; Glc, glucose; 

Gln, glutamine; Glu, glutamate; Ile, isoleucine; Leu, leucine; Pro, proline; Suc, sucrose; Thr, 

threonine; Val, valine. Experiment conditions are in Table 1.  

Fig. 3.  PCA of genotype and environment effects on metabolic phenotypes. (a) Scores of first two 

PCs for NMR fingerprints of shoots grown at 5ºC in 100 (blue), 55 (green) or 25 (red) mol m
-2

 s
-1

, or 

at 23ºC in 55 (black and white, large symbols) or 25 (black and white, small symbols) mol m
-2

 s
-1

. 

Variance accounted for by PCs is on axis labels. (b) PC[1] loadings (arrows: directions separating 

23ºC and 5ºC plants). (c) PC[2] loadings (arrow: direction of higher biomass). Glc, glucose; Gln, 

glutamine; Glu, glutamate; Pro, proline; Suc, sucrose. Data from experiments A, B, C, E, and F. See 

Fig. 1b for relative biomass of shoots. 

Fig. 4.  Biomass-correlated models of metabolic phenotypes. (a) Correlation between biomass, at 

mean growth stage 5.10, and PC[2] scores (30% of variance) from PCA of fingerprints from 

experiments A-G. Abscissa shows shoot DW transformed to log10, without any normalization between 

experiments. (b) Cross-experiment predictions of 5ºC biomass by PLS-regression. A PLS model (two 

components) was built on fingerprints from experiment D, and its predictions of biomass rankings in 

each of experiments A-C plotted against actual data. Ranks are descending and normalized by number 

of samples in experiment (largest shoots = 1.0). (c) Cross-genotype predictions of 5ºC biomass by 

PLS-regression. Each genotype in each of experiments A-D was held out in turn, and its biomass data 
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predicted by models of the other four genotypes. The plot of predicted and actual relative biomass 

(largest shoots = 1.0) for all genotypes and experiments derives from 20 models. Key: 100 (blue), 55 

(green) or 25 (red) mol m
-2

 s
-1

 at 5ºC; or 55 (black and white, large symbols) or 25 (black and white, 

small symbols) mol m
-2

 s
-1

 at 23ºC. r, Pearson coefficients (***P < 10
-32

); when PLS models were 

recalculated with randomized biomass data, r values were < 0.1 (P > 0.3).  

Fig. 5.  Coefficients of PLS-regression model of biomass built on NMR fingerprints from 5ºC 

experiment D. Arrow: higher biomass. Glc, glucose; Gln, glutamine; Suc, sucrose. See Figure 4b for 

predictions by this model.  

Fig. 6.  Mean relative abundances of transcripts in Col-0, SA-deficient (NahG, sid2), and SA over-

accumulator (cpr1) shoots, after 62 d at 5ºC. Values (arbitrary units) were normalized using geometric 

means of two endogenous reference genes (EF-1α, PP2A3). Error bars show  SE (n = 4 shoots), with 

asterisks for significant difference to Col-0 (one-way ANOVA with Tukey tests). Pearson coefficients 

(r): correlation of transcript abundance with log10(biomass) of shoots, with asterisks indicating 

significance. ***P < 0.001; **P < 0.01; *P < 0.05. 
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