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Commentary

Every genome sequence needs a good map
Harris A. Lewin,1,2,4 Denis M. Larkin,1 Joan Pontius,3 and Stephen J. O’Brien3

1Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA; 2Institute for Genomic

Biology, University of Illinois at Urbana-Champaign, Urbana, Ilinois 61801, USA; 3Laboratory of Genomic Diversity, National Cancer

Institute, Frederick, Maryland 21702, USA

High-resolution physical maps of vertebrate species’ chromosomes

empower comparative genomics discovery and are indispensable

for sequence assembly precision. Beginning in 2003, the NIH–

NHGRI launched an initiative that designated 24 species of mam-

mals for low-coverage whole-genome sequencing in order to pro-

vide evolutionary context to human genome annotation (Green

2007) (http://www.genome.gov/25521745). Four principal goals

were anticipated for the bold sequencing initiative: (1) to discover

evolutionarily conserved sequence motifs, particularly outside of

protein-coding genes, which are responsible for regulatory and

other critical genomic functions; (2) to provide a framework for

reconstruction of genome organization, content, and dynamics

that have occurred during the mammalian radiations; (3) to em-

power new models of human disease and heritable phenotypes;

and (4) to provide a starting point for assessment of the expansion,

contraction, and adaptation of gene families in different evolu-

tionary lineages.

Although the new mammal sequences have been eagerly

anticipated, it is now becoming evident that draft and even ‘‘fin-

ished’’ genome sequence of evolutionarily divergent species by

themselves can fail to provide sufficient granularity for confident

comparison of genome organization and structure to fulfill goals

2–4 listed above. We suggest here to look ‘‘back to the future’’ in

developing high-resolution chromosome-based physical maps as

an essential and cost-effective framework for the annotation and

evolutionary analysis of mammalian and other vertebrate ge-

nomes. Independent physical maps in concert with draft or com-

plete sequence assemblies will greatly empower the precise view of

comparative genome organization by facilitating the correct or-

dering of genic and nongenic DNA segments on chromosomes for

whole-genome alignments. Accurate comparative physical maps

enable discovery of conserved chromosome segments and evolu-

tionary breakpoint regions (EBRs) that are useful for reconstructing

the origins of mammalian genomes and the evolutionary forces

that molded them (Murphy et al. 2005a; Larkin et al. 2009).

Genetic maps have formed the bedrock of genetic analysis

since Sturtevant, Bridges, and their peers conjured the first gene

maps nearly a century ago. More recently, linkage, radiation hybrid

(RH), bacterial artificial chromosome (BAC), and/or ZOOFISH

maps of human, macaque, mouse, rat, dog, cat, horse, opossum,

and cattle anchored the genome sequence assemblies for those

species (Table 1). Because current methods of DNA sequence as-

sembly produce ‘‘contigs’’ and scaffolds of limited length, leaving

scores, or in some cases, thousands of sequence gaps, a high-

quality map of densely spaced markers is invaluable for affirming

the correct placement of scaffolds on the chromosomes and for

‘‘proofing’’ the order of markers within the assemblies. Unplaced

or misplaced scaffolds, plus improperly ordered markers within

scaffolds, result in errors in comparative genome analysis by in-

troducing heretical evolutionary breakages where none exist.

The conundrum is illustrated in the assembly of the platypus

genome, which was compiled with no map or related species’

reference sequence (O’Brien 2008; Warren et al. 2008). The platy-

pus is a fascinating species for comparative evolutionary inference

because its monotreme order serves as a ‘‘missing link’’ between

two of the major dominating groups in the history of life on

earth—the reptiles (345–363 million years ago [Mya]) and mam-

mals (230 Mya–present). Nonetheless, and in part due to its distant

evolutionary roots, the sequence assembly and comparative anal-

ysis of the platypus genome presented a huge challenge. Although

sequenced to approximately sixfold coverage using a combination

of whole-genome shotgun (WGS) and BAC sequencing, only 409.4

Mbp (22.2%) out of 1.84 Gbp of the sequence assembly (or 17.4%

of 2.3 Gbp whole genome) could be ordered on the 20 platypus

chromosomes, and then only by the assistance of 279 markers

mapped by fluorescence in situ hybridization. Thus, while pro-

ducing valuable new information and insights into early mam-

malian evolution, a detailed genomic architecture of the platypus

genome suitable for comparison to other mammalian genomes

remains hidden.

Recently, three species whose genome assemblies benefited

appreciably from a framework RH map are the dog (Lindblad-Toh

et al. 2005), cat (Pontius et al. 2007), and cattle (The Bovine

Genome Sequencing and Analysis Consortium 2009). The cat ge-

nome, sequenced 1.9-fold, initially covered 65% of the total ge-

nome and contained 217,790 unconnected scaffolds and as many

sequence gaps (Pontius et al. 2007). A multistep ‘‘assisted’’ assem-

bly first mapped 1680 ordered RH markers to scaffolds and then

placed ‘‘reciprocal best match’’ sequences between RH markers in

the order their homologous counterparts occurred in human

and dog genome maps. The strategy ‘‘humanized’’ or ‘‘canineized’’

the intervals between the cat RH markers for certain; however, the

intervals between RH markers were likely accurate over 90% of the

time, yielding useful insight from ;23 sequence as determined by

comparison to ‘‘finished’’ cat sequence of MHC, ENCODE, and

selected gene regions (Yuhki et al. 2003; The ENCODE Project

Consortium 2004; Fyfe et al. 2006; Menotti-Raymond et al. 2007;

Murphy et al. 2007; Pontius et al. 2007). The combined 23 cat draft

sequence, RH framework map, and the assisted assembly strategy

were sufficient to allow informative, if preliminary, whole-genome

assessment of chromosome breakpoint exchanges between cat and

six other ‘‘finished’’ mammal genome sequences, leading to im-

portant insights on the rates of inter- and intrachromosomal

rearrangements among the different mammalian lineages.

The cattle genome assembly (Btau4.0) utilized high-quality

integrated RH and BAC physical maps consisting of >3000

markers, 2759 BAC-end sequences, and >240,000 fingerprinted

BAC clones (Everts-van der Wind et al. 2005; Snelling et al. 2007;

The Bovine Genome Sequencing and Analysis Consortium 2009).
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The final assembly covered 90.3% of the genome with a >95%

consistency of marker order among all data sources. The remaining

11% of the genome not assigned to any chromosome consists

mostly of difficult to assemble repetitive sequences and segmental

duplications. The high-quality physical map of the cattle genome

enabled detailed multispecies comparisons of chromosome orga-

nization that led to novel discoveries of ancient chromosome

rearrangements and the sequence features of EBRs (The Bovine

Genome Sequencing and Analysis Consortium 2009). For exam-

ple, the four ferungulate-specific EBRs identified on BTA16 oc-

curred before the divergence of Artiodactyla and Carnivora, but the

human genome retains the Boreoeutherian ancestral form. The

analysis of cattle-, artiodactyl-, and ferungulate-specific EBRs

revealed significantly higher densities of LINE-L1 and other repeat

families than in other parts of the genome, but lower densities of

SINE-BovA repeats, providing support for the hypothesis that re-

peat elements promote chromosome rearrangements, and that

older repeats (such as SINE-BovA) are disrupted by the insertion of

more recent repetitive elements. In addition, segmental duplica-

tions larger than 10 kb were found at >10-fold higher density in

cattle-specific EBRs than in other regions of the genome, consistent

with previous findings for segmental duplications in the human

genome (Murphy et al. 2005a). Finally, the cattle-specific EBRs were

found to contain genes (often duplicated) with functions related to

ruminant-specific and adaptive phenotypes, providing further

support for the hypothesis that mammalian chromosome rear-

rangements may be adaptive (Larkin et al. 2009).

The value of high-resolution (#1 Mbp) physical maps for

studies of chromosome evolution has been illustrated in the above

and other multispecies map-anchored whole-genome sequence

comparisons (Table 2). These studies identified and compared the

orders of thousands of syntenic segments using computational

routines that define and visualize precise chromosome coordinates

of EBRs and homologous synteny blocks (HSBs). Multispecies ge-

nome comparisons have already produced provocative observa-

tions about evolutionary genome dynamics (Pevzner and Tesler

2003; Bailey et al. 2004; Everts-van der Wind et al. 2005; Murphy

et al. 2005a; Ma et al. 2006; The Bovine Genome Sequencing and

Analysis Consortium 2009; Larkin et al. 2009) including: (1) fre-

quent reuse of certain EBRs in different mammal lineages; (2)

concordance of EBR and diagnostic chromosome breakpoints in

human cancers; (3) selection signatures for large HSBs shared

among multiple mammals and the chicken (some as great as 23

Mbp in length); (4) gene density enrichment within EBRs; (5)

clustering of segmental duplication around EBRs in primates and

artiodactyls, raising the prospect that copy number variation ac-

tually precipitates chromosome exchange; (6) 20-fold difference in

rates of chromosome rearrangements in different epochs and

mammal lineages; and (7) a remarkable balance between intra-

chromosomal and interchromosomal exchanges in different line-

ages, as if species with few translocations relative to ancestral

mammals display more inversions and vice versa (see Table 2).

These studies clearly demonstrate that contiguous and accurate

chromosome sequence assemblies are necessary to gain a more

complete understanding of the mechanisms of genome evolution.

Without map-assisted chromosome assemblies, the revealing sen-

tinels and consequences of chromosome rearrangements, such as

those described above, will remain undiscovered.

Table 1. Coverage of available whole-genome sequences and physical/linkage maps used as anchors for mammalian genome assemblies

Species
Genome size

(;Gbp)

Coveragea Physical map

Total
coverage
(;Gbp)

Placed on
chromosomes

(Gbp)
Unplaced

(Mbp)

Total sequence
mapped

(%)
Fold

coverage Type No. of markers (citations)

Human 2.8 2.85 2.83 12.7 99.6 8–12 FM 25,241 (International Human
Genome Sequencing
Consortium 2001)

FISH/RH/LM 942 (International Human
Genome Sequencing
Consortium 2001)

Chimpanzee 3.1 2.85 2.69 156.1 94.5 4.3 n.a. n.a. (The Chimpanzee
Sequencing and Analysis
Consortium 2005)

Macaque 3.1 2.87 2.65 224.7 92.2 5.2 RH 802 (Murphy et al. 2005b)
LM 241 (Rogers et al. 2006)

Mouse 2.6 2.62 2.56 62.1 97.6 7.0 RH 11,109 (Hudson et al. 2001)
LM 7377 (Dietrich et al. 1996)

Rat 2.7 2.81 2.71 107.3 96.1 7.0 RH 24,000 (Kwitek et al. 2004)
Horse 2.7 2.43 2.34 93.3 95.1 8.0 RH 4103 (Raudsepp et al. 2008)
Dog 2.4 2.38 2.31 75.1 96.8 7.5 RH 1800 (Breen et al. 2001)

FISH 4249 (Breen et al. 2004)
Cat 2.5 1.64 1.36 283.1 82.7 1.9 RH,LM 1680 (Pontius et al. 2007)
Cattle 2.8 2.73 2.47 264.8 90.3 7.0 RH 3484 (Everts-van der Wind

et al. 2005)
FM 290,797 (Snelling et al. 2007)

Opossum 3.5 3.50 3.41 89.0 97.5 6.8 LM 220 (Mikkelsen et al. 2007)
FISH 384 (Mikkelsen et al. 2007)

Platypus 2.3 1.84 0.41 1432 22.2 6.0 FISH 279 (Warren et al. 2008)

(n.a.) Not available; (RH) radiation hybrid map; (LM) linkage map; (FISH) fluorescence in situ hybridization map; (FM) fingerprint map.
aTotal sequence coverage ‘‘Placed on chromosomes’’ and ‘‘Unplaced’’ were calculated as the sum of the contig lengths that were assigned to specific loci
on chromosomes and those that had an ambiguous position or were unassigned to a chromosome, respectively. For the calculations, the most recent
sequence assemblies available for the species were used: human, NCBI build 36; chimpanzee, build 2.1; macaque, Mmul_051212; mouse, NCBI build 37;
rat, NCBI build 4; horse, Equus2; dog, canFam2; cat, catChrV12; cattle, Btau4.0; opossum, MonDom5; platypus, build 5.0.1.
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Comparative genomics is now being enhanced by direct

comparison of sequences for defining coordinates of chromosome

exchange, offering considerable promise for an even more detailed

understanding of the forces driving chromosome evolution (Ma

et al. 2006). However, sequence-only approaches are restricted to

mammalian species with very deep or map-assisted coverage, be-

cause the average size of the contigs is relatively short and in-

sufficient to span the vast majority of EBRs, typically complex

regions containing segmental duplications, deletions, large gene

families, and complex repeats (Murphy et al. 2005a; The Bovine

Genome Sequence and Anlaysis Consortium 2009; Larkin et al.

2009). The precise definition of EBR coordinates obtained from

marker-dense comparative maps and high-coverage genome se-

quence is thus essential for a detailed view of the role of chromo-

some rearrangements in evolutionary processes of divergence,

adaptation, and speciation (Larkin et al. 2009).

The current ‘‘next generation’’ sequencing technologies (454

Life Sciences [Roche]; Illumina Genome Analyzer, Applied Bio-

systems SOLiD System, and others) hold much promise in both

sequence throughput and in cost-effectiveness, and are already

being applied by sequencing centers to human resequencing pro-

jects as well as certain NHGRI-sponsored mammal species sequences

‘‘top-up’’ (http://www.genome.gov/). The current generation of

short-read sequencing technologies will not solve the problem of

obtaining reliable ordering of scaffolds on chromosomes or com-

plete chromosome assemblies necessary for detailed comparative

evolutionary studies of genome organization. This is because of the

abundance of repetitive sequences, large gene families, and exten-

sive segmental duplications that greatly complicate assemblies, but

are tractable problems for physical mapping methods. For de novo

assemblies without a guiding physical map it will take a read length

>300 bp and more than 22-fold genome coverage to close enough

assembly gaps to obtain a reliable global ordering of sequence scaf-

folds on the chromosomes (Sundquist et al. 2007). The sequence

platform dynamic re-emphasizes the requirement for parallel

physical maps for genome assembly and analyses, particularly in

species that are evolutionarily divergent from those that have been

assembled and have good physical maps. The transition to even

higher throughput sequencing technologies with longer reads may

solve the problem in the not-too-distant future, but in the interim,

physical maps offer a well-tested resource for a deep analysis of ge-

nome architecture and evolutionary history.

New genomic technologies have also made the prospect of

physical map development, particularly RH maps, faster, denser,

and cheaper (McKay et al. 2007). For the 24 NHGRI-nominated

species, the draft WGS itself is invaluable for selecting evenly

spaced framework markers that are distinct from the RH partner

species (typically Chinese hamster ovary cells). We estimate that it

is now possible to produce the data for a 1-Mbp resolution RH map

for less than $100,000US plus labor in under 6 mo using a custom

3000–5000 marker genotyping array. Building a physical map for

a representative of each mammalian order (or even for each family)

would be a critical and cost-effective approach for advancing com-

parative and evolutionary biology and maximizing the investments

in whole-genome sequencing. Thus, a timely investment in methods

for even more rapid and inexpensive physical map development

may have an enormous impact on comparative genomics.

With less expensive and faster sequencing technologies on

the horizon, the original goals of large-scale DNA sequencing

programs will soon enjoy thousands of species’ genomes se-

quenced to draft coverage. The existing and envisioned programs

all emphasize the importance of understanding how genomes

evolve and how changes in genome organization may lead to the

phenotypic and adaptive changes that permitted complex cellular

life to emerge and flourish. As global explorers of the world’s

continents were the first to draw maps that guided human un-

derstanding of geography, genome sequencing of new species that

is complemented by dense physical maps will chart the course of

genomic interpretation.
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