
Aberystwyth University

Alfven Instability in coronal loops with siphon flows
Taroyan, Youra

Published in:
Astrophysical Journal

DOI:
10.1088/0004-637X/694/1/69

Publication date:
2009

Citation for published version (APA):
Taroyan, Y. (2009). Alfven Instability in coronal loops with siphon flows. Astrophysical Journal, 694(1), 69-75.
https://doi.org/10.1088/0004-637X/694/1/69

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 09. Jul. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/326662421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1088/0004-637X/694/1/69
https://doi.org/10.1088/0004-637X/694/1/69


The Astrophysical Journal, 694:69–75, 2009 March 20 doi:10.1088/0004-637X/694/1/69
C© 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A.
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ABSTRACT

A new magnetohydrodynamic (MHD) instability in coronal loops is presented. It is demonstrated that small-
amplitude torsional Alfvénic disturbances generated by random photospheric motions are inevitably amplified in
asymmetrically stratified loops with siphon flows. The loop asymmetry and the flow speeds can be arbitrarily
small. The growth rates linked with the instability increase with increasing flow speeds. The instability is caused
by over-reflection of Alfvén waves at the transition region where steep variations in density exist.
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1. INTRODUCTION

Plasma flows are a common feature of various solar coronal
structures and may have important dynamic and energetic im-
plications. Despite the great difficulties associated with accurate
flow measurements, many attempts have been made to analyze
data obtained from different instruments (Cushman & Rense
1976; Rottman et al. 1982; Mariska & Dowdy 1992; Neupert
et al. 1992; Brekke et al. 1997). Co-aligned Transition Re-
gion and Coronal Explorer (TRACE) and Solar Ultraviolet
Measurement of Emitted Radiation (SUMER) observations by
Winebarger et al. (2002) revealed steady line-of-sight flows
of up to 40 km s−1 in active region loops which appear
static in TRACE images. Doyle et al. (2006) carried out sim-
ilar co-aligned observations to detect transient flows of up to
120 km s−1 in cool loops. Recently, attempts have been made
to analyze flow patterns in loop structures using the EUV Imag-
ing Spectrometer (EIS) instrument onboard the new Hinode
satellite (Doschek et al. 2007; Del Zanna 2008; Hara et al.
2008).

Various aspects of subsonic and supersonic unidirectional
steady flows in coronal loops have been studied by employ-
ing one-dimensional loop models. Such models are described
by the set of hydrodynamic equations along the loop coordi-
nate. Motions in other directions are ignored. Solutions with
subsonic speeds throughout the loop are often called siphon
flow solutions. Siphon flows in coronal loops can be driven
by various mechanisms such as overpressure at one footpoint,
asymmetric heating or asymmetric loop cross sections (Cargill
& Priest 1980; Mariska & Boris 1983; Craig & McClymont
1986; Thomas 1988; Orlando et al. 1995).

Coronal loops in active regions observed with TRACE and
EIT show enhanced densities, enhanced pressure scale heights,
and flat filter ratio profiles in comparison with the predictions of
static-equilibrium theory (Aschwanden et al. 2000). Patsourakos
et al. (2004) and Petrie (2006) argued that the observed features
could not be reproduced by one-dimensional loop models with
steady siphon flows.

Recent observations with CoMP and Hinode/Solar Optical
Telescope (Hinode/SOT) indicate the presence of transverse
Alfvén waves in various solar atmospheric structures from chro-
mospheric spicules to prominences and X-ray jets (Tomczyk
et al. 2007; Cirtain et al. 2007; De Pontieu et al. 2007; Okamoto
et al. 2007). The nature of the detected waves has been debated

(Erdélyi & Fedun 2007; Terradas et al. 2008; Van Doorsselaere
et al. 2008). Transverse waves with flows in coronal loops were
reported by Ofman & Wang (2008).

Torsional Alfvén waves have been studied in static structures
both in the context of coronal heating (Hollweg et al. 1982;
Kudoh & Shibata 1999; Moriyasu et al. 2004; Antolin et al.
2008) and coronal seismology (Ofman 2002; Gruszecki et al.
2007; Zaqarashvili & Murawski 2007). It has been proposed
that the energy required to maintain the loops at high coronal
temperatures is supplied by large amplitude Alfvén waves which
are nonlinearly converted into slow and fast MHD waves. These
waves subsequently steepen into shocks and dissipate. The
process is most efficient when the base-to-apex expansion of the
loop cross-sectional area is large. Other possible mechanisms
of heat deposition include resonant absorption (Ionson 1978;
see also De Groof et al. 2002; De Groof & Goossens 2002)
and phase mixing (Heyvaerts & Priest 1983). Alfvén waves
are launched into the corona either monochromatically (Belien
et al. 1999) or by a random driver (Moriyasu et al. 2004) from
photospheric/chromopheric heights. In both cases, the average
amplitude of the driver needs to be larger than 1 km s−1 in
order to balance the losses. It has been estimated that such
large amplitude Alfvén waves are unlikely to be generated at
photospheric heights (Parker 1991).

The present paper presents a previously unknown mechanism
for the amplification of torsional Alfvén waves in coronal loops
which does not require large amplitude drivers at the footpoints
of the loops. Also no large area expansion factors are needed.
The energy required for wave amplification is extracted from
the mass flow and is proportional to its speed. The mechanism
is based on a new linear MHD instability which we call the
Alfvén instability. Among other well-known instabilities in ideal
MHD are the sausage and kink instabilities. Such instabilities are
important as they modify the large-scale structure and dynamics
of the plasma. The Alfvén instability does not require the mass
flow to have a shear which makes it different from the well-
known shear flow instabilities. A necessary condition for the
existence of the Alfvén instability is the presence of a magnetic
field permeated by a compressible flow.

2. MODEL AND GOVERNING EQUATIONS

Figure 1 represents the model. A coronal loop shown at the
top is straightened and divided into three regions: the ± regions
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Figure 1. Coronal loop permeated by a siphon flow (top) is straightened and
divided into three regions (bottom): the ± regions with lengths l± representing
the lower photosphere/chromosphere environment and the coronal part of the
loop stretching from s = 0 to s = L, where s is the coordinate along the
magnetic field. Torsional Alfvénic disturbances driven by convective motions
of the footpoints travel through the loop along the field lines.

(A color version of this figure is available in the online journal.)

representing the dense photosphere/chromosphere environment
and the middle region representing the corona. The magnetic
field is uniform with a constant magnitude of B0 in all the three
regions. The coordinate along the field lines is denoted by s.
There is a steady siphon flow along the loop from one footpoint
to the other. Arbitrary torsional Alfvénic disturbances with small
amplitudes are launched at the loop footpoints by convection.
The subsequent evolution of these disturbances along the entire
loop is governed by the azimuthal components of the linearized
MHD equations of motion and induction:

ρ0
∂v

∂t
+ ρ0u0
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∂b
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,
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, (1)

where u0, ρ0 denote the equilibrium flow speed and density, and
v, b are the perturbations of the azimuthal velocity and magnetic
field. Using the equation of mass continuity, ρ0u0 = const, we
reduce the set of Equations (1) into a single second-order partial
differential equation for the variable b:
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where the Alfvén speed cA(s) = B0/(μ0ρ0(s))1/2 has been
introduced. It is assumed that the flow speed is sub-Alfvénic
throughout the loop. The variables v, b are set proportional to
exp(−iωt):

v = ṽ exp(−iωt), b = b̃ exp(−iωt), (3)

where ω is the frequency. For simplicity, the tildes will be omit-
ted in the forthcoming analysis. The substitution of Equation
(3) for b transforms Equation (2) into

(
u
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j

A

2
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− 2iωu

j

0

db

ds
− ω2b = 0, (4)

where the superscript symbol j indicates the corresponding
equilibrium quantity in either of the three regions shown in
Figure 1: j = − for −l− < s < 0, j = c (corona) for
0 < s < L and j = + for L < s < L + l+. The solution
of Equation (4) in each region j is given by the formula

b = Aj exp
iωs

u
j

0 + c
j

A

+ Bj exp
iωs

u
j

0 − c
j

A

, (5)

where the first/second term represents the wave component
propagating toward the right/left footpoint. The governing
equation cast in the form of Equation (2) enables us to connect
Solutions (5) across the interfaces s = 0, L. First, the magnetic
field perturbation b must be continuous. The second connection
formula follows from Equation (2) and the continuity of b. Thus,
we have

{b} = 0,

{(
u2

0 − c2
A

)db

ds
− 2iωu0b

}
= 0, (6)

where the braces denote the jump of the enclosed quantity across
an interface.

An apparent physical interpretation of Equations (6) can be
given by introducing the wave energy flux as

S = e × b, (7)

where e = −v × B0 − u0 × b is the electric field perturbation.
By making use of Lagrange’s formula for triple vector products
and expressing the variable v in terms of b, we can express the
nonvanishing s component of the Poynting vector (7) in the form

S = 2u
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0b
2 − 1

iω

(
u

j

0

2 − c
j

A

2
)

b
db

ds
. (8)

Equations (6) therefore express the continuity of the energy
density and the energy flux associated with the Alfvén waves.

The coefficients Aj , Bj are to be determined from the
boundary conditions at the footpoints s = −l−, L + l+ and
from the connection formulae (6) at s = 0, L. The resulting set
of six algebraic equations can be written in the following matrix
form:

AX = I, (9)

where the vectors X and I are given by
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⎛
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0
0
0
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⎞
⎟⎟⎟⎟⎟⎠

, (10)

and the matrix A is defined in the appendix. The vector
components I−, I + are arbitrary and represent the driver at the
corresponding footpoint.

Several previous studies of Alfvén waves in static loops
focused on resonances resulting from monochromatic driving
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Figure 2. First 10 Alfvénic eigenfrequencies in a loop with no flow. The left
panel is for c±

A = 0.1 and the right panel is for c±
A = 0.02. In both cases, the

horizontal axis represents the length of the lower ± regions with l+ = l−.

at one footpoint with close/open boundaries at the other
footpoint (Ionson 1982; Hollweg 1984a, 1984b). In general,
convective motions are expected to result in random forcing
of the footpoints with a broad frequency spectrum (see, e.g.,
Hollweg 1982; Kudoh & Shibata 1999; Moriyasu et al. 2004).
Upon inversion into the time domain, the singularities in the
frequency domain will be smoothed out and the motion will
remain linear (assuming a small-amplitude driver).

In addition to having a new feature, namely, a siphon flow, the
present model is not restricted to any particular forcing terms
I−, I +. It also contains parameters l− and l+ which can be altered
from 0 to ∞ to mimic various boundaries.

The solution of the original equation b(t, s) can be decom-
posed into a linear combination of terms like exp(−iωnt), where
ωn are the poles of b(ω, s) in the complex ω plane. According
to Equation (9), the coefficients X are given by the formula
X = A−1I. Therefore, the solution b(ω, s) of the Laplace-
transformed equation and its inverse b(t, s) depend on the zeros
of detA in the complex ω plane. The zeros of detA represent
the eigenfrequencies and determine the evolution of the system
in response to arbitrary torsional perturbations at the footpoints.
After some algebra, the condition detA = 0 is reduced to the
following transcendental equation:

exp
2iωcc

AL(
uc

0 − cc
A

)(
uc

0 + cc
A

) = Rc
0Rc

L, (11)

where Rc
0 and Rc

L are defined in the appendix.

3. ANALYSIS OF THE ALFVÉN MODES

The system described by Equation (11) has an infinite number
of eigenmodes. Any perturbation can be described by a super-
position of these eigenmodes. In general, the eigenfrequency
ω = ωr + iωi is complex. According to the adopted notation
(3), ωi > 0 corresponds to instability and ωi < 0 corresponds
to damping. Note that Equation (11) is reduced to

exp
2iωcc

AL(
uc

0 − cc
A

)(
uc

0 + cc
A

) = 1 (12)

Figure 3. Spatial structure of the first six eigenmodes corresponding to the
eigenfrequencies plotted in Figure 2 (left panel) with |l±| = 0.1. The numbered
lines indicate the fundamental mode (solid line) and its harmonics.

when l± = 0, i.e., when the lower atmosphere is neglected. The
analytical solutions of Equation (12) are given by

ω =
(
uc

0 − cc
A

)(
uc

0 + cc
A

)
πn

cc
AL

, n = 0,±1,±2, . . . (13)

and the modes are stable. Equation (11) always permits a trivial
solution.

For nonzero l±, Equation (11) is solved numerically using
Newton’s method. In the forthcoming analysis, the dependence
of the nontrivial eigenfrequencies on various parameters of the
system is examined. Length is normalized with respect to L,
and speed is normalized with respect to cc

A.

3.1. Stable Modes in a Loop with a Static Plasma

In order to get a picture of the eigenmode structure, we first
examine the case when the flow is absent. It is assumed that
l− = l+. The dependence of the first 10 eigenfrequencies on
l− is plotted in Figure 2. The eigenfrequencies do not have
imaginary parts and therefore only the real parts are shown.
The lowest curve represents the fundamental mode. Note that
it differs from the fundamental mode of a loop with no lower
regions. According to Equation (13), the frequency of the latter
is given by ω = cc

Aπ/L. Meanwhile, in the present situation,
the frequency of the fundamental mode is much lower due
to the added travel time in the ± regions, where the Alfvén
speed is low. The mode number increases with increasing
frequency. Figure 2 displays many avoided crossings between
different modes. These crossings indicate interaction between
the Alfvén waves propagating in the corona (the frequencies of
which approximately represent horizontal lines determined by
Equation (12)) and their counterparts in the ± regions. A more
insightful interpretation of the interaction at the two interfaces
in terms of wave reflection and transmission will be presented
in Section 5.

The normalized eigenfunctions corresponding to the first six
eigenfrequencies (Figure 2, left panel) are plotted in Figure 3.
Different modes are marked with different numbers. Each of
these indicates the number of corresponding nodes along the
loop. For example, the fundamental mode represented by the
solid line has no crossings with the horizontal axis inside the
loop. Figure 3 shows that the spatial profiles of the eigenmodes
differ from what would be expected for a loop with a constant
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Figure 4. Real and imaginary frequencies of the first six Alfvén modes plotted
as functions of l± where l+ = l−. The Alfvén speed in the loop is asymmetric:
c−
A = 0.03 and c+

A = 0.02. The flow speed in the coronal part uc
0 = 0.1.

Figure 5. Dependence of the frequencies and growth rates on the Alfvén speed
difference defined by expressions (15). The first six modes are plotted with
different lines. The length of the ± regions is l± = 0.03 and the coronal flow
speed is fixed at uc

0 = 0.1.

Alfvén speed. Considering the background Alfvén speed profile
along the loop, the relative amplitudes are larger in ± regions.
The amplitudes of even modes (n = 0, 2, . . .) still have local
maxima at the apex, whereas the amplitudes of odd modes have
local minima.

3.2. Unstable Modes in a Loop with a Siphon Flow

Next, the eigenmodes are analyzed when the loop is perme-
ated by a steady flow of plasma from one footpoint to the other.
In deriving Equation (11), no assumption was made regarding
the flow direction. It is therefore possible to examine effects of
both negative and positive flows. Using the equation of mass
continuity, we may express the flow speeds in the ± regions
through their coronal counterpart:

u±
0 = uc

0

(
c±
A

cc
A

)2

. (14)

In the following discussion, the coronal flow speed uc
0 is

normalized with respect to cc
A. As it will become clear, the

instability arises when, in addition to the flow, the loop contains
some kind of asymmetry. Two different cases of loop asymmetry
are examined: different Alfvén speeds and different lengths of
the ± regions.

3.2.1. Loops with Asymmetric Alfvén Speed (c−
A �= c+

A)

Figure 4 shows that in a loop with a siphon flow the Alfvén
modes have both real (ωr ) and imaginary (ωi) frequencies.
Some of the modes are damped corresponding to ωi < 0,
others are amplified with ωi > 0 leading to an instability.
Only the first six modes are shown. Different modes are
indicated with different lines. The curve with the lowest real
frequency corresponds to the fundamental mode. It has a
growth rate which rapidly increases and gradually decays as l±
increases.

The dependence of the frequencies and growth rates on the
difference between the Alfvén speeds is plotted in Figure 5. As
δcA increases, the Alfvén speeds change according to

c±
A = 0.08 ∓ δcA. (15)

The first six modes are shown in Figure 5. The instability only
disappears when the loop is perfectly symmetric so that δcA = 0.
In general, the growth rates tend to increase with increasing
difference between the Alfvén speed in the − region and its
counterpart in the + region.

3.2.2. Loops with Geometric Asymmetry (l− �= l+)

We now assume that the Alfvén speed is the same in the ±
regions. The loop asymmetry is geometric. The variation of the
real and imaginary parts of ω with increasing Alfvén speed c±

A is
plotted in Figure 6. Depending on the value of c±

A , a given mode
can be either damped or amplified. However, the instability is
always present and the growth rates tend to be larger when
l+ > l−.

The dependence of the complex eigenfrequencies on
the coronal flow speed uc

0 is displayed in Figure 7. The plots
are for the first seven eigenmodes. Figure 7 shows that there
are unstable modes for both negative and positive values of the
argument. The modes become stable and undamped only when
the flow is absent. The instability does not require any lower
nonzero threshold speed to set in. The growth rates, in general,
tend to increase with increasing flow speed.

4. OVER-REFLECTION OF ALFVÉN WAVES AT THE
TRANSITION REGION

In order to understand the physical nature of the instability,
we use the concept of wave reflection. The reflection coefficient
is usually defined as the ratio of the outgoing and incident
wave amplitudes at a given interface. In the above-presented
results, each mode is a combination of two waves traveling
in opposite directions. The amplitudes of these waves can be
calculated using Equations (5). In such a way, the reflection
coefficient is calculated for every single mode. The coronal
reflection coefficient at s = 0 is given by the ratio Ac/Bc,
where the ω-dependent amplitudes Ac and Bc are defined in
Equations (5). After some algebra, we find that the coronal
reflection coefficient at s = 0 is equal to |Rc

0|, where Rc
0 figures

in Equation (11) and is defined in the appendix. In a similar
way, it can be shown that the coronal reflection coefficient at
s = L is equal to |Rc

L|. Therefore, the modulus of Equation (11)
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Figure 6. Complex frequencies of the first six modes plotted as functions of c±
A .

The coronal flow speed is fixed at uc
0 = 0.1 and the lengths of the regions ± are

fixed at l− = 0.02 and l+ = 0.05.

Figure 7. Dependence of the first seven complex eigenmode frequencies on the
coronal flow speed uc

0. The Alfvén speed in the loop is symmetric: c±
A = 0.05.

The ± regions have different lengths: l− = 0.02 and l+ = 0.05.

is nothing else but the net reflection of Alfvén waves into the
corona. These two coefficients are plotted separately in Figure 8.
Only results for the first seven modes are shown. The waves are
partially reflected at s = L when the flow is in the negative
direction. On the other hand, the reflection coefficient |Rc

0| is
greater than 1. This means that the waves are over-reflected
at s = 0. The concept of over-reflection was first introduced
by Miles (1957) and McKenzie (1970) for acoustic and MHD
waves in shear flows. As the flow speed approaches zero, the
reflection coefficients |Rc

0|, |Rc
L| → 1 and the eigenmodes are

stable and undamped. When the flow speed becomes positive,
the reflection coefficients |Rc

0| and |Rc
L| exchange their roles:

the waves are partially reflected at s = 0 and over-reflected
at s = L. According to Equation (11), net over-reflection in
the corona (|Rc

0Rc
L| > 1) corresponds to instability (ωi > 0),

whereas partial reflection corresponds to damping. According
to Figure 7, there are always modes for which net over-
reflection into the corona occurs whenever there is a siphon
flow.

The arguments set out above can be extended and applied to
the ± regions. First, we introduce a reflection coefficient |R−

0 |
at s = 0 in the region − as the amplitude ratio B−/A−. In a
similar way, a reflection coefficient |R+

L| at s = L in the region
+ is introduced. It can be shown that

|R−
0 | = exp

2ωic
−
Al−

(c−
A − u−

0 )(c−
A + u−

0 )
,

|R+
L| = exp

2ωic
+
Al+(

c+
A − u+

0

)(
c+
A + u+

0

) . (16)

The above-derived expressions for |R−
0 | and |R+

L| show that
instabilities occur whenever the Alfvén waves are over-reflected
at s = 0, L into the − and + regions. In other words, ωi > 0 if
|R−

0 | > 1, |R+
L| > 1, and vice versa.

In view of the presented physical arguments, we conclude that
the instability is a result of over-reflection into the ± regions and
into the corona. The over-reflection and the conversion of flow
energy into wave energy take place at the interfaces s = 0 and
s = L. These interfaces with steep density variations represent
the transition region and upper chromosphere. According to
Figure 8, waves traveling in the corona are over-reflected at
s = L and partially reflected at s = 0 when the flow speed
is positive. The loop asymmetry provides imbalance between
|Rc

0| and |Rc
L| so that the net reflection into the corona is

different from 1. According to Equation (11), the modes are
amplified (ωi > 0) in the case of net over-reflection |Rc

0Rc
L| > 1

and damped otherwise. For a symmetrically stratified loop, the
reflection coefficients |Rc

0|, |Rc
L| balance each other and the

modes remain stable.

5. IMPLICATIONS OF THE ALFVÉN INSTABILITY

In one-dimensional loop modeling, it has been customary to
assume that dynamic processes eventually settle into a near-
stationary state, so that the hydrodynamic equations yield time-
independent steady flow solutions. A steady siphon flow usually
requires some kind of asymmetry in the system (see references
in Section 1). An important consequence of the present study is
that a near-stationary state cannot be reached if the footpoints
are randomly disturbed by torsional motions. Such disturbances
will exponentially grow in time by exchanging energy with the
flow. The problem can no longer be treated in one dimension
even if the driver amplitudes are small. As the Alfvénic
disturbances grow in time, they could nonlinearly transfer
their energy to longitudinal motions and thus make the flow
unsteady.

Persistent red shifts corresponding to downflows have long
been observed in transition region lines (Doschek et al. 1976;
Peter & Judge 1999; Doyle et al. 2002). Figure 8 shows that a
negative gradient in the flow causes over-reflection and hence
acts as a source of wave energy, whereas a positive gradient acts
as a sink of energy. Therefore, upflows in both legs of a loop
caused by chromospheric evaporation are likely to act as a sink
of wave energy due to positive flow gradients. On the other hand,
downflows in both legs will lead to enhanced energy exchange
and growth of the Alfvénic disturbances which could account for
the temporal variability of the observed Doppler shifts (Doyle
et al. 2002).

Peter (2001) used data from the SUMER spectrometer on-
board Solar and Heliospheric Observatory to study the struc-
ture and dynamics of the upper chromosphere and transition
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Figure 8. Reflection coefficients of Alfvén waves in the corona at s = L (left
panel) and s = 0 (right panel). The dependence of the reflection coefficients on
the flow speed in the corona is shown for the first seven eigenmodes. The values
of the parameters are the same as in Figure 7.

region. Rather large nonthermal broadenings were observed
in several lines. Peter (2001) argued that a most likely expla-
nation for such broadenings could be Alfvén waves passing
through the footpoints (funnels) of coronal loops. The waves
were estimated to be nonlinear with an average 10% ampli-
tude of the background Alfvén speed. Considering the ubiquity
of field-aligned flows in the chromosphere and transition re-
gion (for example, spicules), it does not seem unlikely that
these nonlinear waves are generated by the presented instability
mechanism. According to Figure 3, the ratio of the amplitudes
to the background Alfvén speed must be largest in the lower
regions.

It must be emphasized that the Alfvén instability does not
necessarily lead to formation of coherent waves. However,
individual wave modes are expected to be observed if the
corresponding growth rates are dominant. Figure 4 presents
such an example: the fundamental mode (solid line) grows
fastest for small values of l± that correspond to long loops.
Using the parameter values in Figure 4, we may estimate the
e-folding time τe, i.e., the time required for the amplitude to
increase by a factor of e. For a fixed value of l± = 0.02, the
ratio of the frequency and the growth rate corresponding to
the fundamental mode (solid line in Figure 4) is ωr/ωi ≈ 70.
Therefore, the expected e-folding time measured in oscillation
periods is τe = ωr/(2πωi) ≈ 10: it would take about 10 periods
for the oscillation to grow by a factor of e. Ofman & Wang (2008)
have recently detected fundamental mode transverse oscillations
in a long loop using Hinode/SOT. The loop was permeated by a
plasma flow of about 100 km s−1 consistent with the value used
in Figure 4. Despite the large uncertainties, weak damping or
even growth of the oscillation amplitude was observed for three
periods. The above-derived e-folding time could be applicable
to the loop presented in that paper. However, our estimates
are likely to change for a loop model with a more realistic
geometry and density structuring in the lower parts of the
atmosphere.

The aim of the present paper is to present an application
of a new ideal MHD instability in the solar atmosphere. A
more detailed analysis is required to get better insight into the
energetic and dynamic consequences of the Alfvén instability.
Future work must take into account (1) the loop expansion in the

lower regions that may affect the flow profile and modify the
governing equations; (2) the nonlinear and resonant coupling
to compressional modes in the presence of inhomogeneities;
(3) effects of loop curvature and gravity. Ultimately, in the
future, one could study an initial value problem in which the
torsional disturbances at photospheric levels, outflows/inflows
along the footpoints of the loops and their expansion factors are
taken as an input from observations with very high resolution
instruments.

6. SUMMARY

A loop model with a steady siphon flow is studied. The loop is
divided into three regions: a dense photosphere/chromosphere
environment near the two footpoints (− and +) with a tenuous
corona in the middle. In general, the − and + regions are
allowed to have different densities and lengths. It is assumed
that the loop is shaken randomly at the footpoints by convective
motions which generate small-amplitude torsional Alfvén waves
traveling along the loop in both directions. The response of the
loop to such footpoint perturbations depends on the temporal
behavior of its eigenmodes. Solutions in each region are derived
and connected using the continuity of the magnetic field and the
Poynting flux. The system has an infinite number of eigenmodes,
and only the first few are examined in detail. In the absence
of a flow, the modes are stable and the disturbances remain
linear.

The inclusion of a siphon flow significantly modifies the loop
response. It is shown that in asymmetric loops with siphon
flows some of the eigenmodes are damped, others are unstable.
Two different cases of loop asymmetry are examined: density
asymmetry and geometric asymmetry between the − and +
regions. For flows in the positive direction, the growth rates
tend to become larger when the Alfvén travel time l+/c+

A in the
+ region is longer than the corresponding counterpart in the −
region. The reverse is true for flows in the negative direction.
No critical flow speeds are required for the instability to set
in. In general, the growth rates increase with increasing flow
speeds.

The new MHD instability is interpreted in terms of wave
over-reflection. It is shown that the growth/damping rates
of the eigenmodes are intrinsically linked with the reflection
coefficients at the two interfaces that separate the three regions.
These interfaces represent the transition region where the
density steeply decreases from chromospheric to coronal values.
The presence of a siphon flow in an asymmetric loop inevitably
leads to a previously unknown ideal MHD instability which
is due to over-reflection of Alfvén waves at the transition
region. This allows us to identify the transition region as the
location of energy exchange between the flow and the Alfvén
waves.

The present study only examines the first few unstable modes
for a range of loop parameters. Therefore, we can only speculate
on the energetic and dynamic implications of this new instability.
A future study must concentrate on the nonlinear evolution of
the instability for specific loop parameters. The chromosphere
must be separated from the photosphere and a more realistic
density profile must be adopted. It is also important to take into
account the effects of variable loop cross sections, loop curvature
and gravity. Finally, the applicability of the new instability
mechanism to compressional MHD waves could be studied.

The author is grateful to the Leverhulme Trust for financial
support.
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The matrix A introduced in Equation (9) is given by the
following formula:

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

exp −iωl−
u−

0 +c−
A

exp −iωl−
u−

0 −c−
A

0 0 0 0

1 1 −1 −1 0 0

u−
0 + c−

A u−
0 − c−

A −uc
0 − cc

A cc
A − uc

0 0 0

0 0 exp iωL
uc

0+cc
A

exp iωL
uc

0−cc
A

− exp iωL
u+

0 +c+
A

− exp iωL
u+

0−c+
A

0 0
(
uc

0 + cc
A

)
exp iωL

uc
0+cc

A

(uc
0 − cc

A) exp iωL
uc

0−cc
A

−(u+
0 + c+

A) exp iωL
u+

0 +c+
A

(c+
A − u+

0) exp iωL
u+

0−c+
A

0 0 0 0 exp iω(L+l+)
u+

0 +c+
A

exp iω(L+l+)
u+

0−c+
A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The quantities Rc
0 and Rc

L introduced in Equation (11) are
defined by the expressions

Rc
0 =

(
uc

0 − cc
A − u−

0 + c−
A

)
exp −iωl−

u−
0 +c−

A

− (
uc

0 − cc
A − u−

0 − c−
A

)
exp −iωl−

u−
0 −c−

A(
uc

0 + cc
A − u−

0 + c−
A

)
exp −iωl−

u−
0 +c−

A

− (
uc

0 + cc
A − u−

0 − c−
A

)
exp −iωl−

u−
0 −c−

A

,

Rc
L =

(
uc

0 + cc
A − u+

0 + c+
A

)
exp iωl+

u+
0 +c+

A

− (
uc

0 + cc
A − u+

0 − c+
A

)
exp iωl+

u+
0−c+

A(
uc

0 − cc
A − u+

0 + c+
A

)
exp iωl+

u+
0 +c+

A

− (
uc

0 − cc
A − u+

0 − c+
A

)
exp iωl+

u+
0−c+

A

.
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