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We perform numerical simulations of point-like
deformations in a dry two-dimensional foam us-
ing the Surface Evolver software. We study
perturbations which are infinitesimal or finite,
isotropic or anisotropic, and we either conserve
or do not conserve the number of bubbles. We
measure the displacement fields around the per-
turbation. Changes in pressure decrease expo-
nentially with the distance to perturbation, in-
dicating a screening over a few bubble diame-
ters.

1 Introduction

A dry foam is a discrete material, made of poly-
hedral gas bubbles separated by thin walls of a
continuous liquid phase. Foams act as elastic
solids for small deformations, but when large
strains are applied they flow like plastic solids
and, at higher shear rate, like viscous liquids
[1, 2, 3]; applied stresses are relaxed by dis-
crete rearrangement events that occur in the
foam. Other changes are due to ageing, where
some bubbles gain gas at the expense of oth-
ers. In most cases of foam evolution, continuous
changes, such as infinitesimal changes of bubble
shapes and sizes, alternate with discontinuous

processes [4].

For instance, the length of an edge might de-
crease (or, inversely, it might stretch). If it van-
ishes, a neighbour-swapping event occurs, and
a new edge is created: this is the topological
T1 process [5] (its inverse is a T1 too). Alter-
natively, an edge breakage leads to bubble co-
alescence, also called fusion (its inverse is a di-
vision). All these perturbations are anisotropic.
On the other hand, when a bubble’s area de-
creases, it is an isotropic perturbation (its in-
verse is a bubble inflation). If it vanishes, a
reduction in the number of bubbles occurs: this
is reminiscent of biological cell apoptosis, or of a
topological T2 process [5], preceded by a num-
ber n−3 of T1s, where n is the number of sides
of the disappearing bubble (its inverse is a nu-
cleation).

Each perturbation affects the neighbouring bub-
bles, over a certain range. This range has been
the subject of various studies, with diverse mo-
tivations, all in two dimensions. The pertur-
bation induced by a T1 has been measured in
experiments [6] and in simulations [7]. The ef-
fect of changing the volume of a single bubble
is also studied, both in experiment [8, 9] and
in simulations [10, 11]. A laser has been used
to break the wall between bubbles [12] to study
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coalescence.

An infinitesimal change is expected to have
an infinitesimal effect on neighbouring bubbles.
Conversely, finite discontinuities can have a fi-
nite effect on other bubbles. If these events
are scarce enough, and spatially screened by the
foam disorder [13], their effects on the foam are
independent, and the foam can be treated as a
continuous material [14] at a large scale. The
foam properties of insulation against sound and
explosion partly derive from the screening. A
question under debate is to determine under
which conditions these processes correlate, trig-
gering for instance a cascade of T1s [4, 6, 9, 11].
This can lead to large-scale fluctuations such as
avalanches [15, 16, 17, 18].

Over the last few years, “soft materials” such
as foams, granular packings, pastes and bio-
logical tissues have attracted the attention of
many authors. In all these materials, it is im-
portant to predict how changes in the struc-
ture will affect their mechanical properties. In
particular, the role of disorder on perturba-
tion screening has been studied in various dis-
crete systems such as rigid grains and particles
[19, 20, 21, 22, 23, 24, 25, 26, 27]. It is not a
priori clear that the results should apply to the
deformable objects (bubbles) considered here.

In addition, the laser ablation referred to above
is used in biological tissues [28], and cell di-
vision and apoptosis are currently studied too
[29], motivated by a desire to understand the
mechanics of biological tissue.

To study the screening in foams, we focus on
a 2D simulated dry foam with an isolated per-
turbation. Physically, this is relevant for a sys-
tem which is initially formed by well separated
defects, that may eventually interact. We de-
fine screening to be an exponential decrease in a
measured quantity away from the perturbation;
this can be quantified by a characteristic length.
Such an exponential decrease implies that the
signal is soon very low, and at some place can
no longer be detected. In experiments, the de-
tection threshold depends on the experiment’s
noise, and a variable part of the exponential can
be measured. In simulations, we can expect the
noise (and thus the detection threshold) to be
intrinsic to the cluster’s disorder, and thus in-

teresting to measure, plot and study, but not as
interesting as the characteristic length.
We simulate small continuous geometrical
changes, then finite discontinuous topological
processes. We either conserve or change the
number of bubbles. We try different foam dis-
orders and boundary conditions. We perform
isotropic (scalar) perturbations, and anisotropic
(tensorial) ones. Two types of measurements
are extracted from the simulations: the dis-
placement of each bubble (a vector), and the
change in pressure [30] in each bubble, with re-
spect to the initial (unperturbed) foam.

2 Method

We create a disordered foam structure using
a Voronoi construction based upon a random
Poisson process for generating the cell centres
[31]. The cell areas A are chosen based upon a
randomly generated Weibull distribution [32]:

f(A; β, λ) =
β

λ

(

A

λ

)β−1

e−(A/λ)β

, (1)

where the parameter β > 1 determines the area
dispersity and the parameter λ is chosen as λ =
1.115〈A〉, so that the peak of the distribution is
close to A = 〈A〉. For the monodisperse case,
each cell is set to have the same target area,
rather than taking the limit β → ∞. We also
constructed ordered monodisperse foam consist-
ing of 8 and 20 concentric shells of hexagons [33].
The disorder of each foam is defined by the (di-
mensionless) variance of the area distribution:

var(A) =

〈

(A − 〈A〉)2

〈A〉2

〉

(2)

where 〈〉 denotes an average over the whole
foam.
Each foam is first equilibrated in the Surface
Evolver software [34], using a mode in which
each film is represented exactly as a circular
arc and a value of surface tension γ equal to
one. Bubble pressures are found by the minimi-
sation algorithm, defined and measured as the
Lagrange multiplier of the volume constraint.
T1 topological changes are automatically trig-
gered when films shrink to a very small length
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during the equilibration process. Some of the
initial foam structures used are shown in figure
1.
We then trigger changes to the structure as fol-
lows, illustrated in figure 2:

• An edge stretch is performed on the longest
edge of the bubble nearest the centre of the
cluster, by extending or reducing its length
by a fraction δL and fixing its endpoints.

• An inflation of the bubble nearest the cen-
tre of the cluster by a fraction δA.

• A T1 is performed on the shortest edge of
the bubble nearest the centre of the cluster.

• A disappearance event is triggered by re-
moving the bubble nearest the centre of the
cluster.

• A coalescence event is triggered by remov-
ing the longest edge of the bubble nearest
the centre of the cluster.

• A division event is triggered by inserting a
edge across the centre of the bubble nearest
the centre of the cluster, giving two bubbles
each with half the area.

In each case we re-equilibrate the structure; T1s
occur as part of the disappearance event, but
rarely during the equilibration. We record the
position of the bubble centres (defined for con-
venience as the average of the vertex positions)
and the bubble pressures before and after the
distortion, denoted xi, yi, pi with i = 0, 1.

3 Results

3.1 Bubble displacement

For free clusters, the displacement vectors of the
bubble centres after each event are shown in fig-
ure 3. As expected, the disappearance event has
the largest effect (greater displacements).
Since we apply no constraint during the equi-
libration to prevent rigid body displacements
and rotations, we first calculate the average over
all bubble centres of the x and y displacement
and the average rotation about the centre of

the cluster. These averages are then subtracted
from the displacement of each bubble. The re-
sults suggest that T1s, disappearance, coales-
cence, division and edge-stretching events all in-
duce approximately quadrupolar displacement
fields, while the inflation event is almost purely
radial. Note that the effect of the disappearance
event is not isotropic. This is because it triggers
several T1s, which break the rotational symme-
try. We find no correlation in the magnitude of
displacement with the number of sides n of the
disappearing bubble.
This information is summarised in figure 4,
which shows the variation in position of each
bubble centre as a function of radial and angu-
lar position. The radial displacement ∆r = r1−

r0 =
√

x2
1 + y2

1 −
√

x2
0 + y2

0 decreases with radial
distance r, and, apart from the inflation event,
varies sinusoidally with angle like a quadrupole,
∆r ∼ sin(2θ0), where tan(θ0) = y0/x0 and
θ0 = 0 corresponds to the positive x axis. The
angular displacement field r0∆θ = r0(θ1 − θ0) is
slightly asymmetric but remains approximately
quadrupolar.
This quadrupolar angular displacement is not
screened and is robust with respect to bound-
ary conditions (figure 5). In foams with fixed
boundaries, which force the radial displacement
to vanish (equivalently, each perturbation inter-
acts with its reflection at boundaries, or virtual
image) and with periodic boundary conditions
the angular displacement deviates slightly from
a sinusoid but is still approximately quadrupo-
lar.

3.2 Pressure

The perturbation induces a change in each bub-
ble pressure, ∆p = p1 − p0, with respect to the

initial foam. We normalize it by γ/
√

〈A〉 to fa-
cilitate comparison between different foams. It
decreases with radial distance r0, as shown in
figure 6(a).
A small change in the area of a bubble at the
centre of the cluster of 150 bubbles, in this case
by a factor of 20%, has only a small effect on
the pressure differences, which decrease roughly
exponentially with radial distance. A similar
result was found in a cluster of 1400 bubbles.
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All other distortions induce a stronger variation
in pressure difference. The largest pressure dif-
ferences are associated with the disappearance
and coalescence events. In the case of a change
in edge length, there is little difference between
extension and compression; similarly, inflating
and shrinking a bubble have the same effect.
The pressure change fluctuates from bubble
to bubble, and is either positive or negative.
Its standard deviation visibly decreases (figure
6(b)). In an ordered cluster, it is possible to
define radially concentric shells of bubbles and
examine the pressure change in each cell. How-
ever, to quantify the pressure differences in dis-
ordered foams the shells vary greatly in compo-
sition [35] and it is preferable to bin the data
in some manner. We choose a bin width of one
typical bubble diameter D = 2

√

〈A〉/π, and in-
crease the position of the centre of the bin in
intervals of D/10. The average pressure differ-
ence ∆p is calculated in each bin: it is always
close to zero beyond the central bubble, indi-
cating that pressure differences are screened ef-
fectively. The normalised standard deviation in
each bin, std(∆p), directly compares the effect
of the different perturbations we apply (figure
6(b)).
Remarkably, all perturbations decrease with a
similar exponential decay, sometimes over more
than two decades. The characteristic length of
this decay, which we call the screening length
ℓs, is the inverse of the slope:

1

ℓs

= −
∂ log (std(∆p))

∂r
. (3)

Quantitative measurements of the screening
length are scarce. Szeto et al [13] find that cor-
relations in the local foam disorder extend to a
distance of three bubble diameters. The avail-
able qualitative data [6, 28, 29] seem to observe
a screening over one or a few bubble diameters.
This is what we observe for the different distor-
tions (figure 7): despite large changes in several
parameters, there is little variation in ℓs, with
no clear dependence upon cluster size (data not
shown) or disorder. It is in general larger for
confined foams and those with periodic bound-
ary conditions.
The choice of var(A) as the disorder parameter

requires some discussion: since the screening is
a local effect, we should ideally use a local mea-
sure of disorder. It is, however, not clear how
to define such a measure.

For all distortions except the bubble inflation
(see below), the exponential decrease of std(∆p)
crosses over to a plateau near the outer part of
the foam. The plateau height is independent of
the screening, and instead measures the detec-
tion threshold. Thus the cross-over point is al-
most independent of the screening length. The
cross-over length rc therefore marks the limit
where the effect of the perturbation can be de-
tected. We measure it as the intersection of a
combined exponential fit to the decrease and a
constant value for the plateau (figure 6(b). Its
value is very robust (figure 8): it is roughly 60%
of the cluster radius independent of perturba-
tion type, boundary conditions and polydisper-
sity. In the present simulations, it corresponds
to roughly 5 to 15 bubble diameters. Thus, we
could change the volumes of bubbles around the
remaining 40% outer part of the foam without
changing the screening length.

The case of inflation in a monodisperse foam
is singular (figure 9): in contrast to other per-
turbations, and inflation events in disordered
foams, there is no pressure screening. Indeed,
the pressure difference increases slightly to-
wards the outside of the cluster.

3.3 Other scalar measures of

screening

The perturbation induces other changes in
the structure of the foam, for example each
edge may shrink or lengthen to accommodate
changes at the centre of the cluster. We justify
a posteriori our choice of pressure difference as
a measure of screening by comparing it with (i)
the change in each bubble’s perimeter, ∆e, nor-
malized by the square-root of its area, and (ii)
the change in the length of each edge ∆ℓ [6],

normalized by
√

〈A〉.

Figure 10 shows that ∆ℓ decreases quadrati-
cally, ∆ℓ ∼ r−2 over more than a decade in
both ordered and disordered foams. ∆e also de-
creases quadratically in the disordered cluster,
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but in the ordered case it shows a more rapid
drop, then little change over the outer part of
the cluster. Thus neither of these scalar quan-
tities indicates any screening in both ordered
and disordered foams, while the pressure change
does.

4 Summary and perspec-

tives

In simulated dry 2D foams, we have performed
continuous and discontinuous perturbations, ei-
ther isotropic or anisotropic, which conserve or
not the number of bubbles. We have varied
polydispersity over a decade and cluster size
over almost a decade, with free, periodic or fixed
boundary conditions.
The bubble displacements are quadrupolar in
all cases except bubble inflation. They extend
to the foam boundary and are thus sensitive to
boundary conditions.
The pressure change in each bubble fluctuates
from one bubble to the other, even for bubbles
the same distance from the perturbation. The
standard deviation within each of these “shells”
decreases exponentially with distance from the
perturbation over up to two decades, with a
characteristic (screening) length of the order of
one average bubble diameter.
At a distance close to 60 % of the foam ra-
dius, the standard deviation of pressure differ-
ence reaches a plateau. Beyond this distance
the perturbation can not be detected.
In wet foams, in which the amount of liquid in
the Plateau borders is non-negligible, perturba-
tions such as a T1 are promoted and will proba-
bly increase the screening length [36]. How the
deformation of a bubble affects its neighbours
might be crucial in understanding and calculat-
ing the shear modulus of a disordered foam [37]
and the role of fluctuations at large scale.
Future work should include the measurement
of tensorial quantities such as the deformation;
the comparison with displacement and deforma-
tion fields predicted by standard elasticity the-
ory [26]; direct comparison with experiments;
vectorial anisotropic perturbations, such as can
be obtained by moving a point-like defect within

the foam (Stokes experiment [14]); transition
from low disorder to the perfectly ordered case
(figure 9); and extension to 3D (where pressure
is still a relevant measurement).
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Eaton, and F. Jülicher. Current Biology,
17:2095, 2007.

[29] S. Courty et al., in preparation

[30] M.A. Fortes, F. Morgan, and M.F. Vaz.
Phil. Mag. Letts., 87:561, 2007.

[31] K. Brakke. Unpublished.
www.susqu.edu/brakke/papers/voronoi.htm,
1986.

[32] A. Wyn, I.T. Davies, and S.J. Cox.
Euro. Phys. J. E, in press, 2008. DOI:
10.1140/epje/i2007-10286-0.

[33] S.J. Cox and F. Graner. Phil. Mag., 83:
2573, 2003.

[34] K. Brakke. Exp. Math., 1:141, 1992.

6



[35] T. Aste, D. Boosé, and N. Rivier. Phys.
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Fig. 1 Representative images of the foams used. Top row: Monodisperse foams, both ordered
(217 and 1261 bubbles) and disordered (150 bubbles). Middle row: Polydisperse foams,
in each case with almost the same value of polydispersity, var(A) ≈ 0.12, and 250, 450
and 1400 bubbles respectively. Bottom row: Polydisperse foams without boundaries
(periodic, 400 bubbles) and with boundaries (383 bubbles) respectively.

Fig. 2 The six types of distortion applied to the foams, illustrated here for the disordered
monodisperse foam of 150 bubbles. Edge stretch (by 20%), inflation (by 20%), T1,
disappearance, coalescence, division.

Fig. 3 The displacement field after (a) 10% inflation, (b) 20% edge stretch, (c) T1, (d) dis-
appearance (in which a 6-sided bubble has been removed), (e) coalescence, and (f)
division, in a cluster of 1400 bubbles with 〈A〉 = 3.32× 10−4 and var(A) ≈ 0.12. The
average displacement and rotation has been subtracted in each case, and the vector
length multiplied by a factor of 200 (in a), 100 (in b) or 30 (in c,d,e,f).

Fig. 4 Bubble displacement, for the same data shown in figure 3, but without multiplicative
factors. (a) The magnitude of the radial displacement |∆r| as a function of radial
position r0. (b) The radial displacement ∆r as a function of angular position θ0.
(c) The angular displacement r0∆θ as a function of angular position θ0. Each point
represents the movement of a bubble centre. In (b) and (c) successive sets of data are
shifted vertically a distance 0.001 to distinguish them.

Fig. 5 Effect of boundary conditions. Bubble displacement field after a T1 in (a) a periodic
foam of 400 bubbles and (b) in a confined foam of 383 bubbles. The average displace-
ment and rotation have been subtracted, and the vector length multiplied by a factor
of 30. Angular bubble displacements in the same (c) periodic and (d) confined foams.

Fig. 6 (a) The effect on the bubble pressures of each of the distortions in figure 2 applied to
a disordered monodisperse cluster of 150 bubbles with A = 2.33 × 10−3. The effect of
an infinitesimal perturbation (top four sets of data) is much less than after one of the
discontinuous processes. Each point represents one bubble. Successive sets of data are
shifted vertically a distance 0.2 to distinguish them. (b) Semi-log plot of the standard
deviation of pressure change (see text) against radial position. The drop-off in the data
at large distance is caused by inaccuracy in defining the radius of the periphery of the
cluster. The top line, for a disappearance event, is fitted to a piecewise linear function;
the screening length ℓs is the inverse of the slope of this line in the inner region and
the cross-over radius rc is the radial position at which the plateau is reached.

Fig. 7 Screening length ℓs of std(∆p) (eq. 3), in units of bubble diameter D = 2
√

〈A〉/π ,

after (i) inflation (ii) an edge stretch, (iii) a T1, (iv) disappearance, (v) coalescence,
and (vi) division. Free clusters are denoted with a plus (+), confined foams with a
cross (×) and periodic foams with a box (�). Error bars are smaller than the point
size.

Fig. 8 Cross-over radius rc, in units of foam radius, after (i) inflation, (ii) an edge stretch,
(iii) a T1, (iv) disappearance, (v) coalescence, and (vi) division. It is rarely possible
to measure it for bubble inflation. Same notation as figure 7. Error bars are smaller
than the point size.

Fig. 9 The effect on the bubble pressures of a 20% inflation event in a monodisperse ordered
cluster of 1261 bubbles. Note the scale, orders of magnitude smaller than figure 6(b).
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Fig. 10 Semi-log plot of the standard deviation of pressure difference ∆p, perimeter change
∆e and edge-length difference ∆ℓ against radial position measured in units of cluster
radius, comparing data for a T1 in a disordered cluster of 1400 bubbles with a T1 in
an ordered cluster of 1261 bubbles. The inset shows the same data on log-log axes;
the solid line has slope -2.
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Figure 1: Representative images of the foams used. Top row: Monodisperse foams, both ordered
(217 and 1261 bubbles) and disordered (150 bubbles). Middle row: Polydisperse foams, in each
case with almost the same value of polydispersity, var(A) ≈ 0.12, and 250, 450 and 1400 bubbles
respectively. Bottom row: Polydisperse foams without boundaries (periodic, 400 bubbles) and
with boundaries (383 bubbles) respectively.
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Division

Coalescence

Stretching Inflation

Disappearance

T1

Figure 2: The six types of distortion applied to the foams, illustrated here for the disordered
monodisperse foam of 150 bubbles. Edge stretch (by 20%), inflation (by 20%), T1, disappearance,
coalescence, division. The original configuration of the foam, shown in the centre, is repeated
behind each deformed foam in grey.
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Figure 3: The displacement field after (a) 10% inflation, (b) 20% edge stretch, (c) T1, (d)
disappearance (in which a 6-sided bubble has been removed), (e) coalescence, and (f) division, in
a cluster of 1400 bubbles with 〈A〉 = 3.32 × 10−4 and var(A) ≈ 0.12. The average displacement
and rotation has been subtracted in each case, and the vector length multiplied by a factor of 200
(in a), 100 (in b) or 30 (in c,d,e,f).
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Figure 4: Bubble displacement, for the same data shown in figure 3, but without multiplicative
factors. (a) The magnitude of the radial displacement |∆r| as a function of radial position r0. (b)
The radial displacement ∆r as a function of angular position θ0. (c) The angular displacement
r0∆θ as a function of angular position θ0. Each point represents the movement of a bubble centre.
Successive sets of data are shifted vertically a distance 0.001 to distinguish them.
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Figure 5: Effect of boundary conditions. Bubble displacement field after a T1 in a periodic
foam of 400 bubbles (a) and in a confined foam of 383 bubbles (b). The average displacement
and rotation have been subtracted, and the vector length multiplied by a factor of 30. Angular
bubble displacements in the same periodic (c) and confined (d) foams. Successive sets of data are
shifted vertically a distance 0.001 to distinguish them.
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Figure 6: (a) The effect on the bubble pressures of each of the distortions in figure 2 applied to a
disordered monodisperse cluster of 150 bubbles with A = 2.33×10−3. The effect of an infinitesimal
perturbation (top four sets of data) is much less than after one of the discontinuous processes.
Each point represents one bubble. Successive sets of data are shifted vertically a distance 0.2 to
distinguish them. (b) Semi-log plot of the standard deviation of pressure change (see text) against
radial position. The drop-off in the data at large distance is caused by inaccuracy in defining
the radius of the periphery of the cluster. The top line, for a disappearance event, is fitted to
a piecewise linear function; the screening length ℓs is the inverse of the slope of this line in the
inner region and the cross-over radius rc is the radial position at which the plateau is reached.
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Figure 7: Screening length ℓs of std(∆p) (eq. 3), in units of bubble diameter D = 2
√

〈A〉/π , after

(i) inflation (ii) an edge stretch, (iii) a T1, (iv) disappearance, (v) coalescence, and (vi) division.
Free clusters are denoted with a plus (+), confined foams with a cross (×) and periodic foams
with a box (�). Error bars are smaller than the point size.
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Figure 8: Cross-over radius rc, in units of foam radius, after (i) inflation, (ii) an edge stretch, (iii)
a T1, (iv) disappearance, (v) coalescence, and (vi) division. It is rarely possible to measure it for
bubble inflation. Same notation as figure 7. Error bars are smaller than the point size.
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Figure 9: The effect on the bubble pressures of a 20% inflation event in a monodisperse ordered
cluster of 1261 bubbles. Note the scale, orders of magnitude smaller than figure 6(b).
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Figure 10: Semi-log plot of the standard deviation of pressure difference ∆p, perimeter change
∆e and edge-length difference ∆ℓ against radial position measured in units of cluster radius,
comparing data for a T1 in a disordered cluster of 1400 bubbles with a T1 in an ordered cluster
of 1261 bubbles. The inset shows the same data on log-log axes; the solid line has slope -2.
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