

Aberystwyth University

Bacterial colonisation of fresh and dried perennial ryegrass in the rumen Kingston-Smith, Alison H.; Sanderson, Ruth; Edwards, Joan E.; Jones, S.

Published in:

GUT MICROBIOME: Functionality, interaction with the host and impact on the environment

Publication date: 2008

Citation for published version (APA):

Kingston-Smith, A. H., Sanderson, R., Edwards, J. E., & Jones, S. (2008). Bacterial colonisation of fresh and dried perennial ryegrass in the rumen. In *GUT MICROBIOME: Functionality, interaction with the host and impact* on the environment (pp. 18-20) http://hdl.handle.net/2160/2461

General rights

Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

tel: +44 1970 62 2400 email: is@aber.ac.uk

corporating the Institute of Grassland & Environmental Research

Institute of Biological, Environmental and Rural Sciences

Bacterial colonisation of fresh and dried perennial ryegrass in the rumen

J.E. Edwards (jae@aber.ac.uk), S. Jones, R. Sanderson and A.H. Kingston-Smith

Introduction

The first step of degradation of plant material within the rumen involves rapid colonisation of the material by a complex bacterial community¹. Previously, colonisation of conserved hay stems by celluloytic bacteria (*Fibrobacter succinogenes* (Fs), *Ruminococcus albus* (Ra) and *R. flavefaciens* (Rf)) was shown to occur at equal rates². However, how this compares to fresh grass is unclear.

Fig 2. Eubacterial DNA (a) and cellulolytic bacterial DNA (b-d) on fresh (red) and dried (black) PRG incubated *in sacco* in the rumen. Data points represent the mean of duplicate bags for each cow.

Aim

To characterise early (<2 h) populations of rumen eubacteria and cellulolytic bacteria colonising fresh and dried perennial ryegrass (PRG), and determine the corresponding dry matter (DM) loss.

Method

- Fresh or dried PRG (mechanically processed to mimic mastication) was incubated *in sacco* in the rumen of three rumen fistulated, non-lactating dairy cows grazing a ryegrass sward.
- For each cow, duplicate polyester bags of each forage type were incubated per time point (5, 10, 15, 30, 60 and 120 min) with 0 min bags processed directly. Bag residues were hand washed and snap-frozen in liquid N. Rumen contents were also sampled (0, 60 and 120 min) and snap-frozen.
- DNA was extracted from the residual DM (RDM), and the colonising bacteria analysed by eubacterial 16S ribosomal DNA based denaturing

Fig 3. DM loss from fresh (red) and dried (black) PRG incubated *in sacco* in the rumen. Data points represent the mean of duplicate bags for each cow.

gradient gel electrophoresis (DGGE)¹ and quantitative PCR (eubacteria¹, Fs², Ra² and Rf²). Rumen contents were analysed similarly.

Fig 1. Cluster analysis (% similarity) of DGGE profiles of the eubacteria colonising fresh (F) and dried (**D**) PRG incubated in the rumen of three different cows (a-c). Branch labels denote incubation time (min) and PRG preparation (e.g. 120 F).

Results

• PRG preparation and incubation time did not affect the composition of the colonising rumen eubacterial populations consistently (Fig 1).

Conclusion

- Colonising rumen bacterial populations were larger with fresh rather than dried PRG, but this was not reflected in DM loss.
- Animal differences in relative abundances of colonising cellulolytic bacteria were more apparent than any forage associated effect on total
- Colonising eubacteria, Fs, Ra and Rf increased over time (P <0.01), and were greater with fresh PRG than dried (P <0.001) (Fig 2).
- Relative abundance of the celluloytic bacteria in rumen content was Rf>Fs>Ra for all cows, but for colonising cellulolytic bacteria the relative species abundance differed by cow (data not shown).
- Initial DM loss (0 min) was greater with dried PRG than with fresh (18.4 v 5.5 %; P < 0.01).
- A linear interaction (P <0.001) between forage and time in terms of DM loss (relative to 0 min) was observed (Fig 3), with dried PRG showing greater apparent DM loss after 2 h than fresh PRG (25.0 v 7.3 %; P <0.05).

population composition.

 Clarification as to whether the observed differences in initial and ruminal DM loss may have resulted from differing responses to the mechanical processing (to mimic mastication) is required.

References

 Edwards JE, Huws SA, Kim EJ & Kingston-Smith AH (2007) FEMS Microbiol. Ecol. 62, 323-335.
 Koike S, Pan J, Kobayashi Y & Tanaka K (2003) J. Dairy Sci. 86, 1429-1435.

Acknowledgements

The financial support of the Biotechnology and Biological Sciences Research Council is gratefully acknowledged.