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Clus-DOWA: A New Dependent OWA Operator

Tossapon Boongoen and Qiang Shen

Abstract— Aggregation operators are crucial to integrating
diverse decision makers’ opinion. While minimum and max-
imum can represent optimistic and pessimistic extremes, an
Ordered Weighted Aggregation (OWA) operator is able to
reflect varied human attitudes lying between the two using
distinct weight vectors. Several weight determination techniques
ignore characteristics of data being aggregated. In contrary,
data-oriented operators like centered OWA and dependent
OWA utilize the centralized data structure to generate reliable
weights. Values near the center of a group receive higher weights
than those further away. Despite its general applicability, this
perspective entirely neglects any local data structures repre-
senting strong agreements or consensus. This paper presents
a new dependent OWA operator (Clus-DOWA) that applies
distributed structure of data or data clusters to determine
its weight vector. The reliability of weights created by DOWA
and Clus-DOWA operators are experimentally compared in the
tasks of classification and unsupervised feature selection.

I. INTRODUCTION

To aggregate valuable pieces of information, several aggre-
gation operators have been developed to deliver a reasonable
outcome upon which an intelligent decision can be made.
These operators range from the simple arithmetic mean to
fuzzy-oriented ones like minimum/maximum and t-norm/t-
conorm (more details in [1]). In addition, Yager [17] intro-
duced a parameterized mean-like aggregation operator, an
ordered weighted aggregation (OWA) operator. Essentially,
by selecting an appropriate weight vector, the OWA operators
can reflect the uncertain nature of human judgment with the
ability to generate an aggregating result lying between two
extremes of minimum and maximum. The OWA operators
have been applied in different areas [18] such as: information
fusion [19], multi-criteria decision making [17] and fuzzy
system modelling [20]. Furthermore, several variations of
OWA operator are invented for linguistic-oriented environ-
ment [8] [12], while others are applicable to a wide range
of domains using different weight determining algorithms:
maximum-entropy [11], Gaussian distribution [15] [21], re-
cursive formulation [13], and weight learning [6]. Recently,
Beliakov et al. [2] emphasized another variant utilizing the
absorbent tuples to model situations in which certain decision
makers may decide the outcome irrespective of the opinion
of the others.

A definite pre-caution, in combining multiple arguments,
is the fact that unduly high or low values might be given by
false or biased judgments. In such cases, a typical OWA oper-
ator would suffer drastically from giving the highest priority
to either the highest or the lowest value. To achieve more
reliable outcome, Xu [15] [16] introduced the dependent
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OWA (DOWA) operator, in which the normal-distribution of
argument values is used to determine the weight vector. In
particular, a high weight is given to the argument whose value
is close to the center of all arguments (i.e. arithmetic mean),
while lower weights are assigned to those further away.
This centralized interpretation has also been adopted in the
centered OWA operator [21], where weights are high around
the middle and decayed symmetrically towards boundary
ends.

Despite their general applicability, these trustworthy
weight generation methods possess an identical drawback,
which originates from their underlying centralized assump-
tion. Particularly, argument values are viewed as members of
one large cluster (i.e. a global consensus of decision makers’
opinion) and their arithmetic mean is considered sufficient
to grade their reliability. This approach completely discards
the significance of any possible trends emerging from local
data structure that can possibly be a subset of values tightly
clustered together. Regardless of the cluster density, low
weights are to be assigned to its members if it does not
situate near the center of the value range. In light of such
shortcoming, this paper presents a new cluster-based DOWA
operator (Clus-DOWA) whose weight determination is based
on the distributed structural interpretation of values being
aggregated. Those values very far from the group center (i.e.
mean) are not assigned with low weights, if they are seem-
ingly indifferent to their local neighbors. For this purpose, the
basic technique of agglomerative hierarchical clustering [5] is
applied to create the clustering structure of the studied values.
In essence, the distance to the nearest cluster is employed
to evaluate the reliability of each argument value and its
assigned weight.

The rest of this paper is organized as follows. Section
IT introduces the main theoretical concepts of the OWA
and DOWA operators upon which the present research is
developed. Section III presents the clustering-based DOWA
operator including its complexity and a worked example.
Applications of the DOWA and Clus-DOWA operators to
classification and unsupervised feature selection tasks are
detailed in the fourth section. Specifically, class-specific
fuzzy sets built from weight vectors are used to determine
the class to which an unknown instance belongs. In addition,
weight vectors are also utilized to justify the reliability of
attributes in order to reduce the size of a feature set. The
paper is concluded in section V, with the perspective of
further works.

II. DEPENDENT OWA OPERATOR

The process of information aggregation appears in many
applications related to the development of decision support



systems. Despite computationally simplistic, neither mini-
mum nor maximum is appropriate for most applications.
Accordingly, Yager [17] pioneered a new set of aggregation
techniques called the ordered weighted averaging (OWA)
operator. This mean-type operator provides a flexibility to
utilize the entire range of and to or associated with a decision
maker’s attitude towards aggregation.

A. OWA Operator

An OWA operator of dimension n is a mapping R" —
R, which has an associated weighting vector w =
(wy,wa, ..., w,)", where w; € [0,1] and Y wy =
1. A set of n input parameters, with the input vector

(B1, Ba,...,B,), is aggregated as follows:
OWA(By, By, ..., By) =Y w;b; (1)

j=1
where b; is the jth largest element in the vector
(B1,Ba2,...,B,) and by > by... > b,. A wide range of

OWA operators can be formulated between two extremes of
minimum and maximum, through the degree of orness(a)
as defined below:

n
a:nilzwi(n—i) )
i=1

This measure ranges from O to 1, and estimates the degree
to which an OWA operator is similar to the logical connective
OR (i.e. maximum) in terms of its aggregation behavior.
When a = 0, an OWA operator becomes a minimum type
with the weight vector becomes (0,0,...,1). In contrast,
when o = 1, an OWA operator exhibits the maximum
connective type with the weight vector of (1,0,...,0).
Weight distributions at any given degree of orness can be
differentiated with the dispersion measurement:

disp(w) = = wiln(w;) 3)
=1

where 0 < disp(w) < In(n). This measure provides a degree
to which information in arguments is used in the aggregation
process. The value of dispersion is zero when the orness
() is either zero or one. In such cases, only one argument
with either the lowest or the highest will contribute solely
to the ultimate outcome. In contrast, the dispersion is unity
when the orness is 0.5, in which all arguments are considered
equally important with assigned weight of 1/n.

B. Dependent OWA Operator

There are many techniques proposed for obtaining OWA
weights. For instance, O’Hagan [11] used the maximal
entropy as the primary criteria in formulating a set of
weights at a given level of orness. Attempts also exist to
generate a weight vector from a set of samples [6]. Weight
determining approaches generally fall into two categories
of argument-independent and argument-dependent. Weights
derived by the former approach are not related to argument

values. On the other hand, with an argument-dependent
approach, weights are determined based on the value of
input arguments. Centered OWA [21] and Dependent OWA
[15] [16] operators are examples of argument-dependent
approaches that particularly employ the centralized weight
distribution. Arguments whose values are in the middle of
the group, i.e. near to the group average, are more reliable
and acquire higher weights comparing to those further away
from the center. Specifically, the reliability of an argument
reflects the appropriateness of using that argument as a group
representative (i.e. aggregating outcome). The following set
of equations give an overview of the weight determination
process with the DOWA operator.

Let (a1, as,...,a,) be the argument vector, and p be the
average value of this argument set, where p = %2?21 aj.
The similarity between any argument a; and the average
value ;4 can be calculated as follows:

la; — pl
s(aj,p) =1- =7 4)
! > iy lai — p
From this, a weight vector w = (wy, ws, ... ,wn)T can be
generated by applying the following:
s(aj,p) .
w4:n77.]:172a"' T (5
! 21‘:1 s(ai, p1)
DOW A(ay,ag,...,a,) = Z w;a; 6)
i=1

The DOWA operator becomes neat in such a way that
one weight is provided for a specific argument, regardless
of its order of magnitude in the argument vector. Hence, the
reordering step, normally pursued for an OWA operator, is
entirely irrelevant in this case.

III. CLUSTER-BASED DOWA OPERATOR

Similar to Centered OWA and DOWA operators, the
proposed Clus-DOWA aims to decrease the effect of false
or biased judgment in a group decision making. The former
approaches utilize the centralized method in such a way that
the argument set is viewed as one cluster, whose center is
solely used to determine the weight vector. In contrary, the
Clus-DOWA operator is based on the distributed clusters
of arguments. Instead of interpreting a set of arguments as
one large cluster, it is trivial to perceive that local clusters
(i.e. local consensus) can appear within the global space.
In particular, each local cluster represents agreement or
consensus among arguments in close proximity. Intuitively,
to evaluate the reliability of one argument is to discover
the difference (in terms of distance) between that particular
argument and its nearest local cluster. The magnitude of
difference from surrounding neighbor dictates the difficulty
that one argument can come to agreement with others. Con-
ceptually, greater difference signifies greater difficulty and
hence smaller reliability. Reliable arguments are those with
small differences from their neighbors. Figure 1 graphically
depicts this distributed approach, in which arguments (a1 and



a2) very far from the global center are reliable provided that
they are close to local clusters’ center.

a *oa Ap e, e, A

a. Global consensus b. Local consensus

Fig. 1. Centralized and distributed interpretations.

A. Cluster-Based Algorithm

With this distributed approach, the first task of measuring
reliability of arguments is to determine their cluster structure.
The agglomerative hierarchical clustering [5] is modified in
such a way that its iterative merging process stops as soon
as all arguments (a;,¢ = 1,...,n) have been merged to their
nearest clusters. For each argument, the distance (d;) behind
such merging as well as the cluster center (Re ference;) are
recorded for the evaluation of its reliability. With the center-
linkage distance measurement (i.e. using the average value
of a group as the representative in a distance evaluation), this
modified clustering algorithm can be summarized in Figure 2.
Note that obviously, a singleton cluster contains only one
member.

Begin
Initializea =n;c = 0;d; = { };Reference; ={}i=1..n
Do
Find nearest elements (argument or cluster) E,, and Ey
If E, and E are arguments a, and a,
dy = dismnre(a\n,ay); Reference, = ay;
dy = distan(‘e(ay,a\.);Referen(‘ey =a;a=a—2
If E, is argument a, and £ is cluster Cl,,
dy = distance(a,, center(Cl,)); Reference, = center(Cly);a =a—1
If E is cluster Cl, and E, is argument a,,
dy = dismm‘e(ay,femer(Clv)); Reference, = center(Cl,);a=a—-1
Merge I, and £, to a new cluster Cl., wherec = c + 1
Drop E, and E,, and include Cl. in next iteration

Untila =0
Return d;, Reference;,i=1..n
End
Fig. 2. Modified agglomerative hierarchical clustering.

Having applied this clustering algorithm to a set of values
(a1,as,...,ay), the reliability of each value (r;) can be
directly estimated from the distance to its nearest cluster (d;)
recorded during the clustering process.

_ 4
Z?:l d;
Similar to Equation (5), the weight vector can then be cal-

culated from the discovered vector of reliability measurement
(ry,re,...,r,) as follows:

7“1‘21—

)

_niai:172a"' T (8)

Then, the Clus-DOWA operator can be defined as:
Clus — DOW A(aq, a2, ...,a,) = ijaj )
j=1

It is worth noting that with the clustering procedure, the
Clus-DOWA operator is fairly computational expensive with
the time and space complexity of O(n?) and O(n?), where n
is the number of arguments. Both requirements are reduced
to O(n) using the simple DOWA operator. Despite this
disadvantage, weight vectors generated by the Clus-DOWA
operator are truly data-oriented and reliable, which will be
illustrated later in Section IV.

B. Worked Example

For illustrating purpose, both Clus-DOWA and DOWA
operators are used to aggregate preference values of ten
decision makers (a1, ...,a19): 60, 62, 63, 66, 70, 75, 79, 85,
89, and 94. With the DOWA operator and the global average
of 74.3, the following set of weights can be achieved using
Equations (4) and (5): w; = 0.0953,wy = 0.0975, w3 =
0.0986, w4 = 0.1019,ws = 0.1063,wg = 0.1103,w; =
0.1059, wg = 0.0993, wg = 0.0949 and w;p = 0.0894. With
Equation (6), the aggregation outcome is:

DOW A(ay, . .., a10) =(60 x 0.0953) + (62 x 0.0975)+
(63 x 0.0986) + (66 x 0.1019)+
(70 x 0.1063) + (75 x 0.1103)+
(79 x 0.1059) + (85 x 0.0993)+
(89 x 0.0949) + (94 x 0.0894)+
DOW A(ay, . .., ay) =74.1125

In order to find the result of this example with the Clus-
DOWA operator, the clustering algorithm shown in Figure 2
is firstly applied to these preference values using the center-
linkage distance measurement. Figure 3 presents the distance
and nearest cluster’s center of each value after being clus-
tered. According to Equations (7) and (8), the following set of
weights can be estimated: w; = 0.1033, we = 0.1080, ws =
0.1080,w4 = 0.0985,w5 = 0.0985,wg = 0.0985, w; =
0.0985, wg = 0.0985, w9 = 0.0985 and wyo = 0.0892. With
Equation (9), the aggregation result is the summation of:

Clus — DOW A(ay, . .. ,a10) = (60 x 0.1033)+
(62 x 0.1080) + (63 x 0.1080) + (66 x 0.0985)+
(70 x 0.0985) + (75 x 0.0985) + (79 x 0.0985)+
(85 x 0.0985) + (89 x 0.0985) + (94 x 0.0892)

Clus — DOW A(ay, . .. ,a19) = 73.8263



It is obviously depicted in Figure 4 that weights given by
the DOWA approach are high in the middle and decayed
towards both ends. On the other hand, the weights estimated
using the Clus-DOWA method reflect the closeness of each
value to its neighbors, hence the difficulty to agree with
others. Evidently, the weights given to the values 60, 62
and 63 are higher with the Clus-DOWA than the DOWA
approach, due to the fact that they are members of the rigid
local cluster and their distances to agreement (d;) are small
comparing to those of the others. In contrast, the value 94
is assigned with similarly lowest weights by both methods,
simply because it is greatly different from neighbors with
d; = 7, the highest of the entire group. Note that those
values in the middle (70, 75 and 79), which are normally
assigned with high weights by the DOWA approach, do not
necessarily receive the same treatment with the new method.

3 Reference ; d;
60 62.5 2.5
Cly 62 63 1
cu[E
63 62 1
66 70 4
75 79 4
85 89 4
e H| 94 87 7
Fig. 3. Results of center-linkage clustering.
Weight
0.12
0.115 -
011
0.105 d;ﬂ et
019 ~E-Clus-DOWA
0.095 -
0.09
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0.08 T T Preference value
55 a5 75 85 as

Fig. 4. Weight distribution with DOWA and Clus-DOWA operators.

IV. APPLICATION STUDIES

This section presents the experimental evaluation of ap-
plying the DOWA and Clus-DOWA operators to the tasks
of classification and unsupervised feature selection. Their
performances are generalized with a collection of well-
known datasets obtained from [3].

A. Classification

This task is to find the correct class, from n possible
classes (Cj,j = 1...n), for an unclassified instance that is
characterized by m attributes (a;,7 = 1...m). The DOWA
operator can be used for the classification by firstly building
fuzzy sets of classes in each attribute domain from training
instances:

o Values of each attribute in training instances are divided
into subsets each belonging to one class.

o The DOWA operator is then applied to these subsets to
generate weight vectors.

o The resulting weight vectors are normalized into the
range of [0,1] using (w; — Wmin)/(Wmaz — Wmin)s
where w; is any weight, w4, and w,,;, are the
maximum and minimum weight values in one vector.
Essentially, weight vectors are now interpreted as fuzzy
sets representing properties of one specific attribute, see
Figure 5 for examples.

For each attribute value (af,i = 1...m) of a given
unclassified instance k, it is possible to use the membership
vectors similar to those shown in Figure 5(b) to linearly
estimate its membership values belonging to each class,
e, (alf),j = 1...n. The membership degree is: (i) zero if
the attribute value is outside the range of values presented in
training instances, (ii) yc, (af) when ¢ is a training instance
and a¥ = al, (iii) the linear approximation of membership
values of two values af and a from training instances that
are the most similar to a¥ and af < af < al’.

h k
pe, (af) = uxpc.(af’) +
N
ad —aF
(quaw?)) (10)
T k2

Then, the total membership value pc, of each class j
can be calculated, as shown below. Ultimately, the given
instance will be classified to the class with the highest total
membership value.

pe, = no;(af) (1)
i=1

This classification process can be used with the Clus-
DOWA operator as well, however with additional adjustment.
Firstly, both weight and membership functions are similarly
built using the Clus-DOWA operator. Then, class member-
ship values pc,(al) of the given unclassified instance k
are identically estimated for cases (i) and (ii), as previously
discussed. Nonetheless, case (iii) and Equation (10) cannot



be directly reused, since the weight and membership values
are cluster oriented and unnecessarily decayed to both ends
like those generated by the DOWA operator. In order to
overcome this native barrier, it is necessary to find an
attribute value alf presented in training instances that is the
most similar to af. The cluster center Re f erence! , to which

i
the attribute value a{ is merged, can be used to calculate
pic, (a¥) as follows:

f_ Referencef
= L pey(af)  (12)
a? — Reference;

a
pe, (ay) =

Equation (11) is employed here again to find the class
with the highest total membership value, which will be the
preferred class for the given instance k.

Both classification methods are evaluated with the three
benchmark datasets of UCI repository [1]: glass, iris and
wine, respectively. As discussed earlier that the complexity
of the Clus-DOWA algorithm is worse than the DOWA
approach, the evaluation therefore concentrates solely on the
accuracy criterion to further justify their quality. Table I
presents average accuracies of classifying these dataset with
DOWA and Clus-DOWA methods, using 10-fold cross val-
idation. The performance of the Clus-DOWA approach is
consistently superior to that of the other. This explicitly in-
dicates that weights generated with the Clus-DOWA operator
are more reliable, however with more expensive computation.

TABLE 1
CLASSIFICATION ACCURACIES

Average accuracies (percentage)

Dataset. —a Clus-DOWA
glass 45.45 59.09
iris 85.71 90.47
wine 61.11 T7.78

B. Unsupervised Feature Selection

To further justify the reliability and also to reveal the
usefulness of weights generated by these two operators, they
will be used for the task of feature selection that aims to
reduce a number of features (i.e. attributes) for more efficient
data analysis. The benefits of this work includes: reducing
the measurement and storage requirements, reducing training
time, and defying the curse of dimensionality to improve pre-
diction performance. Much of the work in feature selection
has been concentrated at supervised category where invented
methods rely on the class labels and their correlation with
feature values. Guyon and Elisseeff [7] point out that the
unsupervised feature selection techniques prove to be ex-
tremely useful with real-world data analysis, in which neither
class labels are available nor thorough data interpretation
is feasible. Works in this category base their judgments on
particular characteristics of data values such as entropy and
density. Dash and Liu [4] specifically emphasize that the
entropy is generally low for data containing tight clusters,
and thus is a good criterion to determine feature relevance.

Weight (a)
012 -
011 +
01 4
—&— Classl
=B~ Class
0.09 1
0.08 -
0.07 + value
55 65 75 HH] 95
Membership {b)
1 -
0.8
0.6
—&— Classl
—8—Class2
04 =
0.2
0+ . . Value
55 65 75 85 a5
Fig. 5. Representing classes in one attribute domain as (a) weight and (b)

membership vectors, using DOWA operator.

Intuitively, the dispersion measure, (see Equation (3)), of
weight vectors generated by DOWA and Clus-DOWA oper-
ators can be used as evaluating criteria. This is because the
higher the dispersion value the more reliable data becomes,
as reflected by the fact that data values are reliable when
they are close to neighbors (i.e. forming a tight cluster) and
their weights are rather indifferent. To estimate the reliability
of each feature (a;,7 = 1...m), DOWA and Clus-DOWA
operators are applied to generate weight vectors (wPOW4
and wiCl“S_D OWAY from its values. Then, the dispersion
measurements of these weight vectors, disp(w”°"4) and
disp(wC'**=POWA) "can be found using Equation (3). Note
that the most reliable feature has the highest dispersion
value of In(n), where n is the number of dataset instances.
A simple heuristic-based algorithm, outlined in Figure 6,
is used to deliver a subset of features whose dispersion
measurement (i.e. reliability) is relatively competitive with

that of the original feature set.

To evaluate performances of both operators upon this
task, the dispersion-oriented algorithm shown in Figure 6
is firstly applied to find reduced feature sets of glass, iris
and wine dataset, respectively. Table II presents the size of



these reduced feature sets, compared to those reported in [9]
[10] using FRFS (Fuzzy-Rough Feature Selection) method.
Note that FRFS is a supervised technique with state-of-the-
art theory as well as outcomes.

Then reduced feature sets are assessed with three different
learning classifiers: J48, JRip and PART (from [14]). J48
generates decision trees by choosing the most informative
features and recursively partitioning the data into subtables
based on their values. Each node in the tree represents a
feature with branches from a node representing the alter-
native values this feature can take in accordance to the
current subtable. Partitioning stops when all data items in
the subtable have the same classification. A leaf node is
then created, and this classification assigned. JRip learns
propositional rules by repeatedly growing rules and pruning
them. During the growth phase, features are added greedily
until a termination condition is satisfied. Features are then
pruned in the next phase subject to a pruning metric. Once
the ruleset is generated, a further optimization is performed
where classification rules are evaluated and deleted based on
their performance on randomized data. PART generates rules
by means of repeatedly creating partial decision trees from
data. The algorithm adopts a divide-and-conquer strategy
such that it removes instances covered by the current ruleset
during processing. Essentially, a classification rule is created
by building a pruned tree for the current set of instances; the
leaf with the highest coverage is promoted to a rule.

Table III summarizes the accuracies of reduced feature
sets with the aforementioned classifiers, using 10-fold cross
validation. It can be generalized that the reduced feature sets
achieved with the Clus-DOWA approach consistently reach
better accuracy figures than those generated by the DOWA
method. Accordingly, these results signify the fact that a
weight vector of the Clus-DOWA operator is more reliable
than the other. Moreover, the reliability of the Clus-DOWA
operator can be further emphasized with its accuracy results
comparing to those of the FRFS method, see Table IV. The
Clus-DOWA method performs better than FRFS with glass
and wine dataset, while the opposite outcome occurs with
the iris dataset. However, it is crucial to note that the FRFS
method is unable to reduce the size of feature set of iris
dataset, while almost half of the original size is diminished
using the Clus-DOWA approach.

TABLE 11
SI1ZE OF REDUCED FEATURE SETS

Size of reduced set

Dataset Instance Feature DOWA — ClusDOWA —FRES
glass 214 10 8 7 9
iris 150 5 3 3 5
wine 178 14 7 9 10

V. CONCLUSIONS

This paper has presented a new dependent Ordered
Weighted Aggregation (OWA) operator whose weight vector

Begin
Initialize A = {a;,{ = 1...m}
Do
Initialize dispmmc = 0; c= 1; Qynreliable
Find the average dispersion, dispy,,,. of all features in A
Do
Initialize dispiemy = 0
Find the average dispersion of features in A, dispiem,. except feature a,
Ifdisptemp = dispmax
dispmax = dispremp;aum'eliablg =g
c=c+1
Until ¢ > size of 4
If dispimgy = disPapg
A=A — Qunretiabie
Until dispg,g = disPmax
Return 4
End

Fig. 6. Heuristic-based feature selection algorithm.

TABLE III
CLASSIFICATION ACCURACIES OF REDUCED FEATURE SET

Classifier accuracies (percentage)

Dataset Method 73 TRip PART
glass Unreduced 67.29 71.49 67.76
DOWA 69.16  67.29 66.82

Clus-DOWA  71.96 68.22 70.56

iris Unreduced 96.00 95.33 94.00
DOWA 72.67 74.00 73.33
Clus-DOWA  96.00 92.67 95.33

wine Unreduced 94.38  92.70 93.82
DOWA 89.89 85.39 93.26
Clus-DOWA  89.89 91.57 87.64

is tightly related to the structural characteristic of values
being aggregated. Unlike the centralized assumption used
in previous dependent OWA operators, the reliability of a
value is not determined solely by its difference to the group
average, but rather by its difference to neighbors. Values that
are seemingly indifferent from others in a closed proximity
are considered reliable and assigned with high weights. This
distributed approach is able to better capture the underlying
data characteristics and deliver trusty weights, which is
experimentally illustrated through its superior performances
comparing to the centralized method for both classification
and unsupervised feature selection tasks. However, its appli-
cability is to be further examined with other problem do-
mains, especially decision making with multiple experts and
criteria. Its complexity has to be improved by utilizing more
efficient clustering techniques. In addition, the classification
algorithm presented in this paper is to be further developed
in such a way that its performance becomes competitive
with well-known classification methods like decision tree and
nearest neighbor.
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TABLE IV
ACCURACIES OF FRFS AND CLUS-DOWA METHODS

Classifier accuracies (percentage
Dataset Method (p ge)

JRip PART
glass FRFS 67.76 68.22
Clus-DOWA  68.22 70.56

iris FRFS 95.33 94.00
Clus-DOWA  92.67 95.33

wine FRFS 89.33 93.82
Clus-DOWA  91.57 87.64
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