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Abstract. In this paper, within the context of fuzzy rough set theory,
we generalize the classical rough set framework for data-based attribute
selection and reduction, based on the notion of fuzzy decision reducts.
Experimental analysis confirms the potential of the approach.
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1 Introduction

Rough set theory [5] is well-suited to semantics-preserving data dimensionality
reduction, i.e.: to omit attributes (features) from decision systems without sac-
rificing the ability to discern between objects belonging to different concepts or
classes. A minimal set of attributes that preserves the decision making power of
the original system is called a decision reduct.

Traditionally, discernibility is modeled by an equivalence relation in the set
of objects: objects are indiscernible w.r.t. a given set of attributes B if they have
the same values for all attributes in B. This works well for qualitative data, in
particular if the number of distinct values for each attribute is limited and there
is no particular relationship among them. Quantitative data, however, involve
continuous (i.e., real-valued) attributes like age, speed or length, and are tied to
a natural scale of closeness, loosely expressing that the closer the attribute values
of two objects are, the less discernible they are. While the standard methodology
can be tailored to handle them by applying discretization, it is more natural to
consider a notion of approximate equality between objects. Formally, such a
notion can be modeled by means of a fuzzy relation [10] in the set of objects.

Guided by this principle, the original rough set framework for data-based
attribute selection and reduction can be generalized (see e.g. [1–4, 8]). This paper
differs from previous research efforts by the introduction of the concept of a
fuzzy decision reduct: conceptually, this is a weighted version of its classical
counterpart that assigns to each attribute subset the degree to which it preserves
the predictive ability of the original decision system. We consider alternative



ways of defining fuzzy decision reducts, grouped along two directions: the first
direction works with an extension of the well-known positive region, while the
second one is based on an extension of the discernibility function from classical
rough set analysis.

The remainder of this paper is organized as follows: we first recall prelimi-
naries of rough sets, fuzzy sets and their hybridization in Section 2. In Section
3, we propose a general definition of a fuzzy decision reduct, and then develop
a number of concrete instances of it. In Section 4, experiments are conducted to
evaluate the effectiveness of these alternatives. Finally, in Section 5 we conclude.

2 Preliminaries

2.1 Rough Set Theory

Definitions In rough set analysis, data is represented as an information system

(X,A), where X = {x1, . . . , xn} and A = {a1, . . . , am} are finite, non-empty sets
of objects and attributes, respectively. Each a in A corresponds to an X → Va

mapping, in which Va is the value set of a over X. For every subset B of A,
the B-indiscernibility relation RB is defined as RB = {(x, y) ∈ X2 and (∀a ∈
B)(a(x) = a(y))}. Clearly, RB is an equivalence relation. Its equivalence classes
[x]RB

can be used to approximate concepts, i.e., subsets of the universe X.
Given A ⊆ X, its lower and upper approximation w.r.t. RB are defined by
RB↓A = {x ∈ X|[x]RB

⊆ A} and RB↑A = {x ∈ X|[x]RB
∩ A 6= ∅}.

A decision system (X,A∪ {d}) is a special kind of information system, used
in the context of classification, in which d (d 6∈ A) is a designated attribute called
decision. Based on the values vk that d assumes (drawn from the finite5 set Vd),
X is partitioned into a number of decision classes Xk. Given B ⊆ A, the B-
positive region POSB =

⋃

vk∈Vd

RB↓Xk contains the objects for which the values

of B allow to predict the decision class unequivocally. The predictive ability w.r.t.

d of the attributes in B is then measured by γB = |POSB |
|X| (degree of dependency

of d on B). A subset B of A is called a decision reduct if POSB = POSA, i.e., B
preserves the decision making power of A, and if it cannot be further reduced,
i.e., there exists no proper subset B′ of B such that POSB′ = POSA.

Example 1. Consider the decision system 6 in Table 1.a). There are two decision
classes: X0 contains all x for which d(x) = 0, while X1 contains those with
d(x) = 1. If we want to apply the standard rough set analysis approach, we
first have to discretize the system; a possible discretization is given in Table
1.b). Then we can calculate the positive region. For example, for B = {a4, a5},
POSB = {x1, x5, x6, x7}. Also, POSA = {x1, x2, x3, x4, x5, x6, x7, x8}.

5 In this paper, we assume that decisions are always qualitative (discrete-valued).
6 This is a sample taken from the Pima Indians Diabetes dataset, available at

http://www.ics.uci.edu/∼mlearn/MLRepository.html



Table 1. a) Original decision system b) Discretized decision system.

a1 a2 a3 a4 a5 a6 a7 a8 d

x1 1 101 50 15 36 24.2 0.526 26 0
x2 8 176 90 34 300 33.7 0.467 58 1
x3 7 150 66 42 342 34.7 0.718 42 0
x4 7 187 68 39 304 37.7 0.254 41 1
x5 0 100 88 60 110 46.8 0.962 31 0
x6 0 105 64 41 142 41.5 0.173 22 0
x7 1 95 66 13 38 19.6 0.334 25 0

a1 a2 a3 a4 a5 a6 a7 a8 d

x1 0 0 0 0 0 0 2 0 0
x2 1 2 2 1 1 1 1 1 1
x3 1 1 1 1 1 2 2 1 0
x4 1 2 1 1 1 2 0 1 1
x5 0 0 2 1 0 3 2 1 0
x6 0 0 1 1 0 3 0 0 0
x7 0 0 1 0 0 0 1 0 0

Finding Decision Reducts Decision reducts are used to synthesize minimal
decision rules, which result from overlaying the reducts over the decision system
and reading off the values. Below we recall a well-known approach to generate all
reducts of a decision system based on its decision-relative discernibility matrix
and function [7]. The decision-relative discernibility matrix of (X, A ∪ {d}) is
the n×n matrix O, defined by, for i and j in {1, ..., n}, Oij = ∅ if d(xi) = d(xj)
and Oij = {a ∈ A|a(xi) 6= a(xj)} otherwise. On the other hand, the discerni-

bility function of (X, A ∪ {d}) is the {0, 1}m → {0, 1} mapping f , defined by
f(a∗

1, ..., a
∗
m) =

∧

{
∨

O∗
ij |1 ≤ j < i ≤ n and Oij 6= ∅}. in which O∗

ij = {a∗|a ∈
Oij}. The boolean variables a∗

1, . . . , a
∗
m correspond to the attributes from A, and

we denote A∗ = {a∗
1, ..., a

∗
m}. If B ⊆ A, then the valuation function VB corre-

sponding to B is defined by VB(a∗) = 1 iff a ∈ B. This valuation can be extended
to arbitrary formulas, such that VB(f(a∗

1, ..., a
∗
m)) = f(VB(a∗

1), ...,VB(a∗
m)). This

expresses whether the attributes in B preserve the discernibility of (X,A∪{d})
(when its value is 1) or not (when it is 0). The discernibility function can be
reduced to its disjunctive normal form, that is f(a∗

1, ..., a
∗
m) =

∧

A∗
1 ∨ ...∨

∧

A∗
p,

in which p ≥ 1, and for all i in {1, ..., p} it holds that A∗
i ⊆ A∗, and A∗

i 6⊆ A∗
j

for i 6= j. If we define a ∈ Ai iff a∗ ∈ A∗
i , then it can be shown that A1, . . . , Ap

constitute exactly all decision reducts of (X, A ∪ {d}).

Example 2. The reduced discernibility function of the decision system in Table
1.b) is given by f(a∗

1, . . . , a
∗
8) = a∗

2 ∨ (a∗
1 ∧ a∗

7)∨ (a∗
5 ∧ a∗

7)∨ (a∗
6 ∧ a∗

7)∨ (a∗
7 ∧ a∗

8).
Hence, the decision reducts are {a2}, {a1, a7}, {a5, a7}, {a6, a7} and {a7, a8}.

2.2 Fuzzy Set Theory

Recall that a fuzzy set [10] in X is an X → [0, 1] mapping, while a fuzzy relation
in X is a fuzzy set in X × X. For all y in X, the R-foreset of y is the fuzzy set
Ry defined by Ry(x) = R(x, y) for all x in X. If R is reflexive and symmetric,
i.e., R(x, x) = 1 and R(x, y) = R(y, x) hold for all x and y in X, then R is
called a fuzzy tolerance relation. For fuzzy sets A and B in X, A ⊆ B ⇔ (∀x ∈
X)(A(x) ≤ B(x)). If X is finite, the cardinality of A equals |A| =

∑

x∈X

A(x).

Fuzzy logic connectives play an important role in the development of fuzzy
rough set theory. We therefore recall some important definitions. A triangu-



lar norm (t-norm for short) T is any increasing, commutative and associative
[0, 1]2 → [0, 1] mapping satisfying T (1, x) = x, for all x in [0, 1]. In this pa-
per, we consider TM and TL, defined by TM (x, y) = min(x, y) and TL(x, y) =
max(0, x + y − 1) for x, y in [0,1]. An implicator is any [0, 1]2 → [0, 1]-mapping
I satisfying I(0, 0) = 1, I(1, x) = x, for all x in [0, 1]. Moreover, we require I to
be decreasing in its first, and increasing in its second component. In this paper,
we consider IM and IL, defined by, for x, y in [0, 1], IM (x, y) = 1 if x ≤ y and
IM (x, y) = y otherwise, and IL(x, y) = min(1, 1 − x + y).

2.3 Fuzzy Rough Set Theory

Research on hybridizing fuzzy sets and rough sets has focused mainly on fuzzi-
fying the formulas for lower and upper approximation. In this process, the set A
is generalized to a fuzzy set in X, allowing that objects can belong to a concept
to varying degrees. Also, rather than assessing objects’ indiscernibility, we may
measure their closeness, represented by a fuzzy tolerance relation R. For the
lower and upper approximation of A by means of a fuzzy tolerance relation R,
we adopt the definitions proposed in [6]: given an implicator I and a t-norm T ,
R↓A and R↑A are defined by, for all y in X, (R↓A)(y) = inf

x∈X
I(R(x, y), A(x))

and (R↑A)(y) = sup
x∈X

T (R(x, y), A(x)).

In this paper, given a quantitative attribute a with range l(a), we compute the
approximate equality between two objects w.r.t. a, by the parametrized relation

Ra, defined by, for x and y in X, Ra(x, y) = max
(

0,min
(

1, β − α |a(x)−a(y)|
l(a)

))

.

The parameters α and β (α ≥ β ≥ 1) determine the granularity of Ra.
Discernibility, or distance, of two objects x and y w.r.t. a can be computed as

the complement of their closeness: 1−Ra(x, y). Assuming that for a qualitative
(i.e., nominal) attribute a, the classical way of discerning objects is used, i.e.,
Ra(x, y) = 1 if a(x) = a(y) and Ra(x, y) = 0 otherwise, we can define, for any
subset B of A, the fuzzy B-indiscernibility relation by RB(x, y) = min

a∈B
Ra(x, y).

It can easily be seen that RB is a fuzzy tolerance relation, and also that if only
qualititative attributes (possibly stemming from discretization) are used, then
the traditional concept of B-indiscernibility relation is recovered.

Example 3. For the non-dicretized decision system in Table 1a), assume that
α = 5 and β = 1.2 are used in Ra for each attribute a, and that the attributes’
ranges are determined by the minimal and maximal occurring values in the
decision system. It can be verified e.g. that Ra1

(x2, x3) = 0.575, Ra2
(x2, x3) = 0,

Ra4
(x3, x6) = 1, and also that R{a3,a4}(x3, x4) = min(0.95, 0.88) = 0.88.

3 Fuzzy-Rough Attribute Reduction

In this section, we extend the framework for rough set analysis described in
Section 2.1 using concepts of fuzzy set theory, to deal with quantitative attributes
more appropriately. In order to do so, we introduce a number of increasing,



[0, 1]-valued measures to evaluate subsets of A w.r.t. their ability to maintain
discernibility relative to the decision attribute. Once such a measure, say M, is
obtained, we can associate a notion of fuzzy decision reduct with it.

Definition 1. (Fuzzy M-decision reduct) Let M be a monotonic P(A) →
[0, 1] mapping, B ⊆ A and 0 < α ≤ 1. B is called a fuzzy M-decision reduct to

degree α if M(B) ≥ α and for all B′ ⊂ B, M(B′) < α.

3.1 Fuzzy Positive Region

Using fuzzy B-indiscernibility relations, we can define, for y in U , POSB(y) =
(
⋃

vk∈Vd
RB ↓ Xk

)

(y). Hence, POSB is a fuzzy set in X, to which y belongs to
the extent that its RB-foreset is included into at least one of the decision classes.
However, only the decision class y belongs to needs to be inspected:

Proposition 1. For y in X, POSB(y) = (RB ↓ Xk∗)(y) with Xk∗(y) = 1.

Example 4. Let us come back to the decision system in Table 1a). Using the same
indiscernibility relations as in Ex. 3, and I = IL, we can calculate the fuzzy pos-
itive region for B = {a4, a5}. For instance, POSB(x3) = 0.42. The complete re-
sult is POSB = {(x1, 1), (x2, 0.65), (x3, 0.42), (x4, 0.42), (x5, 1), (x6, 1), (x7, 1)}.
Compare this with Ex. 1, where POSB was computed for the discretized system:
the fuzzy positive region allows gradual membership values, and hence is able to
express that e.g. x2 is a less problematic object than x3 and x4. Finally, it can
also be verified that, with these parameters, still POSA = X.

Once we have fixed the fuzzy positive region, we can define an increasing [0, 1]-
valued measure to obtain fuzzy decision reducts. We may extend the degree of
dependency, as proposed by Jensen and Shen in [3, 4], or, rather than considering
an average, it is also possible to focus on the most problematic element. These
alternatives are reflected by the following normalized7 measures:

γB = |POSB |
|POSA| δB =

min
x∈X

POSB(x)

min
x∈X

POSA(x)

Proposition 2. If B1 ⊆ B2 ⊆ A, then γB1
≤ γB2

and δB1
≤ δB2

.

Example 5. For B as in Ex. 4, γB = 5.49/7 = 0.78 and δB = 0.42. Also, B is a
fuzzy γ-decision reduct to degree 0.77, since for B′ ⊂ B, γB′ < 0.77.

3.2 Fuzzy Discernibility Function

The closeness relation RB can be used to redefine the discernibility function as
an {0, 1}m → [0, 1] mapping, such that, for each combination of conditional at-
tributes, a value between 0 and 1 is obtained indicating how well these attributes
maintain discernibility, relative to the decision attribute, between all objects.

7 In this paper, we assume POSA(x) > 0 for every x in X.



A faithful extension of the decision-relative discernibility matrix, in which Oij

(i, j in {1, . . . , n}) is a fuzzy set in A, is obtained by defining, for any attribute
a in A, Oij(a) = 0 if d(xi) = d(xj) and Oij(a) = 1 − Ra(xi, xj) otherwise.
Accordingly, we can define O∗

ij as the fuzzy set in A∗, such that O∗
ij(a

∗) = Oij(a).
Interpreting the connectives in the crisp discernibility function by the minimum
and the maximum, we can then extend it to a {0, 1}m → [0, 1] mapping:

f(a∗
1, ..., a

∗
m) = min

1≤i<j≤n
cij(a

∗
1, ..., a

∗
m) (1)

cij(a
∗
1, ..., a

∗
m) =

{

1 if Oij = ∅
max(O∗

ij(a
∗
1
)a∗

1
,...,O∗

ij(a
∗
m)a∗

m)

1−RA(xi,xj)
otherwise

(2)

Referring again to the valuation VB corresponding to a subset B of A,
VB(f(a∗

1, ..., a
∗
m)) is now a value between 0 and 1 that expresses the degree

to which, for all object pairs, different values in attributes of B correspond to
different values of d. Rather than taking a minimum operation in (1), which is
rather strict, one can also consider the average over all object pairs:

g(a∗
1, ..., a

∗
m) =

2.
∑

1≤i<j≤n

cij(a
∗
1, ..., a

∗
m)

n(n − 1)
(3)

The following two propositions express that f and g are monotonic, and that
they assume the value 1 when all the attributes are considered.

Proposition 3. If B1 ⊆ B2 ⊆ A, then VB1
(f(a∗

1, ..., a
∗
m)) ≤ VB2

(f(a∗
1, ..., a

∗
m))

and VB1
(g(a∗

1, ..., a
∗
m)) ≤ VB2

(g(a∗
1, ..., a

∗
m)).

Proposition 4. VA(f(a∗
1, ..., a

∗
m)) = VA(g(a∗

1, ..., a
∗
m)) = 1

Example 6. For B as in Ex. 4, it can be verified that VB(f(a∗
1, ..., a

∗
m)) = f(0, 0, 0,

1, 1, 0, 0, 0) = 0.42, and that VB(g(a∗
1, ..., a

∗
m)) = g(0, 0, 0, 1, 1, 0, 0, 0) = 0.96.

Here, it holds e.g. that B is a fuzzy g-decision reduct to degree 0.95.

4 Experimental Analysis

In this section, we evaluate the performance of our measures in classification,
and compare the results to the approaches from [3, 4]; the latter have already
been shown to outperform other state-of-the-art feature selection techniques in
terms of accuracy. In order to select suitable attribute subsets of a decision
system (X,A∪ {d}) according to a given measure M and threshold α, we used
a heuristic algorithm called ReverseReduct, adapted from [3]. ReverseReduct
starts off with B = A, and progressively eliminates attributes from B as long as
M(B) ≥ α; at each step, the attribute yielding the smallest decrease in M is
omitted. By construction, when the algorithm finishes, B is a fuzzy M-reduct of
(X,A∪{d}) to degree α. After feature selection, the decision system is reduced
and classified. In our experiments, we used JRip for classification, implemented



in WEKA [9]. The benchmark datasets come from [4], and also include the full
version of the Pima dataset used in our running example.

In a first experiment, we fixed α to 0.9 (ReverseReduct looks for a fuzzy M-
decision reduct to degree 0.9). Table 2 records the results obtained with γ, δ, and
the min- and average-based variants of the fuzzy discernibility function; for the
measures based on the positive region, we worked with I = IL and I = IM as
implicators. To compute approximate equality, we used RB as defined in Section
2.3, with α = 5 and β = 1.2 for the average-based approaches, and α = 15 and
β = 1 for the min-based approaches8. The one but last column contains accuracy
and size for the unreduced dataset, and the last one records the best accuracy
obtained in [4], along with the size of the corresponding attribute set.

Table 2. Classification accuracy (%) and reduct size

Dataset γ-IL γ-IM δ-IL δ-IM f g Unred. [4]

Pima 77.0 (7) 76.0 (8) 76.8 (6) 76.0 (8) 77.0 (7) 77.6 (2) 76.0 (8) 76.0 (8)
Cleveland 54.2 (9) 54.5 (9) 53.2 (8) 53.9 (9) 53.2 (8) 53.9 (2) 52.2 (13) 54.6 (8)

Glass 65.4 (6) 67.8 (6) 63.1 (5) 71.5 (9) 65.9 (8) 55.1 (3) 71.5 (9) 71.5 (9)
Heart 80.7 (7) 81.9 (8) 73.7 (8) 73.7 (8) 73.7 (8) 75.2 (2) 77.4 (13) 78.5 (10)
Olitos 67.5 (8) 65.0 (12) 68.3 (5) 60.8 (6) 68.3 (5) 64.2 (2) 70.8 (25) 71.7 (5)

Water 2 82.8 (11) 81.0 (17) 83.1 (8) 83.1 (8) 83.1 (8) 83.3 (1) 83.9 (38) 85.6 (6)
Water 3 83.3 (11) 83.6 (17) 82.8 (7) 82.8 (7) 82.8 (7) 85.9 (2) 82.8 (38) 82.8 (11)

Wine 92.7 (6) 87.6 (8) 84.3 (5) 84.3 (5) 84.3 (5) 88.2 (2) 92.7 (13) 95.5 (5)

The results show that, on the whole, our methods are competitive with those
from [4]. Moreover, for three of the datasets, strictly better accuracy results can
be obtained with at least one of the new approaches. Also, in many cases shorter
attribute subsets are produced. In particular, note that g generates very short
subsets that have reasonable, and sometimes even excellent, accuracy.

We also investigated the influence of α on the quality of the fuzzy decision
reducts; Fig. 1 plots the results obtained for Pima with the four approaches9 as
a function of α. All approaches reach their optimum for α < 1, which clearly
endorses using fuzzy decision reducts. For the average-based measures, α =
0.9 seems a good compromise value, while the min-based approaches generally
require smaller values10. The corresponding reduct size decreases gradually for
most approaches, except for g which is sensitive to small changes when α is large.

5 Conclusion

We have introduced a framework for fuzzy-rough set based feature selection, built
up around the formal notion of a fuzzy reduct. By expressing that an attribute

8 Since the min-based approaches are stricter, they require crisper definitions of ap-
proximate equality to perform well.

9 For γ and δ, IL was used as implicator.
10 Incidentally, the best overall accuracy, 78.1%, was obtained for δ with α ∈ [0.4, 0.7].



Fig. 1. Accuracy results and reduct size for varying values of threshold parameter α.

subset should retain the quality of the full feature set to a certain extent only, we
are able to generate shorter attribute subsets, without paying a price in accuracy.
For the future, we plan to further investigate the role of the various parameters.
We also hope to extend the approach to deal with quantitative decisions.
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