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Abstract

In this paper we consider the problem of recovering the (transformed) relaxation spec-
trum h from the (transformed) loss modulus g by inverting the integral equation g =
sech ∗ h, where ∗ denotes convolution, using Fourier transforms. We are particularly
interested in establishing properties of h, having assumed that the Fourier transform
of g has entire extension to the complex plane. In the setting of square integrable
functions, we demonstrate that the Paley-Wiener theorem cannot be used to show the
existence of non-trivial relaxation spectra with compact support. We prove a stronger
result for tempered distributions: there are no non-trivial relaxation spectra with com-
pact support. Finally we establish necessary and sufficient conditions for the relaxation
spectrum h to be strictly positive definite.

MSC2010 classification: 42A38, 45Q05, 46F12

Keywords: Fourier transform, inverse problems, Paley-Wiener theorem, relaxation spec-
trum

1 Introduction

This paper studies an inverse problem arising from the theory of viscoelastic fluids. The
(transformed) relaxation spectrum h is found from the (transformed) loss modulus g by
inverting the integral equation g = sech∗h, where ∗ denotes convolution. Using the notation
f̂ , F−1(f) for respectively the Fourier transform and inverse Fourier transform of f , we have

ĝ = ̂sech ∗ h = ŝechĥ.

Now a standard calculation yields ŝech(r) = πsech(πr/2), and writing ξλ(r) = cosh(λr)
(following the notation of [7], with λ = π/2,) our expression becomes (1/π)ĝξλ = ĥ. Taking
inverse Fourier transforms, h = (1/π)F−1(ĝξλ). (Henceforth we omit the constant.) The

∗Author to whom any correspondence should be addressed.
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inverse problem of finding h given g is ill-posed (in the sense of Hadamard); numerical
schemes may be producing spurious results. Davies, Anderssen and co-workers [2, 7, 8]
proposed a criteria for judging the validity of numerical schemes. The purpose of this
paper is to examine whether the relaxation spectrum h can have compact support given
conditions on g, a key idea in the above work. There are examples where this is true: if
g = sech then h = δ, the Dirac mass concentrated at zero, which is supported on {0}. We
investigate this problem in the settings considered by [7, 8], and generalisations of these,
using Paley-Wiener theorems. We require that ĝξλ has entire extension to the complex
plane, and make the assumption ĝ has entire extension, which excludes the above example.
Theorems 1 and 2 are non-existence results for h with compact support; finding the correct
theoretical setting for a general existence result for this problem is not only an interesting
mathematical problem, it may help in the design of robust numerical techniques to solve
the inverse problem (or act as a criteria to judge existing schemes).

Previous work by Loy, Davies, Anderssen and Newbury [7] used a weak formulation: for
f ∈ Lp(R), 1 < p ≤ 2, define

κ̃g(f) =

∫ ∞
−∞

ĥf̂ =

∫ ∞
−∞

ĝξλf̂ . (1)

It is easily seen (via the Hausdorff-Young inequality) that κ̃g is a bounded linear mapping,
and can be represented by κg ∈ Lq(R), where q denotes the conjugate exponent of p, with

κ̃g(f) =

∫ ∞
−∞

κgf.

We identify κg with h. The basic idea is to exploit ĝf̂ = ĝ ∗ f in the latter integral of (1),
and change the order of integration, moving the Fourier transform onto ξλ. However ξλ does
not belong to an appropriate function space to allow this, so a regularisation (Gaussian)
term is introduced into the latter integrand of (1); as ε → 0, this term approaches unity.
We write κ̃g,ε for the bounded linear mapping, and κg(ε) for its representation. After some
manipulations (and an application of the Dominated Convergence theorem) we have for
δ > 0,

lim
ε→0

κ̃g,ε(f) = lim
ε→0

∫ ∞
−∞

κg(ε)f =

∫ ∞
−∞

κgf = lim
ε→0

∫
|s|≤λ+δ

Wε(s)(g ∗ f)(s)ds

where

Wε(s) =

√
2π

ε
exp

(
λ2 − s2

2ε2

)
cos

(
λs

ε2

)
.

For g ∈ L1(R), supported on [a, b], and f ∈ Lp(R), supported on the complement of
[−λ− δ − b, λ+ δ − a],

(g ∗ f)(s) =

∫ b

a
g(t)f(s− t)dt = 0.

This was interpreted as κg(= h) being supported on [−λ− b, λ− a]. However it was noted
by Renardy [9] that ĝξλ ∈ Lp(R) coupled with g having compact support constrains g to
be the zero function (and hence h = 0 also).

A revised calculation by Loy, Davies and Anderssen [8] removed the assumption that g was
compactly supported. Instead they introduced c ∈ L1(R) with support in [a, b], and noted
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for f supported as before

lim
ε→0

∫ ∞
−∞

κg+c(ε)f = lim
ε→0

∫ ∞
−∞

κg(ε)f.

Loy et al. [7] considered a second approach for p = 2: the Paley-Wiener theorem
states that if an entire function is of exponential type, the inverse Fourier transform of the
function restricted to the real line has compact support. If g has compact support, it is
easily shown that ĝξλ is of exponential type; moreover it can be shown, using Morera’s
theorem, that ĝ has entire extension to the complex plane. (See Dodd [4] for full details.)
The Paley-Wiener theorem yields h = F−1(ĝξλ) has compact support. However we have
previously seen these hypotheses imply g = 0 (and h = 0). Whilst the assumption that g
has compact support is not appropriate, we investigate if weaker hypotheses might be. We
use this approach to show non-existence of non-trivial relaxation spectra h with compact
support. For a space T (R), define F[λ,T ′] = {g ∈ L1(R) : ĝξλ ∈ T ′(R)}, where T ′(R)
denotes the space of bounded linear functionals on T (R). Our basic strategy is as follows:
we show F[λ,T ′] has no non-trivial elements with compact support; demonstrate that if ĝξλ
is of exponential type, then so is ĝ; apply the Paley-Wiener theorem to deduce g ∈ F[λ,T ′]
with compact support, and therefore g = 0. Theorem 1, in the setting of square integrable
functions, demonstrates that we cannot use the Paley-Wiener theorem to show existence of
non-trivial relaxation spectra. In the setting of tempered distributions, we use a stronger
form of the Paley-Wiener theorem which allows us to prove that if h has compact support,
h = 0. This is the content of Theorem 2; it encompasses the Lp−Lq setting of Loy et al. [7],
and in Corollary 1 we state the result that no non-trivial relaxation spectra exist. The main
work is demonstrating that if ĝξλ is of exponential type, then so is ĝ; when g is one-signed
(which is true for the physical problem we are modelling as g is non-negative,) and ĝ has
an integral representation when extended to the complex plane, an elementary argument is
sufficient; for two-signed g, we use properties of meromorphic functions. We assume that
ĝ has entire extension to the complex plane; Gaussians have this property, so Theorems 1
and 2 apply to non-trivial subsets of F[λ,T ′] whether T ′(R) is L2(R) (Theorem 1) or the
space of tempered distributions (Theorem 2). For Theorem 2, our assumptions about h,
coupled with the Paley-Wiener-Schwartz theorem, yield that ĝξλ has entire extension to the
complex plane, therefore ĝ is analytic except possibly at the zeroes of ξλ.

Having established non-existence results, we turn our attention to properties of h: we
state a precise condition for h to be strictly positive definite in Proposition 3. Loosely
speaking, positive definite functions are “like Gaussians”. Finally we discuss properties a
space T (R) would need to have for non-trivial h with compact support to exist.

Our basic problem arises from the study of viscoelastic fluids, that is fluids that have
elastic properties usually associated with solids as well as liquid-like properties; roughly
speaking, the fluid remembers the flow history (unlike a Newtonian fluid). Memory fades
as time elapses. (It would fade instantaneously for a Newtonian fluid.) We can think of
the relaxation spectrum H = H(τ) as describing for how long and to what extent fluid
behaviour is affected by the past deformation history. H is related to the storage modulus
G′ and loss modulus G′′ by the following integral equations:

G′(ω) =

∫ ∞
0

ω2τ2

1 + ω2τ2
H(τ)

τ
dτ, G′′(ω) =

∫ ∞
0

ωτ

1 + ω2τ2
H(τ)

τ
dτ.

Here ω denotes frequency, and τ relaxation time. (See, for example, Davies and Goulding
[3] for a derivation of these equations from Boltzmann’s linear viscoelastic theory.) Now G′
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and G′′ can be determined by oscillatory shear experiments; the experiments can only be
performed for a limited range of sampled frequencies, therefore the application of inversion
formulae based on all positive frequencies is problematic. Whilst in theory (see Renardy
[9]) G′ and G′′ can be recovered on the whole positive half-line by analytic continuation,
no practical algorithm exists that can perform this task with sufficient accuracy. Many of
the attempts to recover the whole relaxation spectrum are essentially curve-fitting. There
are also numerical schemes that produce a relaxation spectrum from a set of experimental
results, including the sampling localisation algorithm of Davies and Anderssen [2]. After
a change of variables ω = exp(−s) and τ = exp(t), and writing h(t) ≡ H(exp(t)) and
g(s) ≡ G′′(exp(−s)), the equation for the loss modulus G′′ may be rewritten (after some
manipulations)

g(s) =
1

2

∫ ∞
−∞

sech(s− t)h(t)dt,

that is g = sech∗h (ignoring the constant). Solving the inverse problem (finding h given g) is
ill-posed; regularisation methods are used, and there have been attempts to put numerical
schemes on a sound theoretical footing. Davies and Anderssen [2] have stated results of
sampling localisation, that is when information about H on some interval a < τ < b is
completely determined (from a practical numerical point of view) by values of G′, G′′ on
some (bounded) frequency interval. Their linear functional strategy relies on results of
relaxation spectrum recovery, that is showing that if g has certain properties, then h has
compact support.

The significance of the theorems in this paper is that under the assumption that ĝ can
be extended to an entire function in the complex plane, there are no non-trivial results
of relaxation spectrum recovery in the settings in which the problem has previously been
studied, nor in the more general setting of tempered distributions.

This paper is organised as follows. In section 2, working in the square integrable setting,
we prove Theorem 1. Section 3 is devoted to proving Theorem 2, a stronger non-existence
result, in Schwartz space. We consider what positive results may be established in Section
4, establishing Proposition 3. Section 5 discusses possible theoretical settings for further
study of this problem.

1.1 Definitions and notation

Definitions. For 1 < p ≤ 2, define

F[λ,p] = {g ∈ L1(R) : ĝξλ ∈ Lp(R)}.

We will be particularly interested in the case p = 2.
We will denote the Schwartz space of functions of rapid algebraic decay by S(R); let S ′(R)
denote the space of bounded linear functionals on S(R). Define

F[λ,S′] = {g ∈ L1(R) : ĝξλ ∈ S ′(R)}.

We use standard definitions of the Fourier transform and inverse Fourier transform:

f̂(r) =

∫ ∞
−∞

f(t) exp(−itr)dt,

F−1(f̂)(t) =
1

2π

∫ ∞
−∞

f̂(r) exp(itr)dr.

4



We extend the definition of Fourier transform to a complex variable z by

f̂(z) =

∫ ∞
−∞

f(t)e−iztdt. (2)

If t→ f(t)eat belongs to L1(R) for each a ∈ R, then (2) is well defined and for each z ∈ C,

|f̂(z)| ≤
∫ ∞
−∞
|f(t)e−izt|dt. (3)

(Note that this is a condition satisfied by Gaussian functions f .) If we further suppose f̂(z)
is analytic for each z ∈ C, then it is the entire extension of the usual Fourier transform of
f . See Friedlander and Joshi [5, Section 10.3] for a discussion of conditions for which the
Fourier transform can be defined for complex variables.

1.2 Statement of main results

Our main results are Theorems 1 and 2 which are proved in Sections 2 and 3 respectively.
We note that Gaussian functions g belong to the required spaces, with ĝ having entire
extension to the complex plane, therefore the theorems apply to non-trivial sets.

Theorem 1. Let g ∈ F[λ,2], and suppose that the extension of ĝ to the complex plane is
entire, and that there exists C ≥ 0, A > 0 such that |ĝ(z) cosh(λz)| ≤ C exp(A|z|) for all
z ∈ C. Then g = 0 (and h = F−1(ĝξλ) = 0).

Remark. This is the setting of the Paley-Wiener argument in [7].

Theorem 2. Suppose that h ∈ S ′(R) satisfies h = F−1(ĝξλ), where g ∈ F[λ,S′], and the
extension of ĝ to the complex plane is entire. Then if h has compact support, h = 0.

Corollary 1. Let 1 < p ≤ 2, and let q denote the conjugate exponent of p (i.e. 1/p+ 1/q =
1). Suppose that h ∈ Lq(R) satisfies h = F−1(ĝξλ), where g ∈ F[λ,p], and the extension of ĝ
to the complex plane is entire. Then if h has compact support, h = 0.

Remark. This is the setting of the direct argument in [7],[8].

2 Non-compactness of support in L2(R)

In this section, we demonstrate that there are no non-trivial elements g ∈ F[λ,2] such that the
extension of ĝ to the complex plane is entire, and ĝ is of exponential type. Our method of
proof is to note that F[λ,2] has no non-trivial elements with compact support (which follows
from the Identity theorem); demonstrate that if ĝξλ is of exponential type, then so is ĝ;
apply the Paley-Wiener theorem to deduce g ∈ F[λ,2] has compact support, and therefore
g = 0. The bulk of the work is concerned with the second step: section 2.1 considers the
case when g is one-signed and ĝ extended to the complex plane is represented by (2) (with g
replacing f), where we have constructed an elementary argument; section 2.2 deals with the
general case of two-signed g using properties of meromorphic functions. For the physical
problem we are modelling, g is non-negative; the one-signed case is of practical interest.

The following proposition was proved by Loy, Davies and Andersson [8]. (A more detailed
version of the proof can be found in Whittle Gruffudd [13].)
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Proposition 1. Let g ∈ F[λ,p] where 1 < p ≤ 2. Then g is an analytic function, and if g
has compact support then g = 0.

We state a Paley-Wiener theorem for square integrable functions. It is a trivial modification
of Rudin [11, Theorem 19.3]. (We use a change of variables so that f = F̂ , for F with
compact support, and then apply the inverse Fourier transform to both sides, noting the
Fourier transform is a Hilbert space isomorphism, see for example [11, Theorem 9.13].)

Theorem (Paley-Wiener in L2)
Let f be an entire function of exponential type, that is there exist C ≥ 0, A > 0, such that

|f(z)| ≤ CeA|z| for every z ∈ C.

If the restriction of f to the real line belongs to L2(R), then F−1(f) ∈ L2(R) has support
in [−A,A].

2.1 One-signed case

Given that ĝξλ is of exponential type, we demonstrate that ĝ is as well. We can rearrange
the inequality |ĝ(z) cosh(λz)| ≤ C1e

A|z| for |ĝ(z)| in regions where | cosh(λz)| is bounded
away from zero. The difficulty in the proof arises when dealing with the remainder of
the complex plane (as cosh(λz) vanishes at the odd integers on the imaginary axis); for
one-signed g, we compare |ĝ(z)| with values from the regions where an exponential type
inequality is known to hold. A key result is that for one-signed g, |ĝ(z)| ≤ |ĝ(iIm(z))|.

Lemma 1. Let g ∈ F[λ,2] be one-signed. Suppose ĝ has entire extension to the complex
plane with

ĝ(z) =

∫ ∞
−∞

g(t)e−iztdt

for each z ∈ C, and that t → g(t)eat belongs to L1(R) for each a ∈ R. Then if ĝξλ is of
exponential type, so is ĝ.

Proof. Noting ĝξλ is of exponential type, we may choose C1 ≥ 0 and A > 0 such that

|ĝ(z) cosh(λz)| ≤ C1e
A|z|

for every z ∈ C. Moreover

|eλz + e−λz| ≥ |2 cos(λIm(z))|, (4)

with equality on the imaginary axis. The right hand side of (4) is zero when Im(z) = 2k+1
for k ∈ Z (recalling λ = π/2). Choose intervals of uniform 1/2 width centred on the odd
integers on the imaginary axis; for all values z where iIm(z) is outside the intervals, we
have that

|eλz + e−λz| ≥ |2 cos(λIm(z))| ≥ 2| cos(3π/8)| = 2β > 0.

Define Ω = {z ∈ C : Im(z) ∈ (2k + 3/4, 2k + 5/4), some k ∈ Z}, that is extending the
intervals of width 1/2 centred on the odd integers on the imaginary axis to strips in the
complex plane. For z ∈ C\Ω we have

|ĝ(z)| ≤ C1e
A|z|

| cos(λIm(z))|
≤ C1e

A|z|

β
= C2e

A|z|, (5)
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where C2 ≥ 0 is a constant.

Now g is one-signed, so we have that for z ∈ C,

|ĝ(z)| =
∣∣∣∣∫ ∞
−∞

g(t)e−iztdt

∣∣∣∣ ≤ ∫ ∞
−∞
|g(t)||e−izt|dt =

∣∣∣∣∫ ∞
−∞

g(t)eIm(z)tdt

∣∣∣∣ = |ĝ(iIm(z))|,

where we have used (3). We note that if iIm(z) is in one of the intervals (on the imaginary
axis), then i(Im(z) + 1) and i(Im(z) − 1) are not (as we chose the intervals sufficiently
small). Consequently for z ∈ Ω the following calculation holds:

|ĝ(z)| ≤ |ĝ(iIm(z))| =
∣∣∣∣∫ ∞
−∞

g(t)eIm(z)tdt

∣∣∣∣ ≤ ∣∣∣∣∫ ∞
−∞

g(t)
(
e(Im(z)+1)t + e(Im(z)−1)t

)
dt

∣∣∣∣
= |ĝ(i(Im(z) + 1))|+ |ĝ(i(Im(z)− 1))| ≤ C2e

A|Im(z)+1| + C2e
A|Im(z)−1| (6)

≤ C3e
A(|Im(z)|+1) = C4e

A|Im(z)| ≤ C4e
A|z|,

where C3, C4 ≥ 0 are constants. By way of explanation we have used inequality (5) to
obtain the inequality in (6). Combining the above, ĝ is of exponential type.

2.2 General case

For the general case of two-signed g, there is no reason to suppose the estimates of Lemma
1 are valid. Instead we interpret the hypothesis that ĝξλ is of exponential type as an upper
bound on |ĝ|, and establish that ĝ is a meromorphic function of a given type. Results of
Rubel and Taylor [10] yield that ĝ is of exponential type. The assumption that ĝ is entire
simplifies the calculation.

We use (definitions and) results of Rubel and Taylor [10]. These were stated for meromor-
phic functions, that is a function which is analytic except at a discrete set of isolated points
where it has poles. We will be concerned with the simpler case of entire functions.

Definitions. The Nevanlinna characteristic function T of a meromorphic function f is
given by

T (r, f) = m(r, f) +N(r, f),

where the proximity function m is defined by

m(r, f) =
1

2π

∫ 2π

0
log+ |f(reiθ)|dθ,

where the + superscript denotes positive part, and the integrated counting function N ,
which is only concerned with the poles of f . For an entire function f , T (r, f) = m(r, f).

A meromorphic function f is of finite ρ-type if there exist positive constants b, B such that
T (r, f) ≤ bρ(Br), where ρ : [0,∞)→ R is positive, non-decreasing and continuous.

Remark. Rubel and Taylor use the notation λ-type; λ is already in use in our problem.

Theorem. An entire function f is of finite ρ-type if and only if there exist positive constants
α and β such that |f(z)| ≤ exp(αρ(β|z|)) for all z ∈ C.

Lemma 2. Let g ∈ F[λ,2]. Suppose that ĝξλ is of exponential type, and that the extension
of ĝ to the complex plane is entire. Then ĝ is of exponential type.
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Proof. Noting that ĝξλ is of exponential type, for z ∈ C we have that

|ĝ(z)| ≤ CeA|z|

| cosh(λz)|
, (7)

for some constants A > 0, C ≥ 0. Now

m(r, ĝ) ≤ 1

2π

∫ 2π

0
log+

∣∣∣∣∣ CeA|re
iθ|

cosh(λreiθ)

∣∣∣∣∣ dθ =
1

2π ln d

∫ 2π

0
ln+

∣∣∣∣ CeAr

cosh(λreiθ)

∣∣∣∣ dθ (8)

=
1

2π ln d

∫
{θ∈[0,2π]:CeAr>| cosh(λreiθ)|}

ln

∣∣∣∣ CeAr

cosh(λreiθ)

∣∣∣∣ dθ
≤ 1

2π ln d

{∫ 2π

0
ln(CeAr)dθ −

∫
{θ∈[0,2π]:| cosh(λreiθ)|<1}

ln | cosh(λreiθ)|dθ

}
(9)

≤ A1r + C1, (10)

for some constants A1, C1 > 0. By way of explanation, the inequality in (8) follows from
(7), noting that log+ is an increasing function; we assume log is to the base d (it is not
specified in Rubel and Taylor [10]) to obtain the equality in (8); (10) follows from the fact
that the second integral in (9) is bounded (independently of r, see Whittle Gruffudd [13,
Lemma 3.12] for full details).

We have shown that ĝ is of finite ρ-type where ρ(r) = r + 1. It follows from Rubel and
Taylor [10] that there exist positive constants α, β such that for z ∈ C,

|ĝ(z)| ≤ exp(αρ(β|z|)) = exp(α(β|z|+ 1)) = C2e
A2|z|,

for C2 = expα, A2 = αβ. We have demonstrated that ĝ is of exponential type.

Proof of Theorem 1.
Noting that ĝξλ is of exponential type, Lemma 2 yields that ĝ is of exponential type.
Applying the Paley-Wiener theorem to ĝ we deduce that g = F−1(ĝ) has compact support
in L2(R). Noting that g ∈ F[λ,2], Proposition 1 yields that g = 0 (and h = F−1(ĝξλ) = 0).

3 Non-compactness of support in S ′(R)

In this section we demonstrate that there are no non-trivial h with compact support satisfy-
ing h = F−1(ĝξλ) for g ∈ F[λ,S′] where the extension of ĝ to the complex plane is entire. Our
method of proof is to suppose h has compact support; apply the Paley-Wiener-Schwartz
theorem to h to deduce that ĝξλ is of exponential type; demonstrate that if ĝξλ is of expo-
nential type, then so is ĝ; apply the Paley-Wiener-Schwartz theorem to ĝ to deduce that
g ∈ F[λ,S′] has compact support; note that F[λ,S′] has no non-trivial elements with compact
support, and conclude that g = 0, and hence h = 0. In the setting of Schwartz distribu-
tions, we use a stronger form of the Paley-Wiener theorem: the inverse Fourier transform
of a function has compact support if and only if the function is of exponential type. This
enables us to work directly with h, and achieve a better result compared with the square
integrable setting.
Most of the work is concerned with proving that if ĝξλ is of exponential type, then so
is ĝ. Section 3.1 considers when g is one-signed and ĝ extended to the complex plane is
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represented by (2) (with g replacing f); the arguments of Lemma 1 are easily adjusted to
fit the tempered distribution setting. To deal with two-signed g, we again use properties of
meromorphic functions, however extra work is needed to extend the inequality to the whole
complex plane. This is the content of section 3.2.

Definitions. Following Rudin [12, Chapter 7], let S(R) denote the Schwartz space of
smooth functions of rapid algebraic decay, that is those f ∈ C∞(R) for which

sup
m≤N

sup
x∈R

(1 + |x|2)N |Dm(f)(x)| <∞

for each N = 0, 1, 2, ..., where Dm(f) denotes the mth order derivative of f .

We denote the associated space of Schwartz distributions (i.e. the set of bounded linear
functionals on S(R)) by S ′(R).

A distribution T ∈ S ′(R) has support in a closed set K if T (ϕ) = 0 for every ϕ ∈ S(R) with
support in the complement of K.

The Fourier transform maps S(R) to S(R) and is linear, injective, and bi-continuous.

The Fourier transform T̂ in the sense of tempered distribution of T ∈ S ′(R) is defined by
T̂ (ϕ) = T (ϕ̂) for every ϕ ∈ S(R).

The following proposition is easily established by the methods of Loy, Davies and Andersson
[8]. Full details can be found in Whittle Gruffudd [13].

Proposition 2. Let g ∈ F[λ,S′]. Then g is an analytic function, and if g has compact
support then g = 0.

We state a Paley-Wiener theorem for Schwartz distributions. (See, for example, Friedlander
and Joshi [5, Theorem 10.2.1 and Theorem 10.2.2].)

Theorem (Paley-Wiener-Schwartz)

Let A > 0. We have that F−1(f) ∈ S ′(R) has support in [−A,A] if and only if f ∈ S ′(R)
has entire extension to C and

|f(z)| ≤ C(1 + |z|)neA|Im(z)| for every z ∈ C,

for some constants C, n ≥ 0.

3.1 One-signed case

When g is one-signed, we can modify the arguments of Lemma 1 to fit the definition of
exponential type in the tempered distribution setting.

Lemma 3. Let g ∈ F[λ,S′] be one-signed. Suppose ĝ has entire extension to the complex
plane with

ĝ(z) =

∫ ∞
−∞

g(t)e−iztdt

for each z ∈ C, and that t → g(t)eat belongs to L1(R) for each a ∈ R. Then if ĝξλ is of
exponential type, so is ĝ.

9



Proof. We use the methods of the proof of Lemma 1; let β and Ω be as defined in that
lemma. Noting ĝξλ is of exponential type, we may choose C1 ≥ 0 and A > 0 such that

|ĝ(z) cosh(λz)| ≤ C1(1 + |z|)neA|Im(z)|

for every z ∈ C. Now for z ∈ C\Ω we have

|ĝ(z)| ≤ C1(1 + |z|)neA|Im(z)|

β
= C2(1 + |z|)neA|Im(z)|

where C2 ≥ 0 is a constant. Now for z ∈ Ω,

|ĝ(z)| ≤ |ĝ(i(Im(z) + 1))|+ |ĝ(i(Im(z)− 1))|
≤ C2(1 + |Im(z) + 1|)neA|Im(z)+1| + C2(1 + |Im(z)− 1|)neA|Im(z)−1|

≤ C3(2 + |Im(z)|)neA(|Im(z)|+1) ≤ C4(1 + |Im(z)|)neA|Im(z)| ≤ C4(1 + |z|)neA|Im(z)|,

where C3, C4 ≥ 0 are constants. Combining the above, ĝ is of exponential type.

3.2 General case

As in section 2.2, we make use of results of Rubel and Taylor [10]. These yield a bound
on the size of ĝ in terms of eA|z| rather than eA|Im(z)|. Accordingly we split our argument
into two cases: for z satisfying |Im(z)| ≥ |Re(z)|, we have |z| ≤

√
2|Im(z)|; for z satisfying

|Im(z)| < |Re(z)| we can rearrange the exponential type inequality for ĝξλ into one for ĝ
as | cosh(λz)| is bounded away from zero.

Lemma 4. Let g ∈ F[λ,S′]. Suppose that ĝξλ is of exponential type, and that the extension
of ĝ to the complex plane is entire. Then ĝ is of exponential type.

Proof. Noting that ĝξλ is of exponential type, for z ∈ C we have

|ĝ(z)| ≤ C(1 + |z|)neA|Im(z)|

| cosh(λz)|
≡ η(z) (11)

for some constants A > 0, C ≥ 0, some n ∈ N. Now, by making similar estimates to those
in the proof of Lemma 2,

m(r, ĝ) ≤ 1

2π

∫ 2π

0
log+ η(reiθ)dθ =

1

2π ln d

∫ 2π

0
ln+ η(reiθ)dθ

=
1

2π ln d

∫
{θ∈[0,2π]:η(reiθ)>1}

ln η(reiθ)dθ

≤ 1

2π ln d

∫ 2π

0
lnC(1 + |reiθ|)neA|Im(reiθ)|dθ

− 1

2π ln d

∫
{θ∈[0,2π]:| cosh(λreiθ)|<1}

ln | cosh(λreiθ)|dθ

≤ 1

2π ln d

∫ 2π

0
ln(C(1 + r)neAr)dθ + C0

≤ A2n ln(1 + r) +A1r + C1,
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for some constants A1, A2, C1, C0 > 0. We have shown that ĝ is of finite ρ1-type (where
ρ1(r) = n ln(1 + r) + r + 1). It follows from Rubel and Taylor [10] that there exist positive
constants α and β such that for z ∈ C,

|ĝ(z)| ≤ exp(αρ1(β|z|)) ≤ C3(1 + |z|)αneA3|z|, (12)

where C3 = C3(α, β) > 0, A3 = αβ. For z ∈ C satisfying |Im(z)| ≥ |Re(z)|, we have
|z| ≤

√
2|Im(z)|, and from (12) we have

|ĝ(z)| ≤ C3(1 + |z|)αne
√
2A3|Im(z)|. (13)

For z ∈ C satisfying |Im(z)| < |Re(z)|, we can choose γ > 0 such that | cosh(λz)| ≥ γ. In
this region (11) yields that

|ĝ(z)| ≤ C

γ
(1 + |z|)neA|Im(z)|. (14)

Combining (13) and (14) yields that ĝ is of exponential type.

Proof of Theorem 2
Applying the Paley-Wiener-Schwartz theorem to h yields that ĝξλ is of exponential type.
Now Lemma 4 implies that ĝ is of exponential type. Applying the Paley-Wiener-Schwartz
theorem to ĝ we deduce that g = F−1(ĝ) has compact support in S ′(R). Noting g ∈ F[λ,S′],
Proposition 2 yields that g = 0, and h = F−1(ĝξλ) = 0.

Proof of Corollary 1
Noting that S ′(R) contains Lp(R) and Lq(R), h satisfies the hypotheses of Theorem 2.
Therefore h = 0.

4 Strictly positive definite relaxation spectra

In this section we establish conditions for the relaxation spectrum to be strictly positive
definite; Gaussians are archetypal examples of such functions. (See, for example, Chang [1,
Theorem 1.2] for elementary properties satisfied by (strictly) positive definite functions.)
Definition. Let f be a (real or) complex continuous function defined on R. Then f is
strictly positive definite if the matrix A defined by Aij = f(xi − xj) is strictly positive
definite for all sets of points x1, ..., xn.

Bochner’s theorem yields that every (strictly) positive definite function f is the Fourier
transform of a positive finite Borel measure. Recalling that the carrier (or support) of
a positive finite Borel measure is the smallest closed set with full measure, the following
theorem (see Chang [1]) may be considered a converse:

Theorem. Let µ be a non-zero, finite Borel measure on R such that the carrier of µ is not
a discrete set. Then the generalised Fourier transform µ̂ of µ is strictly positive definite on
R.

Proposition 3. Let non-zero g ∈ F[λ,p] for some 1 < p ≤ 2. Define

µ(B) =

∫
B
ĝ cosh(λx)dx
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for B belonging to the Borel field of R. Then µ defines a finite Borel measure on R if and
only if h = F−1(ĝξλ) ∈ Lq(R) is strictly positive definite, where q denotes the conjugate
exponent of p.

Proof. Suppose µ defines a finite Borel measure on R. The carrier of ĝξλ as a measure is
synonymous with the support of ĝ, noting cosh is strictly positive on R. Now ĝ is non-zero
(as g is non-zero), that is it is non-zero on a set of positive size; the support of ĝ (and the
carrier of µ) is not discrete. The arguments in the above theorem are equally applicable to
the inverse Fourier transform; we deduce that h = F−1(ĝξλ) is strictly positive definite.

Conversely suppose that h = F−1(ĝξλ) is strictly positive definite. Then, noting that
the arguments of Bochner’s theorem apply equally well to the inverse Fourier transform, we
have that h = F−1(ν) for some finite Borel measure ν; we identify ν with µ.

5 Conclusion and Discussion

An outstanding question is whether we can establish general results of relaxation spectrum
recovery, that is conditions on g which imply h has compact support. There are examples
(not satisfying the conditions of Theorems 1 and 2) which indicate such results should
exist (under different hypotheses). As noted in the introduction, if g = sech then ĝ(r) =
πsech(λr) and h = δ, where δ denotes the Dirac mass (concentrated at zero). Further study
in the settings of square integrable functions or tempered distributions should consider ĝ
which fail to be analytic at (some of) the zeroes of ξλ (in the complex plane).

To prove a result of relaxation recovery by Paley-Wiener methods, it seems natural to
assume ĝ has entire extension to the complex plane, ensuring ĝξλ is entire, but work in a
larger class of functions. Let T (R) be a space of functions, T ′(R) the associated space of
bounded linear functionals on T (R). Define

F[λ,T ′] = {g ∈ L1(R) : ĝξλ ∈ T ′(R)}.

Suppose we have a Plancherel theorem on T (R) (that is the Fourier transform is a well
behaved mapping from T (R) to itself) and a Paley-Wiener theorem on T ′(R). A minimum
requirement for the correct setting is that F[λ,T ′] contains non-zero elements with compact
support. Smooth functions with Gaussian decay, as described in Gindikin and Volevich [6],
would be a candidate.
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