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Taking Fuzzy-Rough Application to Mars?

Fuzzy-Rough Feature Selection
for Mars Terrain Image Classification

Changjing Shang, Dave Barnes and Qiang Shen

Dept. of Computer Science, Aberystwyth University, Wales, UK.
{cns,dpb,qqs}@aber.ac.uk

Abstract. This paper presents a novel application of fuzzy-rough set-
based feature selection (FRFS) for Mars terrain image classification. The
work allows the induction of low-dimensionality feature sets from sample
descriptions of feature patterns of a much higher dimensionality. In par-
ticular, FRFS is applied in conjunction with multi-layer perceptron and
K-nearest neighbor based classifiers. Supported with comparative stud-
ies, the paper demonstrates that FRFS helps to enhance the effectiveness
and efficiency of conventional classification systems, by minimizing re-
dundant and noisy features. This is of particular significance for on-board
image classification in future Mars rover missions.

1 Introduction

The panoramic camera instruments on the Mars Exploration Rovers have ac-
quired a large volume of high-resolution images, which provides substantial in-
formation to characterize the Mars environment [1, 4]. Automated analysis of
such images has since become an important task, especially for surveying places
(e.g. for geologic cues) in Mars [8, 12]. Any progress towards automated detec-
tion and recognition of objects within Mars images, including different types of
rocks and their surroundings, will make a significant contribution to the accom-
plishment of this task.

Mars terrain images vary significantly in terms of intensity, scale and rota-
tion, and are blurred with noise. These factors make Mars image classification
a challenging problem. One critical step to successfully build an image classifier
is to extract and use informative features from given images [3, 7, 9]. To cap-
ture the essential characteristics of such images, many features may have to be
extracted without explicit prior knowledge of what properties might best repre-
sent the underlying scene reflected by the original image. Yet, generating more
features increases computational complexity and measurement noise, and not
all such features may be useful to perform classification. Thus, it is desirable to
employ a technique that can determine the most significant features, based on
sample measurements, to simplify the classification process, while ensuring high
classification performance.
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This paper presents an approach for performing large-scale Mars terrain im-
age classification, by exploiting the recent advances in fuzzy-rough set-based
feature selection techniques [6]. As such, fuzzy-rough sets are, for the first time,
applied to tasks relevant to space engineering. Experimental results show that
this application ensures rapid and accurate learning of classifiers. This is of great
importance to on-board image classification in future Mars rover missions. The
rest of this paper is organized as follows. Section 2 introduces the Mars ter-
rain images under investigation. Sections 3, 4 and 5 outline the key component
techniques used in this work, including feature extraction, (fuzzy-rough) feature
selection and feature pattern classification. Section 6 shows the experimental
results, supported by comparative studies. The paper is concluded in Section 7.

2 McMurdo Panorama Image

This work concentrates on the classification of the McMurdo panorama image,
which is obtained from the panoramic camera on NASA’s Mars Exploration
Rover Spirit and presented in approximately true color [4]. Such an image reveals
a tremendous amount of detail in part of Spirit’s surroundings, including many
dark, porous-textured volcanic, brighter and smoother-looking rocks, sand ripple,
and gravel (mixture of small stones and sand). Fig. 1 shows the most part of the
original McMurdo image (of a size 20480×4124). This image, excluding the areas
occupied by the instruments and their black shadows, is used for the work here,
involving five major image types (i.e. classes) which are of particular interest.
These image types are: textured or smoothed dark rock (C1), orange colored
bedding rock (C2), light gray rock (C3), sand (C4), and gravel (C5), which are
illustrated in Fig. 2. The ultimate task of this research is to detect and recognize
these five types of image over a given region.

Fig. 1. Mars McMurdo panorama image.

3 Feature Extraction

Many techniques may be used to capture and represent the underlying charac-
teristics of a given image [3, 10]. In this work, local grey level histograms and



Fig. 2. Image classes (C1: rock1, C2: rock2, C3: rock3, C4: sand, C5: gravel).

the first and second order color statistics are exploited to produce a feature pat-
tern for each individual pixel. This is due to the recognition that such features
are effective in depicting the underlying image characteristics and are efficient
to compute. Also, the resulting features are robust to image translation and
rotation, thereby potentially suitable for classification of Mars images.

3.1 Color Statistics-Based Features

Color images originally given in the RGB (Red, Green and Blue) space are first
transformed to those in the HSV (Hue, Saturation and Value) color space [10].
These spaces are in bijection with one another, and the HSV space is widely
used in the literature. Six features are then generated per pixel, by computing
the first order (mean) and the second order (standard deviation, denoted by
STD) color statistics with respect to each of the H, S and V channels, from a
neighborhood of the pixel. The size of such neighborhoods is pre-selected by trial
and error (which trades off between the computational efficiency in measuring
the features and the representative potential of the measured features).

3.2 Local Histogram-Based Features

To reduce computational complexity, in extracting histogram-based features,
given color images are first transformed to grey-level (GL) images. For a certain
pixel, a set of histogram features Hi, i = 1, 2, ..., B, are then calculated within a
predefined neighborhood, with respect to a certain bin size B. Here, the neigh-
borhood size is for convenience, set to the same as that used in the above color
feature extraction, and Hi denotes the normalized frequency of the GL histogram
in bin i. To balance between effectiveness and efficiency, B is empirically set to
16 in this work. In addition, two further GL statistic features are also generated,
namely, the mean and STD (which are different from their color statistics-based
counterparts of course).

4 Fuzzy-Rough Set-Based Feature Selection

Let U be the set of pixels within a given image, P be a subset of features, and
D be the set of possible image classes. The concept of fuzzy-rough dependency
measure [6], of D upon P , is defined by



γP (D) =

∑
x∈U

µPOSRP
(D)(x)

|U |
(1)

where
µPOSRP

(D)(x) = sup
X∈U/D

µRP X(x) (2)

µRP X(x) = inf
y∈U

I(µRP
(x, y), µX(y)) (3)

and U/D denotes the (equivalence class) partition of the image (i.e. pixel set)
with respect to D, and I is a fuzzy implicator and T a t-norm. RP is a fuzzy
similarity relation induced by the feature subset P :

µRP (x, y) = TA∈P {µR{A}(x, y)} (4)

That is, µR{A}(x, y) is the degree to which pixels x and y are deemed similar
with regard to feature A. It may be defined in many ways, but in this work, the
following commonly used similarity relation [5] is adopted:

µR{A}(x, y) = 1 − |A(x) − A(y)|
Amax − Amin

(5)

where A(x) and A(y) stand for the value of feature A ∈ P of pixel x and that of
y, respectively, and Amax and Amin are the maximum and minimum values of
feature A. The fuzzy-rough set-based feature selection (FRFS) method works by
greedy hill-climbing. It employs the above dependency measure to choose which
features to add to the subset of the current best features and terminates when
the addition of any remaining feature does not increase the dependency.

5 Image Classifiers

Multi-layer perceptron neural networks [11] and K-nearest neighbors (KNN) [2]
are used here to accomplish image classification, by mapping input feature pat-
terns onto the underlying image class labels. For learning such classifiers, a set of
training data is selected from the typical parts (see Fig. 2) of the McMurdo im-
age, with each pixel represented by a feature pattern which is manually assigned
an underlying class label.

6 Experimental Results

From the McMurdo image of Fig. 1, a set of 270 subdivided non-overlap images
with a size of 512 × 512 each are used to perform this experiment. 816 pixel
points are selected from 28 of them, which are each labeled with an identified
class index (i.e. one of the five image types: rock1, rock2, rock3, sand and gravel)
for training and verification. The rest of all these images are used as unseen
data for classification. Each training pixel is represented by a pattern of 24
features (see Section 3). Of course, the actual classification process only uses



Table 1. Feature meaning and reference

No. Meaning No. Meaning No. Meaning No. Meaning No. Meaning

1 Mean(GL) 2 STD(GL) 3 Mean(H) 4 STD(H) 5 Mean(S)

6 STD(S) 7 Mean(V) 8 STD(V) 9-24 Hi

subsets of selected features. The performance of each classifier is measured using
classification accuracy, with ten-fold cross validation.

For easy cross-referencing, Table 1 lists the reference numbers of the original
features that may be extracted, where i = 1, 2, ..., 16. In the following, for KNN
classification, the results are first obtained with K set to 1, 3, 5, 8, and 10.
For the MLP classifiers, to limit simulation cost, only those of one hidden layer
are considered here with the number of hidden nodes set to 8, 12, 16, 20, or
24. Those classifiers which have the highest accuracy, with respect to a given
feature pattern dimensionality and a certain number of nearest neighbors or
hidden nodes, are then taken for performance comparison.

6.1 Comparison with the Use of All Original Features

This subsection shows that, at least, the use of a selected subset of features
does not significantly reduce the classification accuracy as compared to the use
of the full set of original features. For this problem, FRFS returns 8 features,
namely, STD(GL), Mean(H), STD(H), Mean(S), STD(S), Mean(V), H4, H15

(i.e. features 2, 3, 4, 5, 6, 7, 12 and 23 in Table 1), out of the original twenty-four.
That is, a reduction rate of two-third. Table 2 lists the correct classification rates
produced by the MLP and KNN classifiers with 10-fold-cross-validation, where
the number (N) of hidden nodes and that (K) of the nearest neighbors used by
these MLP and KNN classifiers are also provided (in the first column).

Table 2. FRFS-selected vs. full set of original features

Classifier Set Dim. Feature No Rate

MLP(N=20) FRFS 8 2, 3, 4, 5, 6, 7, 12, 23 94.0%
MLP(N=20) Full 24 1, 2, ..., 23, 24 94.0%

KNN(K=8) FRFS 9 2, 3, 4, 5, 6, 7, 12, 23 89.1%
KNN(K=5) Full 24 1, 2, ..., 23, 24 89.2%

The results demonstrate that the classification accuracy of using the eight
FRFS-selected features is the same as that of using the twenty-four original
features for MLP classifiers (94.0%), and is very close to that for KNN classifiers
(89.1% vs. 89.2%). This is indicative of the potential of FRFS in reducing not



only redundant feature measurements but also the noise associated with such
measurements. Clearly, the use of FRFS helps to improve both effectiveness and
efficiency of the classification process. Note that although the number of original
features is not large, for on-board Martian application, especially in relation to
the task of classifying large-scale images, any reduction of feature measurements
is of great practical significance.

6.2 Comparison with the Use of PCA-Returned Features
Principal component analysis (PCA) [2] is arguably one of the most popular
methods for dimensionality reduction, it is adopted here as the benchmark for
comparison. Fig. 3 shows the classification results of the KNN and MLP clas-
sifiers using a different number of principal features. For easy comparison, the
results of the KNN and MLP that use 8 FRFS-selected features are also included
in the figure, which are represented by ∗ and ◦, respectively.
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Fig. 3. Performance of KNN and MLP vs. the number of principal components.

These results show that the MLP classifier which uses FRFS-selected features
has a substantially higher classification accuracy amongst all those classifiers us-
ing a subset of features of the same dimensionality (i.e. 8). This is achieved
via a considerably simpler computation, due to the substantial reduction of the
complexity in input patterns. The results also show the cases where PCA-aided
(MLP or KNN) classifiers each employ a feature subset of a different dimen-
sionality. However, these classifiers still generally underperform than the corre-
sponding FRFS-aided ones, whether they are implemented using MLP or KNN.
This situation only changes when almost the full set of PCA-returned features
is used where the MLP classifiers may perform similarly or slightly better (if 20
or 22 principal components are used). Yet, this is at the expense of requiring
many more feature measurements and much more complex classifier structures.
Besides, PCA-returned features lose the underlying meaning of the original.



6.3 Classified and Segmented Images

The ultimate task of this research is to classify Mars panoramic camera im-
ages and to detect different objects or regions in such images. The MLP which
employs the 8 FRFS-selected features, and which was trained by the given 816
labeled feature patterns, is taken to accomplish this task: the classification of the
entire image of Fig. 1 (excluding those regions as indicated previously). As an
illustration, three classified images are shown in Fig. 4, numbered by (a), (b) and
(c) respectively, where five different colors represent the five image types (rock1,
rock2, rock3, sand and gravel). From this, boundaries between different class re-
gions can be identified and marked with white lines, resulting in the segmented
images also given in Fig. 4, numbered by (d), (e) and (f) correspondingly.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Classified and segmented image.

From these classified images, it can be seen that the five image types vary in
terms of their size, rotation, color, contrast, shapes, and texture. For human eyes
it can be difficult to identify boundaries between certain image regions, such as
those between sand and gravel, and those between rock2 and sand. However, the
classifier is able to perform under such circumstances, showing its robustness
to image variations. This indicates that the small subset of features selected
by FRFS indeed convey the most useful information of the original. Note that
classification errors mainly occur within regions representing sand and gravel.
This may be expected since gravel is itself a mixture of sand and small stones.



7 Conclusion

This paper has presented a study on Mars terrain image classification, supported
by advanced fuzzy-rough set-based feature selection techniques. For the first
time, fuzzy-rough sets have been adopted to help solving problems in space en-
gineering. Although the real-world images encountered are large-scale and com-
plex, the resulting feature pattern dimensionality of selected features is manage-
able. Conventional classifiers such as MLP and KNN that are built using such
selected features generally outperform those using more features or an equal
number of features obtained by classical approaches represented by PCA. This
is confirmed by systematic experimental investigations (though the influence of
parameter set-up for feature extraction, e.g. the number of pixels in neighbors
and that of bins in histograms, requires further investigation). The work helps to
accomplish challenging image classification tasks effectively and efficiently. This
is of particular significance for classification and analysis of real images on board
in future Mars rover missions.
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