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Preserving Piece-wise Linearity in Fuzzy Interpolation

Zhiheng Huang and Qiang Shen

Abstract— Fuzzy interpolative reasoning plays an important
role in fuzzy modelling as it not only helps to reduce the
number of rules in a rule base, but also provides an inference
mechanism for sparse rule bases. In interpolation, it is desirable
to preserve piece-wise linearity as piece-wise linear results can
thus be inferred from piece-wise linear rules and observations.
This safely ensures the ignorance of non-characteristic points
in performing interpolations. However, almost all existing fuzzy
interpolative reasoning methods do not preserve piecewise
linearity for general polygonal fuzzy sets. This paper, based
on the work of [1], proposes a new interpolative method which
preserves this property.

I. INTRODUCTION

Fuzzy rule interpolation helps reduce the complexity of
fuzzy models and supports inference in systems that employ
sparse rule sets [2]. With interpolation, fuzzy rules which
may be approximated using their neighboring rules can be
omitted from the rule base. This leads to the complexity re-
duction of fuzzy models. When observations have no overlap
with the antecedent values of the rules given, classical fuzzy
inference methods have no rule to fire, but interpolative rea-
soning methods can still obtain certain conclusions. Despite
these significant advantages, earlier work in fuzzy interpola-
tive reasoning does not guarantee the convexity of the derived
fuzzy sets [3], [4], which is often a crucial requirement of
fuzzy reasoning to attain more easily interpretable practical
results.

There has been considerable work reported in the litera-
ture to eliminate the non-convexity drawback. For instance,
Vas, Kalmar and Kóczy have proposed an algorithm [5]
that reduces the problem of non-convex conclusions. Qiao,
Mizumoto and Yan [6] have published an improved method
which uses similarity transfer reasoning to guarantee the
attainment of convex results. Hsiao, Chen and Lee [7] have
introduced a new interpolative method which exploits the
slopes of the fuzzy sets. General fuzzy interpolation and
extrapolation techniques [8], and a modified α-cut based
method [9], have also been proposed. In addition, Bouchon,
Marsala and Rifqi have created an interpolative method by
exploiting the concept of graduality [10], and Yam and Kóczy
[11], [12] have proposed a fuzzy interpolative method based
on Cartesian representation.

Nevertheless, some of the existing methods may not be
able to obtain unique as well as normal and convex fuzzy
(NCF) results. Others may only apply to simple fuzzy mem-
bership functions limited to triangular or trapezoidal. More
significantly, none of these approaches preserves the piece-
wise linearity property. Here, piece-wise linearity means
that interpolation can be computed using only characteristic
points that describe the given polygonal fuzzy sets. In other
words, the interpolation of non-characteristic points which lie
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between two characteristic points leads to non-characteristic
points which also lie between the two interpolated character-
istic points. This paper, based on the initial work as presented
in [1], proposes a method which overcomes these problems.

The rest of the paper is organized as follows. Section
II briefly introduces the general representative value for
arbitrary complex polygonal fuzzy sets. Section III describes
the proposed interpolative reasoning method. Section IV
gives the proof of preservation of piecewise linearity for the
proposed method. Section V presents a comparative study
between the work of [1] and the newly proposed method.
Finally, Section VI concludes the paper and points out further
research.

II. GENERAL REPRESENTATIVE VALUE

The work of [1] follows transformation based approach
to performing interpolation. To facilitate such an approach,
the representative value (RV) of the (polygonal) fuzzy sets
involved must be defined first. This value captures important
information such as the overall location of a fuzzy set, and
will be used as the guide to carry out interpolations. Consider
an arbitrary polygonal fuzzy set with n characteristic points,
A = (a0, . . . , an−1), as shown in Fig. 1. It is assumed
that the arbitrary fuzzy sets mentioned in this paper exclude
the ones which have more than one peak interval (of a full
membership value). Given such an assumption, the fuzzy set
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Fig. 1. The RV of an arbitrary polygonal fuzzy set

A has ⌊n
2
⌋ supports (horizontal intervals between every pair

of characteristic points which have the same membership
value) and 2(⌈n

2
⌉ − 1) slopes (non-horizontal intervals be-

tween every pair of consecutive characteristic points), where
⌊n

2
⌋ is the smallest integer that is not less than n

2
, and ⌈n

2
⌉

is the largest integer that is not greater than n
2

. Note that
the two top characteristic points (of the membership value
1) do not have to be different. Although this figure explicitly
assumes that evenly paired characteristic points are given at
each α-cut level, this does not affect the generality of the
fuzzy set as artificial characteristic points can be introduced
to construct evenly paired characteristic points. Given such
an arbitrary polygonal fuzzy set its general RV is defined by

Rep(A) =

n−1
∑

i=0

wiai, (1)



where wi is the weight assigned to point ai.
Specifying the weights is necessary for a given application.

The simplest case (which is called the average RV hereafter)
is that all points take the same weight value, i.e., wi = 1

n
.

An alternative definition named the weighted average RV
assumes that the weights increase upwards from the bottom
support to the top support, to reflect the significance of
different fuzzy membership values. For instance, assuming
the weights increase upwards from 1

2
to 1, such an RV can

be defined by

Rep(A) =

∑⌈n

2
⌉−1

i=0

1+αi

2
(ai + an−1−i)

∑⌈n

2
⌉−1

i=0

1+αi

2

. (2)

One of the most widely used defuzzification methods –
the center of core can also be used to define the center of
core RV. In this case, the RV is solely determined by those
points with a fuzzy membership value of 1:

Rep(A) =
1

2
(a⌈n

2
⌉−1 + an−⌈n

2
⌉). (3)

III. PROPOSED INTERPOLATION

A. Construct the Intermediate Rule

To be concise, the simplest case is herein used to illustrate
the underlying techniques for fuzzy interpolation. Given two
adjacent rules:

If X is A1 then Y is B1,

If X is A2 then Y is B2,

which are denoted as A1 ⇒ B1, A2 ⇒ B2 respectively,
and an observation A∗ which is located between fuzzy sets
A1 and A2, interpolation can be carried out to achieve a
fuzzy result B∗. In another form, this simplest case can be
represented through the modus ponens interpretation (4), and
shown in Fig. 2.
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Fig. 2. Interpolation with arbitrarily polygonal fuzzy membership functions

observation: X is A∗

rules: if X is A1, then Y is B1

if X is A2, then Y is B2

conclusion: Y is B∗?

(4)

Here, Ai = (ai0, . . . , ai,n−1), Bi = (bi0, . . . , bi,n−1), i =
{1, 2}, and A∗ = (a0, . . . , an−1), B∗ = (b0, . . . , bn−1).

As with the work of [1], [13], the proposed interpolation
method begins with constructing a new fuzzy set A′ which
has the same RV as A∗. To support this, the distance between
A1 and A2 is herein defined by

d(A1, A2) = d(Rep(A1), Rep(A2)). (5)

An interpolative ratio λRep (0 ≤ λRep ≤ 1) is introduced to
represent the important impact of A2 upon the construction
of A′:

λRep =
d(A1, A∗)

d(A1, A2)
=

d(Rep(A1), Rep(A∗))

d(Rep(A1), Rep(A2))
. (6)

That is to say, if λRep = 0, A2 plays no part in constructing
A′, while if λRep = 1, A2 plays a full role in determining
A′. Then, by using the simplest linear interpolation, a′

i, i =
{0, . . . , n − 1}, of A′ are calculated as follows:

a′
i = (1 − λRep)a1i + λRepa2i, (7)

which are collectively abbreviated to

A′ = (1 − λRep)A1 + λRepA2. (8)

Now, A′ is a convex fuzzy set which has the same repre-
sentative value as A∗. The proof is ignored here, interested
readers may refer to [1]. Similarly, the consequent fuzzy set
B′ can be obtained by

B′ = (1 − λRep)B1 + λRepB2. (9)

In so doing, the newly derived rule A′ ⇒ B′ involves the
use of only normal and convex fuzzy sets.

As A′ ⇒ B′ is derived from A1 ⇒ B1 and A2 ⇒ B2,
it is feasible to perform fuzzy reasoning with this new rule
without further reference to its originals. The interpolative
reasoning problem is therefore changed from (4) to the new
modus ponens interpretation:

observation: X is A∗

rule: if X is A′, then Y is B′

conclusion: Y is B∗?

(10)

This interpretation retains the same results as (4) in dealing
with the extreme cases: If A∗ = A1, then from (6) λRep = 0,
and according to (8) and (9), A′ = A1 and B′ = B1, so the
conclusion B∗ = B1. Similarly, if A∗ = A2, then B∗ = B2.

Other than the extreme cases, similarity measures are used
to support the application of this new modus ponens. In
particular, (10) can be interpreted as

The more similar X to A′, the more similar Y to B′. (11)

Suppose that a certain degree of similarity between A′ and
A∗ is established, it is intuitive to require that the consequent
parts B′ and B∗ attain the same similarity degree. The
question is how to obtain an operator which can represent the
similarity degree between A′ and A∗, and how to transform
B′ to B∗ with the desired degree of similarity. To this
end, the following two (component) transformations are
proposed. The difference between the present method and
the work of [1], [13] rests in the implementation of these
two transformations.

B. Scale Transformation

Consider applying scale transformation to an arbitrary
polygonal fuzzy membership function A = (a0, . . . , an−1)
(as shown in Fig. 3) to generate A′ = (a′

0, . . . , a
′
n−1), such

that they have the same RV, and a′
n−1−i−a′

i = si(an−1−i−
ai), where si are scale rates and i = {0, . . . , ⌊n

2
⌋ − 1}.

In order to achieve this, ⌊n
2
⌋ equations a′

n−1−i − a′
i =

si(an−1−i−ai), i = {0, . . . , ⌊n
2
⌋−1}, are imposed to obtain

the supports with desired lengths, and (⌈n
2
⌉ − 1) equations

a′

i+1−a′

i

a′

n−1−i
−a′

n−2−i

= ai+1−ai

an−1−i−an−2−i

, i = {0, . . . , ⌈n
2
⌉ − 2} are
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Fig. 3. Scale and move transformations

imposed to equalise the ratios between the left (⌈n
2
⌉ − 1)

slopes’ lengths and the right (⌈n
2
⌉ − 1) slopes’ lengths of

A′ to their counterparts of the original fuzzy set A. The

equation
∑n−1

i=0
wia

′
i =

∑n−1

i=0
wiai which ensures the same

representative values before and after the transformation is
added to make up of ⌊n

2
⌋ + (⌈n

2
⌉ − 1) + 1 = n equations.

All these n equations are collectively written as:


































a′
n−1−i − a′

i = si(an−1−i − ai) = Si

(i = {0, . . . , ⌊n
2
⌋ − 1})

a′

i+1−a′

i

a′

n−1−i
−a′

n−2−i

= ai+1−ai

an−1−i−an−2−i

= Ri

(i = {0, . . . , ⌈n
2
⌉ − 2})

∑n−1

i=0
wia

′
i =

∑n−1

i=0
wiai

(12)

where Si is the i-th support length of the resultant fuzzy
set and Ri is the ratio between the left i-th slope length
and the right i-th slope length. Solving these n equations
simultaneously results in an unique and convex fuzzy set A′

given that the resultant set has the descending order of the
support lengths from the bottom to the top.

So far the proposed scale transformation remains the same
as the original work of [1], the difference is the way of
calculating scale rates. Recall that the scale ratios S are
introduced in the original scale transformations, to ensure
the support lengths decreasing from the bottom support to
top support. Instead of doing that, left scale factor SLi and
right scale factor SRi are introduced for the i-th support,
i = {0, . . . , ⌈n

2
⌉ − 2}.

SLi =
a′

i+1 − a′
i

ai+1 − ai

, (13)

SRi =
a′

n−1−i − a′
n−2−i

an−1−i − an−2−i

. (14)

Obviously, SLi ≥ 0 and SRi ≥ 0 if both A and A′ are
convex. Having introduced these, the scale rate of the i-th
support is computed so that

si =
S′

i

Si

=
a′

n−1−i − a′
i

an−1−i − ai

=
U + a′

n−2−i − a′
i+1 + V

an−1−i − ai

=
U + si+1(an−2−i − ai+1) + V

an−1−i − ai

, (15)

where S′
i and Si are the lengths of the i-th support of A′ and

A respectively, U = SLi(ai+1−ai) and V = SRi(an−1−i−
an−2−i). As S′

i = S′
i+1 + SLi(ai+1 − ai) + SRi(an−1−i −

an−2−i), if SLi ≥ 0 and SRi ≥ 0, then SLi(ai+1 − ai) ≥ 0
and SRi(an−1−i − an−2−i) ≥ 0, hence S′

i ≥ S′
i+1 must

hold. So the scale transformation guarantees to generate an
NCF fuzzy set.

Conversely, if two convex sets A = (a0, . . . , an−1) and
A′ = (a′

0, . . . , a
′
n−1) which have the same RV are given,

the left and right scale factors of the i-th support, SLi, SRi

(i = {0, . . . , ⌈n
2
⌉ − 2}) can be calculated by (13) and (14)

respectively. Given that A and A′ are both convex, SLi ≥ 0
and SRi ≥ 0 must hold.

Special treatments are needed if: 1) A has a vertical left
slope on the i-th support level, the term of (ai+1−ai) in (13)
is replaced by the vertical distance of the i-th and (i + 1)-th
points to avoid the division by zero; and 2) A has a vertical
right slope on the i-th support level, the term of (an−1−i −
an−2−i) in (14) is replaced by the vertical distance of the
i-th and (i + 1)-th points.

The above scale factors are calculated from top to bottom
(so are the scale rates). If on the contrary, the calculation
order is from bottom to top, then it would be possible that
the scaled fuzzy set becomes non-convex, as A′′ of Fig. 3.

C. Move Transformation

The proposed move transformation is no longer like the
original (see [1]). Instead, it appears rather like the original
scale transformation.

After performing the scale transformation, the lengths of
supports of a fuzzy set become equal to those of the desired
fuzzy set (A′). Now the move transformation is used to move
the supports to appropriate positions. Consider applying the
move transformation to an arbitrary polygonal fuzzy mem-
bership function A = (a0, . . . , an−1) (as shown in Fig. 3) to
generate A′ = (a′

0, . . . , a
′
n−1) such that they have the same

RV and the same lengths of supports. In order to achieve this,
⌊n

2
⌋ equations a′

n−1−i−a′
i = an−1−i−ai, i = {0, . . . , ⌊n

2
⌋−

1}, are imposed to ensure the same lengths of supports, and

(⌈n
2
⌉ − 1) equations

a′

i+1−a′

i

a′

n−1−i
−a′

n−2−i

/ ai+1−ai

an−1−i−an−2−i

= RCi

(where i = {0, . . . , ⌈n
2
⌉ − 2} and RCi is the move factor

for the i-th support) are imposed to set the ratios between
the i-th left slope length and the i-th right slope length of
A′, to their counterparts of the original fuzzy set A. The

equation
∑n−1

i=0
wia

′
i =

∑n−1

i=0
wiai which ensures the same

representative values before and after the transformation is
added to make up of ⌊n

2
⌋ + (⌈n

2
⌉ − 1) + 1 = n equations.

All these n equations are collectively written as:


































a′
n−1−i − a′

i = an−1−i − ai = Si

(i = {0, . . . , ⌊n
2
⌋ − 1})

a′

i+1−a′

i

a′

n−1−i
−a′

n−2−i

/ ai+1−ai

an−1−i−an−2−i

= RCi

(i = {0, . . . , ⌈n
2
⌉ − 2})

∑n−1

i=0
wia

′
i =

∑n−1

i=0
wiai

(16)

where Si is the i-th support length of the fuzzy set (either
before or after moving). If RCi ≥ 0, solving these n
equations simultaneously results in an unique and convex
fuzzy set.

Conversely, if two convex sets A = (a0, . . . , an−1) and
A′ = (a′

0, . . . , a
′
n−1) are given, which have the same RV

and the same lengths of supports, the move factor of the i-th
support, RCi (i = {0, . . . , ⌈n

2
⌉ − 2}) can be calculated by

(16). Given that A and A′ are both convex, RCi ≥ 0 must
hold.



Unlike the scale transformations, the move transformation
does not have to follow a fixed order for calculation. That is,
it does not matter whether the calculation is carried out from
the top to the bottom or otherwise. However, there are special
cases which need extra consideration in calculating the move
factor: 1) If A′ has a vertical right slope on the i-th support
level, the move factor is set to −1 in the implementation.
When any fuzzy sets are moved with such a move factor,
they become fuzzy sets of a vertical right slope on the i-th
support level. 2) If the original fuzzy set A has a vertical left
slope on the i-th support level, the term (ai+1 − ai) will be
replaced by the vertical distance between the i-th and (i+1)-
th points. 3) If A has a vertical right slope on the i-th support
level, the term (an−i−1 − an−i−2) will be replaced by the
vertical distance between the i-th and (i+1)-th points. These
are needed to avoid division by zero.

D. Summary

As indicated earlier, it is intuitive to maintain the similarity
degree between the consequent parts B′ = (b′0, . . . , b

′
n−1)

and B∗ = (b∗0, . . . , b
∗
n−1) to be the same as that between

the antecedent parts A′ = (a′
0, . . . , a

′
n−1) and A∗ =

(a∗
0, . . . , a

∗
n−1). In this work, the proposed scale and move

transformations indeed allow such similarity degrees to be
held by the use of the scale and move factors. In summary,
the desired conclusion B∗ can be obtained as follows:

1) Calculate scale rates si (i = {0, 1 . . . , ⌊n
2
⌋ − 1}) of

the i-th support from A′ to A∗ according to si =
a∗

n−1−i
−a∗

i

a′

n−1−i
−a′

i

.

2) Apply scale transformation to A′ using scale rates si

(i = {0, 1 . . . , ⌊n
2
⌋ − 1}) as computed above to obtain

A′′, by simultaneously solving n linear equations as
given in (12).

3) Calculate left and right scale factors SLi, SRi, i =
{0 . . . , ⌈n

2
⌉ − 2}), of the i-th support from A′ to A∗

according to (13) and (14).
4) Calculate scale rates s′i (i = {0, 1 . . . , ⌈n

2
⌉−2}) of the

i-th support from B′ to B∗ according to (15). Note that
if B′ has two points of membership value 1, s′⌊n

2
⌋−1

=
s⌊n

2
⌋−1.

5) Apply scale transformation to B′ using s′i (i =
{0, 1 . . . , ⌊n

2
⌋ − 1}) as calculated in step 4 to obtain

B′′ = (b′′0 , . . . , b′′n−1), by simultaneously solving the n
linear equations as shown in (12).

6) Calculate move factor RCi, i = {0, . . . , ⌈n
2
⌉ − 2}, on

the i-th support level from A′′ to A∗ according to (16).
7) Apply move transformation to B′′ using the move

factor as calculated in step 6 to obtain B∗, by simul-
taneously solving the n linear equations as shown in
(16).

Clearly, B′ and B∗ will have the same similarity degree as
that between the antecedent parts A′ and A∗.

The interpolation involving multiple antecedent variables
or multiple rules has been similarly extended. Interested
readers may refer to [13] for detailed discussion.

IV. PRESERVATION OF PIECEWISE LINEARITY

Preservation of piecewise linearity is an essential property
which reflects how good the interpolative reasoning method
handles the points between two consecutive α-cut levels. If
piecewise linearity is preserved, it is safe to merely consider
the characteristic points rather than the infinite pairs of points
(generated from infinite α-cut levels). The preservation of

piecewise linearity has been investigated in the work of
[14], [15]. In both cases, they slightly deviate from the
real linear fuzzy rule interpolation with given error bounds.
This section shows that the proposed method preserves this
property in interpolations involving arbitrary polygonal fuzzy
membership functions.

Fig. 4 illustrates the scale transformation in a trapezoidal
case with six characteristic points for each fuzzy set. Suppose
that as

0α, as
3α, a′

0α, a′
3α, b′0α and b′3α are artificial character-

istic points. If Bs is transformed from B′ using the same
similarity calculated from A′ to As, the question is whether
bs
0α and bs

3α remain artificial. According to the proposed
method,

as
1 − as

0α

a′
1 − a′

0α

=
bs
1 − bs

0α

b′1 − b′0α

, (17)

as
0α − as

0

a′
0α − a′

0

=
bs
0α − bs

0

b′0α − b′0
. (18)

Also, as a′
0α and as

0α are two artificial characteristic points,
then

as
1 − as

0α

a′
1 − a′

0α

=
as
0α − as

0

a′
0α − a′

0

. (19)

From (17), (18) and (19),
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1
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0
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Fig. 4. Preservation of piecewise linearity in scale transformation

From (20) and the fact that b′0α is an artificial characteristic
point, it can be concluded that bs

0α must be artificial. That
is, Bs is piecewise linear in the left slope. Similarly, Bs

is piecewise linear in the right slope. Thus, the proposed
method preserves the piecewise linearity in performing scale
transformations. Although the proof is based on the trape-
zoidal cases, it can be straightforwardly extended to any scale
transformation involving arbitrary polygonal fuzzy member-
ship functions.

Now, consider the move transformation which is shown in
Fig. 5. Given As and A∗ which have the same RV and the
same lengths of top, middle and bottom supports respectively,
the task is to move Bs in order to obtain B∗ such that
they have the same similarity as that between As and A∗.
According to the enhanced move transformation,

a∗
1 − a∗

0α

a∗
3α − a∗

2

as
3α − as

2

as
1
− as

0α

=
b∗1 − b∗0α

b∗
3α − b∗

2

bs
3α − bs

2
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1
− bs

0α

, (21)
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0
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0

=
b∗0α − b∗0
b∗3 − b∗3α
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3 − bs

3α
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0α − bs

0

. (22)

Assume that as
0α, a∗

0α, as
3α and a∗

3α are arbitrary character-
istic points, then

a∗
1 − a∗

0α

a∗
3α − a∗

2
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2

as
1 − as

0α

=
a∗
0α − a∗

0

a∗
3 − a∗
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. (23)
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From (21), (22) and (23),

b∗1 − b∗0α

b∗3α − b∗2

bs
3α − bs

2

bs
1 − bs

0α

=
b∗0α − b∗0
b∗3 − b∗3α

bs
3 − bs

3α

bs
0α − bs

0

. (24)

Given that bs
0α and bs

3α are artificial characteristic points, it
follows that

bs
3α − bs

2

bs
1 − bs

0α

=
bs
3 − bs

3α

bs
0α − bs

0

. (25)

From (24) and (25),

b∗1 − b∗0α

b∗3α − b∗2
=

b∗0α − b∗0
b∗3 − b∗3α

. (26)

As bs
2 − bs

1 = b∗2 − b∗1, bs
3α − bs

0α = b∗3α − b∗0α and
bs
3 − bs

0 = b∗3 − b∗0, it can be concluded that b∗0α and b∗3α

are artificial. The proof also applies to move transformations
involving arbitrary polygonal fuzzy membership functions.
Thus, the piecewise linearity is preserved in performing move
transformation.

It has been established in [1] that the step of constructing
the intermediate rule preserves piece-wise linearity. Now
that it has proven that the scale and move transformations
preserve piece-wise linearity, property 1 as shown below is
achieved by the proposed interpolation method:

Property 1: The interpolation of non-characteristic points
which lie between two characteristic points generates non-
characteristic points which still lie between the two interpo-
lated characteristic points.

This property points out that only characteristic points
affect the interpolated results using the proposed method.
Non-characteristic points can be safely ignored as they are
still non-characteristic in the reasoning results.

If the representative value of a fuzzy set keeps the same
when more artificial characteristic points are considered in
the proposed interpolation, then the following property holds:

Property 2: The interpolation over two fuzzy sets that are
otherwise the same except that one has additional artificial
characteristic points leads to the same result if the represen-
tative values used by them are the same.

Note that the work of [11], [12] represents each fuzzy set
with n characteristic points as a point in an n-dimensional
Cartesian space. In this case, fuzzy interpolation becomes
a high dimensional interpolation problem. Since the newly
proposed method is capable of handling fuzzy interpolation
involving infinite points (finite characteristic points plus
infinite non-characteristic points), it may provide a solution
to the interpolation problem within a very high dimensional
(or even infinite) Cartesian space.

V. ILLUSTRATIVE EXAMPLES

In this section, the use of the average RV, weighted average
RV and centre of core RV respectively to conduct fuzzy
interpolation is demonstrated and the results between the
work of [1] and the newly proposed method are compared.
For simplicity, both examples discussed below concern the
interpolation between two adjacent rules A1 ⇒ B1 and
A2 ⇒ B2. In order to verify the piece-wise linearity property,
additional “characteristic” points are deliberately added in the
examples. Table I shows the fuzzy values of the rule attributes
and observations. Table II and Table III show the interpolated
results using different RV definitions for the work of [1]
(denoted as original HS method) and the newly proposed
method (denoted as new HS method), respectively. These
results are also illustrated in Fig. 6 and Fig. 7. As can be
seen, the original interpolation method satisfies property 1
only in triangular cases while the newly proposed method
satisfies that in all cases. In particular, the latter further holds
property 2 when the center core representative value is used.
As a comparison, the results of the KH method is also given
in Fig. 6. It satisfies neither property 1 nor property 2.
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TABLE I

ATTRIBUTE AND OBSERVATION VALUES

Triangular Triangular (5 points) Hexagonal Hexagonal (8 points)
A1 (0, 5, 6) (0, 2.5, 5, 5.5, 6) (0, 1, 3, (0, 0.5, 1, 2, 3,

4, 5, 5.5) 4, 4.5, 5, 5.25, 5.5)
A2 (11, 13, 14) (11, 12, 13, 13.5, 14) (11, 11.5, 12, (11, 11.25, 11.5, 11.75, 12,

13, 13.5, 14) 13, 13.25, 13.5, 13.75, 14)
A∗ (7, 8, 9) (7, 7.5, 8, 8.5, 9) (6, 6.5, 7, (6, 6.25, 6.5, 6.75, 7,

9, 10, 10.5) 9, 9.5, 10, 10.25, 10.5)
B1 (0, 2, 4) (0, 1, 2, 3, 4) (0, 0.5, 1, (0, 0.25, 0.5, 0.75, 1,

3, 4, 4.5) 3, 3.5, 4, 4.25, 4.5)
B2 (10, 11, 13) (10, 10.5, 11, 12, 13) (10.5, 11, 12, (10.5, 10.75, 11, 11.5, 12,

13, 13.5, 14) 13, 13.25, 13.5, 13.75, 14)

TABLE II

RESULTS OF ORIGINAL HS METHOD BY USING DIFFERENT RVS

Triangular Triangular (5 points) Hexagonal Hexagonal (8 points)
Average (5.84, 6.26, (5.76, 5.97, 6.18, (5.64, 5.98, 6.29, (5.64, 5.82, 5.98, 6.14, 6.28,

7.38) 6.74, 7.3) 8.63, 9.46, 9.93) 8.64, 9.05, 9.47, 9.71, 9.94)
Weighted (5.63, 6.06, (5.63, 5.85, 6.06, (5.61, 5.95, 6.26, (5.62, 5.80, 5.96, 6.11, 6.26,
Average 7.16) 6.61, 7.16) 8.59, 9.42, 9.89) 8.62, 9.02, 9.44, 9.68, 9.91)
Center (4.96, 5.38, (4.96, 5.17, 5.38, (5.47, 5.79, 6.08 (5.46, 5.64, 5.81, 5.95, 6.07,
of Core 6.44) 5.91, 6.44) 8.42, 9.23, 9.70) 8.43, 8.83, 9.25, 9.47, 9.70)

TABLE III

RESULTS OF NEW HS METHOD BY USING DIFFERENT RVS

Triangular Triangular (5 points) Hexagonal Hexagonal (8 points)
Average (5.54, 5.97, (5.49, 5.70, 5.92, (5.28, 5.62, 5.94, (5.28, 5.45, 5.62, 5.79, 5.95,

7.97) 6.92, 7.92) 8.86, 9.86, 10.36) 8.87, 9.37, 9.87, 10.12, 10.37)
Weighted (5.41, 5.83, (5.41, 5.62, 5.83, (5.25, 5.59, 5.91, (5.26, 5.43, 5.60, 5.72, 5.92,
Average 7.83) 6.83, 7.83) 8.85, 9.85, 10.35) 8.85, , 9.35, 9.85, 10.10, 10.35)
Center (4.96, 5.38, (4.96, 5.17, 5.38, (5.12, 5.45, 5.75 (5.12, 5.28, 5.45, 5.60, 5.75,
of Core 7.38) 6.38, 7.38) 8.75, 9.75, 10.25) 8.75, 9.25, 9.75, 10.00, 10.25)

VI. CONCLUSIONS

This paper, based on the work of [1], has proposed an
interpolative method which preserves the piece-wise linearity
for interpolations involving arbitrary polygonal fuzzy sets. In
so doing, the non-characteristic points can be safely ignored
in performing interpolation. In addition, the newly proposed
method inherits the advantages of its original: 1) it can
easily handle interpolation (or even extrapolation, see [13])
of multiple antecedent variables or multiple rules with simple
computation; 2) it guarantees the uniqueness as well as
normality and convexity of the resulting interpolated fuzzy
sets; and 3) it provides a degree of freedom to choose
different RVs for application requirements. Although theo-
retically the proposed approach offers promising potential,
it requires further evaluation of how it may perform when
presented with a complex real-world problem. As with other
interpolation techniques, such a problem may involve rule
base simplification or reasoning with a sparse rule base. Work
is on-going to identify problems of this nature, in order to
better assess the practical limitation of the method.
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