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Interval-valued Fuzzy-Rough Feature Selection
in Datasets with Missing Values

Richard Jensen and Qiang Shen

Abstract— One of the many successful applications of rough
set theory has been to the area of feature selection. The rough
set principle of using only the supplied data and no other
information has many benefits, where most other methods
require supplementary knowledge. Fuzzy-rough set theory has
recently been proposed as an extension of this, in order to better
handle the uncertainty present in real data. However, following
this approach, there has been no investigation (theoretical or
otherwise) into how to deal with missing values effectively,
another problem encountered when using real world data. This
paper proposes an extension of the fuzzy-rough feature selection
methodology, based on interval-valued fuzzy sets, as a means to
counter this problem via the representation of missing values
in an intuitive way.

I. INTRODUCTION

Lately there has been great interest in developing com-
putational intelligence methodologies which are capable of
dealing with imprecision and uncertainty, and the resounding
amount of research currently being done in the areas related
to fuzzy and rough sets [13] is representative of this. The
success of rough set theory is due in part to three aspects of
the theory. Firstly, only the facts hidden in data are analysed.
Secondly, no additional information about the data is required
for data analysis such as thresholds or expert knowledge on
a particular domain. Thirdly, it finds a minimal knowledge
representation for data. As rough set theory handles only one
type of imperfection found in data, it is complementary to
other concepts for the purpose, such as fuzzy set theory. The
two fields may be considered analogous in the sense that both
can tolerate inconsistency and uncertainty - the difference
being the type of uncertainty and their approach to it; fuzzy
sets are concerned with vagueness, rough sets are concerned
with indiscernibility.

Many deep relationships have been established and more
so, most of the recent studies have concluded at this comple-
mentary nature of the two methodologies, especially in the
context of granular computing [1]. Therefore, it is desirable
to extend and hybridize the underlying concepts to deal with
additional aspects of data imperfection. Such developments
offer a high degree of flexibility and provide robust solutions
and advanced tools for data analysis [9]. However, there
has been no investigation into how such hybridizations may
model and cope with missing values in datasets. This is a
severely limiting factor for the application of these powerful
techniques. In this paper, a further extension to fuzzy-rough
set theory is proposed, interval-valued fuzzy-rough sets, in
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order to alleviate this problem. As a result of this, a new
feature selection method is developed that not only handles
missing values, but also alleviates the problem of defining
overly-specific type-1 fuzzy similarity relations (i.e. those
with crisp membership functions) through the use of interval-
valued fuzzy sets [3], [11].

The remainder of this paper is structured as follows.
The theoretical background is given in section II, providing
necessary details for fuzzy sets, interval-valued fuzzy sets,
rough sets and fuzzy-rough sets. Section III focuses on
the proposed approach, interval-valued fuzzy-rough feature
selection. Initial experimental results that demonstrate the
potential of the approach are presented in section IV. Finally,
section V concludes the paper and outlines some ideas for
future work.

II. THEORETICAL BACKGROUND

A. Fuzzy Sets

Recall that a fuzzy set [15] in U is an U→ [0, 1] mapping,
while a fuzzy relation in U is a fuzzy set in U× U. For all
y in U, the R-foreset of y is the fuzzy set Ry defined by
µRy(x) = µR(x, y) for all x in U. If R is reflexive and
symmetric, i.e., µR(x, x) = 1 and µR(x, y) = µR(y, x) hold
for all x and y in U, then R is called a fuzzy tolerance
relation.

Fuzzy logic connectives play an important role in the
hybridisation process. A triangular norm (t-norm for short)
T is any increasing, commutative and associative [0, 1]2 →
[0, 1] mapping satisfying T (1, x) = x, for all x in [0, 1].
Common examples of t-norms include the minimum, the
product and TL defined by TL(x, y) = max(0, x+y−1) for
x, y in [0,1]. An implicator is any [0, 1]2 → [0, 1]-mapping
I that is decreasing in its first, and increasing in its second
component, and that satisfies I(0, 0) = 1 and I(1, x) = x,
for all x in [0, 1].

1) Interval-valued Fuzzy Sets: An interval-valued fuzzy
set Ã in U is an ordered triple of the form

Ã = {〈x, µA∗(x), µA∗(x)〉|x ∈ U} (1)

where µA∗(x), µA∗ ∈ [0, 1] are the lower and upper mem-
bership functions which satisfy 0 ≤ µA∗(x) ≤ µA∗(x) ≤
1, ∀x ∈ U. The lower and upper membership functions
correspond to the lower and upper bound of a closed interval
describing the membership of x to Ã.



B. Rough Sets

Let I = (U,A) be an information system, where U is a
non-empty set of finite objects (the universe of discourse) and
A is a non-empty finite set of attributes such that a : U→ Va

for every a ∈ A. Va is the set of values that attribute a may
take. With any P ⊆ A there is an associated equivalence
relation IND(P ):

IND(P ) = {(x, y) ∈ U2|∀a ∈ P, a(x) = a(y)} (2)

The partition of U, generated by IND(P) is denoted U/IND(P)
(or U/P for simplicity) and can be calculated as follows:

U/IND(P ) = ⊗{U/IND({a})|a ∈ P}, (3)

where ⊗ is specifically defined as follows for sets A and B:

A⊗B = {X ∩ Y |X ∈ A, Y ∈ B,X ∩ Y 6= ∅} (4)

If (x, y) ∈ IND(P ), then x and y are indiscernible
by attributes from P . The equivalence classes of the P -
indiscernibility relation are denoted [x]P .

Let X ⊆ U. X can be approximated using only the
information contained within P by constructing the P -lower
and P -upper approximations of X:

PX = {x ∈ U|[x]P ⊆ X} (5)
PX = {x ∈ U|[x]P ∩X 6= ∅} (6)

The tuple 〈PX,PX〉 is called a rough set.
1) Feature Selection: Let P and Q be sets of attributes

inducing equivalence relations over U, then the positive
region can be defined as:

POSP (Q) =
⋃

X∈U/Q

PX (7)

The positive region contains all objects of U that can be
classified to classes of U/Q using the information in attributes
P. Based on this definition, dependencies between attributes
can be determined. For P, Q ⊂ A, it is said that Q depends
on P in a degree k (0 ≤ k ≤ 1), denoted P ⇒k Q, if

k = γP (Q) =
|POSP (Q)|
|U|

(8)

The reduction of attributes is achieved by comparing
equivalence relations generated by sets of attributes. At-
tributes are removed so that the reduced set provides the
same predictive capability of the decision attribute as the
original. A reduct Rmin is defined as a minimal subset R of
the initial attribute set C such that for a given set of attributes
D, γR(D) = γC(D). From the literature, R is a minimal
subset if γR−{a}(D) 6= γR(D) for all a ∈ R. This means
that no attributes can be removed from the subset without
affecting the dependency degree. Hence, a minimal subset
by this definition may not be the global minimum (a reduct
of smallest cardinality). The goal of rough set-based feature
selection is to discover reducts of smallest cardinality.

C. Fuzzy-Rough Sets
Fuzzy-rough sets [7] encapsulate the related but distinct

concepts of vagueness (for fuzzy sets) and indiscernibility
(for rough sets), both of which occur as a result of uncertainty
in knowledge

Definitions for the fuzzy lower and upper approximations
can be found in [14], where a T -transitive fuzzy similarity
relation is used to approximate a fuzzy concept X:

µRP X(x) = inf
y∈U
I(µRP

(x, y), µX(y)) (9)

µRP X(x) = sup
y∈U
T (µRP

(x, y), µX(y)) (10)

Here, I is a fuzzy implicator and T a t-norm. RP is the
fuzzy similarity relation induced by the subset of features
P :

µRP
(x, y) = Ta∈P {µRa(x, y)} (11)

µRa
(x, y) is the degree to which objects x and y are similar

for feature a, and may be defined in many ways, for example:

µRa
(x, y) = 1− |a(x)− a(y)|

|amax − amin|
(12)

µRa
(x, y) = max(min(

(a(y)− (a(x)− σa))
σa

,

((a(x) + σa)− a(y))
σa

, 0) (13)

where σa
2 is the variance of feature a. As these relations

do not necessarily display T -transitivity, the fuzzy transitive
closure can be computed for each attribute. The choice of
relation is largely determined by the intended application. For
feature selection, a relation such as (13) may be appropriate
as this permits only small differences between attribute
values of differing objects. For classification tasks, a more
gradual and inclusive relation such as (12) should be used.

1) Feature Selection: In a similar way to the original crisp
rough set approach, the fuzzy positive region can be defined
as [10]:

µPOSP (D)(x) = sup
X∈U/D

µRP X(x) (14)

An important issue in data analysis is discovering de-
pendencies between attributes. The fuzzy-rough degree of
dependency of D on the attribute subset P can be defined in
the following way:

γ′P (D) =

∑
x∈U

µPOSP (D)(x)

|U|
(15)

A fuzzy-rough reduct R can be defined as a minimal subset
of features that preserves the dependency degree of the entire
dataset, i.e. γ′R(D) = γ′C(D). Based on this, a fuzzy-rough
greedy hill-climbing algorithm can be constructed that uses
equation (15) to gauge subset quality. In [10], it has been
shown that the dependency function is monotonic and that
fuzzy discernibility matrices may also be used to discover
reducts. However, there is no mechanism for modeling miss-
ing values in this framework, and is therefore limited in its
application to real world datasets. This motivates the work
proposed in the following section.



III. INTERVAL-VALUED FRFS
Central to traditional fuzzy-rough feature selection is the

fuzzy tolerance relation. From this, the fuzzy-rough lower
approximations are constructed which then form the fuzzy
positive regions utilised in the degree of dependency mea-
sure. Thus, the starting point for the process, type-1 fuzzy
tolerance, is critical for its success. It is recognised that type-
1 approaches are unable to address particular types of uncer-
tainty due to their requirement of totally crisp membership
functions [12]. An interval-valued approach may therefore be
able to better handle this uncertainty and at the same time
model the uncertainty inherent in missing values. Currently,
there is no way to handle such values in fuzzy-rough set
theory. Thus, the starting point for the proposed work is the
interval-valued tolerance relation R̃a(x, y). The constituent
fuzzy relations for individual attributes can be defined via
an upper (Ra

∗) and lower (Ra∗) membership function, for
example:

µRa∗(x, y) = 1−
(
|a(x)− a(y)|
|amax − amin|

)m

(16)

µRa
∗(x, y) = 1− |a(x)− a(y)|

|amax − amin|
(17)

for m ∈ (0, 1). If m = 1, R̃a(x, y) degenerates to a standard
type-1 fuzzy tolerance relation. As with type-1 fuzzy-rough
feature selection, composition of relations is achieved by
conjunctively combining the individual fuzzy relations R̃a

with a t-norm T :

µ
R̃P

(x, y) = Ta∈P {µR̃a
(x, y)} (18)

= [Ta∈P {µRa∗(x, y)}, Ta∈P {µRa
∗(x, y)}]

Based on the definitions above, the interval-valued P -
lower and P -upper approximation of a concept X̃ are here
defined as

µ
R̃P X

(x) = inf
y∈U
I(µ

R̃P
(x, y), µ

X̃
(y)) (19)

µ
R̃P X

(x) = sup
y∈U
T (µ

R̃P
(x, y), µ

X̃
(y)) (20)

where R̃P (x, y) is an interval-valued fuzzy tolerance relation.
The tuple 〈R̃PX, R̃PX〉 is called an interval-valued fuzzy-
rough set.

The underlying interval-valued tolerance relation can be
modified in order to model the uncertainty resulting from
missing values. If an object contains a missing value for
a particular feature, then the resulting degree of similarity
with other objects is unknown. In an interval-valued context,
this can be modeled by returning the unit interval when an
attribute value is missing for one or both objects:

µ
R̃a

(x, y) =

{
µ

R̃a
(x, y) if a(x), a(y) 6= ∗,

[0, 1] otherwise
(21)

where missing values are denoted by ∗. Again, relations are
composed via a t-norm. The resulting interval-valued lower

and upper approximations can then be used to gauge subset
quality.

A. Lower Approximation-based FS

The interval-valued lower approximation can be defined
as follows:

µ
R̃P X

(x) = inf
y∈U
I(µ

R̃P
(x, y), µ

X̃
(x))

= inf
y∈U

[I(µRP
∗(x, y), µX∗(x)),

I(µRP ∗(x, y), µX∗(x))] (22)

This provides a measure of the certainty of membership of
an object to a given concept X̃ as a result of the underlying
uncertainty in the similarity between this object and others in
the universe. Note that the use of µRP

∗ and µRP ∗ is reversed
due to the properties of fuzzy implication. The resulting
interval is a lower and upper bound on the true membership
degree. Based on this, the interval-valued positive region is
defined:

µ
P̃OSP (D)

(x) = sup
X̃∈U/D

µ
R̃P X

(x) (23)

From this, the interval-valued degree of dependency of
decision features D on a feature subset P is defined as:

γ̃P (D) =
|P̃OSP (D)|
|U|

(24)

=

∑
y∈U

POSP ∗(D)(y)
|U|

,
∑
y∈U

POSP
∗(D)(y)
|U|


In [6], a normalised version of dependency was introduced

for FRFS. The equivalent interval-valued normalised version
is as follows:

γ̃P (D) =
|P̃OSP (D)|
|P̃OSC(D)|

(25)

=

 1
U
∑
y∈U

POSP ∗(D)(y)
POSC∗(D)(y)

,
1
U
∑
y∈U

POSP
∗(D)(y)

POSC
∗(D)(y)


Here, γ̃P (D) is an interval [γP ∗(D), γP

∗(D)] that describes
the extent to which the features in P are predictive of the
decision feature(s). P is called a fuzzy decision superreduct
to degree α if γ̃P (D) ≥ α, and a fuzzy decision reduct
to degree α if moreover for all P ′ ⊂ P , γ̃P ′(D) < α.
Note that if a type-1 fuzzy tolerance relation is used, then
these definitions degenerate to their traditional fuzzy-rough
counterparts. Core features (i.e. those that cannot be removed
without introducing inconsistencies) may be determined by
considering the change in dependency of the full set of
conditional features when individual attributes are removed:

Core(C) = {a ∈ C|γ̃C−{a}(D) 6= γ̃C(D)} (26)

Subset search can be conducted by whichever mechanism
is appropriate; for example, greedy hill-climbing, genetic al-
gorithms, ant colony optimization [8] etc. Here, the standard



greedy hill-climbing approach is adopted. The dependency
degree is monotonic in both the lower and upper bounds, and
so search continues until [1, 1] is reached (no uncertainty) or
there is no improvement in dependency.

B. Boundary Region-based FS

Most approaches to crisp rough and fuzzy-rough FS use
only the lower approximation for the evaluation of feature
subsets. The lower approximation contains information re-
garding the extent of certainty of object membership to a
given concept. However, the upper approximation contains
information regarding the degree of uncertainty of objects
and hence this information can be used to discriminate
between subsets. For example, two subsets may result in
the same lower approximation but one subset may produce a
smaller upper approximation. This subset will be more useful
as there is less uncertainty concerning objects within the
boundary region (the difference between upper and lower
approximations). The interval-valued upper approximation
can be defined as:

µ
R̃P X

(x) = sup
y∈U
T (µ

R̃P
(x, y), µ

X̃
(x))

= sup
y∈U

[T (µRP ∗(x, y), µX∗(x)),

T (µRP
∗(x, y), µX∗(x))] (27)

The fuzzy-rough boundary region for a fuzzy concept X may
thus be defined:

µ
B̃NDP (X)

(x) = µ
R̃P X

(x)− µ
R̃P X

(x) (28)

As the search for an optimal subset progresses, the ob-
ject memberships to the boundary region for each concept
diminishes until a minimum is achieved. For crisp rough
set FS, the boundary region will be zero for each concept
when a reduct is found. This may not necessarily be the
case for interval-valued fuzzy-rough FS due to the additional
uncertainty involved. The uncertainty for a concept X using
features in P can be calculated as follows:

ŨP (X) =

∑
x∈U

µ
B̃NDP (X)

(x)

|U|
(29)

=

[∑
x∈U

BNDP ∗(X)(x)
|U|

,
∑
x∈U

BNDP
∗(X)(x)
|U|

]
This is the average extent to which objects belong to the
fuzzy boundary region for the concept X . The total uncer-
tainty degree for all concepts, given a feature subset P is
defined as:

λ̃P (Q) =

∑
X∈U/Q

ŨP (X)

|U/Q|
(30)

It is this measure, λ̃P (Q), that can be used to gauge subset
quality. When the measure is minimized for a given subset
P , then the subset is a (super)reduct for the decision system.

It is shown in the Appendix that γ′P (Q) = 1 − λP (Q) for
decision systems with two decision concepts (classes), and so
the reductions achieved using both measures will be identical
in this case. This will also be true of the interval-valued
counterparts.

C. Discernibility Function

The fuzzy interval-valued tolerance relations that represent
objects’ approximate equality can be used to extend the
classical discernibility function. For each combination of
conditional attributes, an interval is obtained indicating how
well these attributes maintain the discernibility, relative to
the decision attribute, between all objects.

f̃(P ) = T ( c̃ij(P )︸ ︷︷ ︸
1≤i<j≤|U|

) (31)

with
c̃ij(P ) = I(T (µ

R̃a
(xi, xj)︸ ︷︷ ︸
a∈P

), µ
R̃D

(xi, xj)) (32)

Alternatively, rather than taking a minimum operation in Eq.
(31), one can also consider the average over all object pairs,
i.e.,

g̃(P ) =
2.

∑
1≤i<j≤n

c̃ij(P )

n(n− 1)
(33)

This formula is less rigid than equation (31), which produces
the value 0 as soon as one of the cij equals 0.

IV. EXPERIMENTATION

To test the robustness of the proposed approaches in the
presence of missing values five benchmark datasets were
used, obtained from [2] and containing no missing values
initially. Values were randomly corrupted to become missing
based on a supplied probability of mutation, and the three
interval-valued FRFS algorithms run, using m = 0.9 for
the tolerance relation. This was carried out ten times for
each dataset. Table I shows the dataset details as well as
the probabilities of value corruption and the resulting ranges
of numbers of missing values; e.g. for the water 2 dataset
and probability of mutation 0.0005, datasets were produced
with 4 to 14 missing values present. For comparison, the
type-1 FRFS algorithm was run on the original, uncorrupted
data. As the corruption probability increases, the amount of
missing data greatly increases, with the final column showing
a degree of missing values not often seen in real data but
useful to test the robustness of the approach.

JRip [4] was employed for the purpose of evaluating the
resulting subsets. JRip learns propositional rules by repeat-
edly growing rules and pruning them. During the growth
phase, features are added greedily until a termination condi-
tion is satisfied. Features are then pruned in the next phase
subject to a pruning metric. Once the ruleset is generated, a
further optimization is performed where classification rules



TABLE I
DATASET DETAILS

Dataset Obj. Feat. Class Missing values (range)
0.0005 0.001 0.005 0.01 0.1

Heart 270 14 2 0-3 2-5 11-24 25-42 306-369
Water 2 390 39 2 4-14 9-24 59-87 125-174 1403-1520
Water 3 390 39 3 4-14 9-24 59-87 125-174 1403-1520

Wine 178 14 3 0-3 0-4 6-18 16-32 198-250
Olitos 120 26 4 0-3 0-5 8-23 21-39 257-316

TABLE II
REDUCT SIZE FOR VARIOUS DATA CORRUPTION PROBABILITIES: LOWER

APPROXIMATION-BASED METHOD

Dataset Features Type-1 Average reduct size
method 0.0005 0.001 0.005 0.01 0.1

Heart 14 8 8 8 8.5 8.7 12.7
Water 2 39 7 7 7 7 7 9.8
Water 3 39 7 7 7 7 7.2 10

Wine 14 6 6 6 6 6.1 8.5
Olitos 26 6 6 6 6 6 8.3

TABLE III
REDUCT SIZE FOR VARIOUS DATA CORRUPTION PROBABILITIES:

BOUNDARY REGION-BASED METHOD

Dataset Features Type-1 Average reduct size
method 0.0005 0.001 0.005 0.01 0.1

Heart 14 8 8 8 8.5 8.7 12.7
Water 2 39 7 7 7 7 7 9.8
Water 3 39 7 7 7 7.1 7.2 10

Wine 14 6 6 6 6 6.2 8.9
Olitos 26 6 6.1 6.1 6.1 6.2 8.5

are evaluated and deleted based on their performance on
randomized data.

The resulting reduct sizes (averaged over repeated runs
and inclusive of the decision feature) can be seen in tables
II, III and IV. All discovered reducts produced a type-1
dependency degree of 1 for the uncorrupted data and hence
were all fuzzy-rough reducts. This shows the resilience of
the approach when faced with corrupted data, but may not
necessarily be the case in general as it will depend on the
extent of missing values and similarity relation chosen. For
small numbers of missing values, the algorithms manage to
locate identical or equivalent reducts to the original type-1
approach (which was applied to the uncorrupted data). As the
extent of data corruption increases, the task becomes more
difficult, with more features being selected by all approaches
to compensate for the lack of information but still producing
valid fuzzy-rough reducts.

For the datasets with two decision classes, the lower
approximation-based method and the boundary region-based
method performed identically, as expected. These methods
were more consistent in the reducts found, whereas more
variety was observed with the fuzzy discernibility approach,
which indicates the latter’s greater sensitivity to corrupted
data.

Tables V, VI and VII show the resulting average classifi-

TABLE IV
REDUCT SIZE FOR VARIOUS DATA CORRUPTION PROBABILITIES:

DISCERNIBILITY FUNCTION-BASED METHOD

Dataset Features Type-1 Average reduct size
method 0.0005 0.001 0.005 0.01 0.1

Heart 14 8 8 8 8.5 8.6 12.7
Water 2 39 7 7 7.1 7 7.1 9.9
Water 3 39 7 7 7 7 7.1 9.8

Wine 14 6 6 6 6 6.1 8.7
Olitos 26 6 6 6 6.2 6.1 8.4

TABLE V
CLASSIFICATION ACCURACIES: LOWER APPROXIMATION-BASED

METHOD

Dataset Type-1 Average classification accuracy (%)
method 0.0005 0.001 0.005 0.01 0.1

Heart 78.52 78.52 78.52 78.71 77.82 78.71
Water 2 83.08 83.18 83.28 83.64 83.69 83.23
Water 3 80.51 81.00 81.05 81.39 82.33 82.49

Wine 95.51 95.45 95.40 93.87 92.35 92.02
Olitos 60.83 60.83 61.16 62.67 62.83 64.58

cation accuracies of the feature subsets using JRip and 10-
fold cross validation. The column labeled ’Type-1’ gives the
classification accuracy of the corresponding type-1 approach
on the uncorrupted data. It can be seen from these results that
the interval-valued methods are capable of finding reducts of
a similar high quality to those of their type-1 counterparts, in
the presence of missing values. Even with a large amount of
data corruption, the methods can find good, if slightly larger,
subsets.

V. CONCLUSION

This paper proposed an interval-valued approach to fuzzy-
rough feature selection that successfully handles the uncer-
tainty that cannot be modeled by a type-1 approach. In
particular, this method can handle missing values effectively

TABLE VI
CLASSIFICATION ACCURACIES: BOUNDARY REGION-BASED METHOD

Dataset Type-1 Average classification accuracy (%)
method 0.0005 0.001 0.005 0.01 0.1

Heart 78.52 78.52 78.52 78.71 77.82 78.71
Water 2 83.08 83.18 83.28 83.64 83.69 83.23
Water 3 82.82 82.23 82.28 82.72 82.64 82.05

Wine 95.51 95.45 95.40 94.04 93.26 91.63
Olitos 58.33 60.83 62.08 63.34 62.50 61.33



TABLE VII
CLASSIFICATION ACCURACIES: DISCERNIBILITY FUNCTION-BASED

METHOD

Dataset Type-1 Average classification accuracy (%)
method 0.0005 0.001 0.005 0.01 0.1

Heart 78.52 78.52 78.52 79.26 77.30 78.71
Water 2 81.54 82.16 82.33 82.36 82.72 83.08
Water 3 81.54 81.57 81.49 81.77 81.67 83.00

Wine 88.76 88.93 88.93 89.77 90.33 90.84
Olitos 68.33 68.33 67.91 63.08 62.17 64.67

and in an intuitive way. Three subset quality measures were
developed based on this framework: lower approximation-
based, boundary region-based and discernibility function-
based evaluation. Future work will involve further experi-
mental investigations, particularly to see if the trend observed
in this paper is maintained for other datasets. This will
include an analysis of the impact of the choice of similarity
relation and parameter m. Additionally, the work in [5]
proposed novel t-norms and implicators for interval-valued
fuzzy sets; these should be of great benefit for interval-valued
FRFS.

APPENDIX

Theorem 1: The lower approximation-based measure is
the inverse of the boundary region-based measure for de-
cision systems with two concepts, and so the reductions
achieved will be identical. Suppose that P ⊆ C, a is an
arbitrary conditional feature that belongs to the dataset and
Q is the set of decision features. Then γP (Q) = 1− λP (Q)
when |U/Q| = 2.

Proof: The boundary region-based evaluation of a
concept X can be written as

λP (Q) =

∑
X∈U/Q

∑
x∈U

µBNDP (X)(x)

|U/Q| · |U|

So,

1− λP (Q) =

∑
X∈U/Q

∑
x∈U

1− µBNDP (X)(x)

|U/Q| · |U|

=

∑
X∈U/Q

∑
x∈U

µRP X(x)− µRP X(x) + 1

|U/Q| · |U|

The system has two decision classes, X1 and X2 with
U/Q = {X1, X2}. Hence, the above may be written as:

∑
x∈U

(µRP X1(x)− µRP X1
(x) + µRP X2(x)− µRP X2

(x) + 2)

2 · |U|
(34)

In order to simplify this, it is necessary to show that
µRP X1

(x) = 1 − µRP X2(x) for decision systems with two

concepts.

µRP X1
(x) = sup

y∈U
T (µRP

(x, y), µX1(y))

= 1− (1− sup
y∈U
T (µRP

(x, y), µX1(y)))

= 1− inf
y∈U

1− T (µRP
(x, y), µX1(y))

= 1− inf
y∈U
S(1− µRP

(x, y), 1− µX1(y))

= 1− inf
y∈U
I(µRP

(x, y), 1− µX1(y))

= 1− inf
y∈U
I(µRP

(x, y), µX2(y))

= 1− µRP X2(x)

if I is an S-implicator. Putting this into equation (34) gives:

1− λP (Q) =

∑
x∈U

µRP X1(x) + µRP X2(x)

|U|
Finally, if µX2(x) = 0 (which implies µX1(x) = 1) then x
will not belong to the lower approximation of this concept.
Formally, µRP X2(x) = inf

y∈U
I(µRP

(x, y), µX2(y)) will be

zero as µX2(y) = 0 when x = y. Thus

1− λP (Q) =

∑
x∈U

sup{µRP X1(x), µRP X2(x)}

|U|
= γ′P (Q)
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