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ABSTRACT

Motivation: Proteins execute and coordinate cellular functions
by interacting with other biomolecules. Among these interactions,
protein–protein (including peptide-mediated), protein–DNA and
protein–RNA interactions cover a wide range of critical processes and
cellular functions. The functional characterization of proteins requires
the description and mapping of functional biomolecular interactions
and the identification and characterization of functional sites is an
important step towards this end.
Results: We have developed a novel computational method, Multi-
VORFFIP (MV), a tool to predicts protein-, peptide-, DNA- and
RNA-binding sites in proteins. MV utilizes a wide range of structural,
evolutionary, experimental and energy-based information that is
integrated into a common probabilistic framework by means of a
Random Forest ensemble classifier. While remaining competitive
when compared with current methods, MV is a centralized resource
for the prediction of functional sites and is interfaced by a powerful
web application tailored to facilitate the use of the method and
analysis of predictions to non-expert end-users.
Availability: http://www.bioinsilico.org/MVORFFIP
Supplementary information: Supplementary data are available at
Bioinformatics online.
Contact: naf4@aber.ac.uk; narcis.fernandez@gmail.com

Received on February 7, 2012; revised on April 25, 2012; accepted
on April 30, 2012

1 INTRODUCTION
In order to fulfill their cellular functions, proteins interact with
other proteins and biomolecules. Protein–protein interactions,
including peptide-mediated interactions, are the basis of the
formation of macromolecular complexes required to coordinate and
perform complex cellular functions, as well as the regulation and
coordination of signaling pathways (Petsalaki and Russell, 2008;
von Mering et al., 2002). Protein–DNA interactions mediate a
wide range of cellular functions including gene expression and
regulation, DNA replication, DNA repair and DNA recombination
(Jones et al., 1999; Luscombe et al., 2000). Likewise, protein–RNA
interactions are central to a number of crucial cellular processes such

∗To whom correspondence should be addressed.

as post-translational gene regulation, protein synthesis, alternative
splicing and RNA processing and metabolism (Draper, 1995;
Jones et al., 2001). Thus, deciphering and dissecting biomolecular
interactions are central to fully understand the function of proteins
and their role in cells. Furthermore, the prediction of functional sites
can be used to improve the selection of structural models (Chelliah
and Taylor, 2008).

Residues located in functional sites present a number of unique
structural and physicochemical properties that vary across the
different types of interfaces; e.g. protein-binding interfaces are
different from DNA-binding ones (Glaser et al., 2001; Jones
et al., 1999). These distinctive features are used by a number of
computational tools to predict binding sites. A common denominator
for most of recent computational methods is the use of machine-
learning algorithms to combine heterogeneous information. This is
mainly because simple or composite scoring functions are either
not suitable or cannot be fully optimized due to the incomplete
understanding of the biophysical events underpinning interactions
between biomolecules. Thus, statistical models are better to combine
and unify data of diverse nature and a number of methods have been
proposed to predict protein- (Segura et al., 2011; Sikic et al., 2009),
peptide- (Petsalaki et al., 2009), DNA- (Bhardwaj et al., 2005; Tjong
and Zhou, 2007; Xiong et al., 2011), RNA-binding site (Cheng et al.,
2008; Liu et al., 2010; Maetschke and Yuan, 2009; Terribilini et al.,
2007) and more generally functional sites (Bray et al., 2009; Innis,
2007; Pettit et al., 2007).

In this work, we present Multi-VORFFIP (MV), a structure-
based, machine learning, computational method developed to
predict four different types of interactions or functional sites
in proteins: protein–protein, protein–peptide, protein–DNA and
protein–RNA binding sites. MV integrates a wide range of
structural, evolutionary, energy-based and experimental data (i.e.
crystallographic B factors) into a common probabilistic framework.
The different functional sites (e.g. peptide-binding sites) are
predicted using statistical models developed and tailored to that
end. The method compares favorably with recently described
methods. Moreover, the mapping of functional sites (e.g. protein-
and DNA-binding sites) within the same protein is highly accurate
and selective. MV is accessible through a user-friendly web
application available at http://www.bioinsilico.org/MVORFFIP. The
web application features a powerful and convenient graphic interface
that allows the visualization and analysis of the different predictions
simultaneously.

© The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 1845
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Fig. 1. Overall flowchart of the prediction process. The algorithm has been
trained using four different types of interactions: protein–protein, peptide–
protein, DNA–protein, RNA–protein interactions. BS: binding site

2 METHODS

2.1 Prediction algorithm: MV
The novel algorithm, MV, builds on our previous method, VORFFIP,
developed to predict protein-binding sites in protein structures (Segura
et al., 2011). Briefly, the method is composed of a two-step Random
Forest (RF) ensemble classifier that integrates structural features, energy
terms, evolutionary information, normalized crystallographic B factors,
environmental-based metrics derived from Voronoi diagrams (VDs), and
scores and score-derived metrics as described in the original publication
(Segura et al., 2011); (see Supplementary Data for the complete list
of input variables). Besides predicting protein-binding sites, the newest
implementation of the method, MV, also includes three novel RFs, each
of them trained to predict peptide-, DNA- and RNA-binding sites in protein
structures (Fig. 1). Thus, all statistical models use the same input variables
but were trained to distinguish different functional sites.

2.2 Datasets and benchmarking
Three different datasets, PEP-set, DNA-set and RNA-set, extracted from
recent publications, were used to benchmark MV. Benchmark 4.0 dataset
(Hwang et al., 2010), named PROT-set, was also used to assess the selectivity
of the predictions. The PROT-set is a dataset of 176 protein–protein
complexes specifically compiled for docking evaluation. No two single pairs
of complexes belong to the same SCOP family. The PEP-set is a dataset
of protein–peptides complexes compiled by Petsalaki et al. (2009) and it
is composed of a non-redundant set [i.e. does not include protein–peptide
complexes that belong to the same SCOP family (Murzin et al., 1995)] of
405 protein–peptides structure complexes solved both in bound and unbound
conformation. The DNA-set is a dataset of protein–DNA complexes (Xiong
et al., 2011) that consists of 206 protein–DNA complexes sharing <25%
sequence identity and featuring both in unbound and bound conformations.
The RNA-set is a dataset of protein–RNA complexes (Liu et al., 2010),
comprising 205 protein–RNA complexes where RNA and protein sequences
among the set share <60% and 25% sequence identity, respectively. Finally,
a combined set, COMB-set, containing 17 proteins that have more than one
functional site, e.g. a DNA- and a protein-binding site, was used to assess the
selectivity of predictions. The list of PDB codes included in the COMB-set
is given in the Supplementary Data.

The datasets have almost empty intersections, PROT-set shares one
structure with DNA-set and two with PEP-set. Thus, the potential bias

introduced by complexes that might score well in different type of binding
site predictions is negligible. The benchmarking of MV, including the
definition of interaction interfaces (i.e. binding sites), was performed
following the same procedure described in each publication where the
datasets were described. Thus, protein–peptide interfaces were defined as
protein residues within a distance of 6 Ǻ from the peptide (PEP-set); protein–
DNA interfaces were defined by the protein residues with a relative surface
accessibility area >10% and within 4.5 Ǻ of the DNA (DNA-set); and RNA
binding sites were defined using ENTANGLE (Allers and Shamoo, 2001) as
in the original work (Liu et al., 2010) (RNA-set). In the case of the PROT-set,
interfaces were defined using DIMPLOT (Wallace et al., 1995) as described
in de Vries et al. (2006).

2.3 Assessing the predictive power of MV
A number of statistical measures were used to assess and compare the
performance of MV to original sources. These included the F1 score (1),
the Mathew correlation coefficient (MCC) (2) and area under the receiver
operating characteristic (ROC) curve (AUC).

F1 = 2TP

2TP+FN+FP
(1)

MCC= TP×TN−FP×FN√(
TP+FN

)(
TP+FP

)(
TN+FP

)(
TN+FN

) (2)

where TP is the number of true positives, TN is the number of true negatives,
FP is the number of false positives and FN is the number of false negatives.
Statistical measures were calculated using the prediction values of single
residues. P-values to assess the significance of the differences observed in
performance and distribution of scores were calculated using the Wilcoxon
rank-sum test.

2.4 The server
A dedicated web server to interface MV was developed. The web application
is composed of a collection of Perl packages, JavaScript and java applets
[Jmol (http://www.jmol.org/)], a number of applications that include PSAIA
(Mihel et al., 2008), FoldX (Guerois et al., 2002), al2co (Pei and Grishin,
2001), QHULL (Barber et al., 1996), Psi-Blast (Altschul et al., 1997), 3DCA
(Landgraf et al., 2001) and the R package randomForest (Breiman, 1984;
Liaw and Wiener, 2002) to compute RFs. Currently, the training sets used
for predictions are the PROT-set, PEP-set, DNA-set and RNA-set described
here. All the databases required during prediction, such as the NR database
(Pruitt et al., 2007) used to compute sequence profiles, are updated on a
weekly basis.

3 RESULTS

3.1 Predictive performance and competitiveness
MV has been compared with current state-of-the-art methods to
assess its competitiveness in the prediction of peptide-, DNA- and
RNA-binding sites. In all tests, MV was trained and tested under
the same conditions as the compared method and interfaces were
defined using the same criteria (see Section 2). This ensured that:
(i) benchmarking and assessment of MV was performed against
validated sets; and (ii) benchmarking results were comparable
with those described in the original publications, thus providing
a measure of competitiveness of MV with respect to current
methodologies.

In general, the accuracy of the predictions increases as more
information is included (Supplementary Tables S1 and S2), which is
in agreement with observations in our previous work (Segura et al.,
2011). Indeed, the performance of peptide-, DNA- and RNA-binding
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site predictions in term of AUC, MCC, F1-score, Precision (P) and
recall (R) values (Supplementary Tables S1 and S2) improved as
structure, energy, conservation and crystallographic B factors were
added to the predictions. The only exception was P-values, which
in the case of the PEP-set and RNA-set dropped slightly when all
the features were combined although MCC values were higher, i.e.
better R (Supplementary Table S2).

Although all predictors use the same input features, the relative
importance of each variable varied across the different predictions.
These differences are to be expected as physicochemical and
structural properties vary across different binding sites (Glaser
et al., 2001; Jones et al., 1999; London et al., 2010). For instance,
sequence conservation was a powerful feature to discriminate DNA-
binding sites as total accessible surface area (ASA) was in the
case of RNA-binding site predictions. Backbone hydrogen bonding
contributed highly in peptide-binding predictions and the average
protrusion index (CX) was a valuable feature in RNA-binding
prediction. Finally, other features were more equally distributed
among predictors (Supplementary Fig. S1).

3.1.1 Protein–peptide binding site prediction PEP-set (Petsalaki
et al., 2009) was used to assess the performance in the prediction
of peptide-binding sites. According to original work, the optimal
P-value cut-off in a one-leave-out cross-validation experiment
was 0.04, representing an MCC value of 0.24 according to the
reported false positive and true positive rates (Petsalaki et al., 2009).
MV achieved a MCC value of 0.55 on a 5-fold cross-validation
experiment that is more disadvantageous than the leave-one-out
validation (as in the original publication) because the latter implies
a larger training set and thus a better statistical model. However,
MV predicts peptide-binding interfaces whereas the method of
Petsalaki et al. takes into account the sequence of the peptide, i.e.
predict the interface based on the sequence of the peptides, which
is a more difficult prediction. Hence, the MCC values between
MV and Petsalaki’s method are not directly comparable and so MV
was compared with a random predictor. Under this scenario, MV
performed substantially better in both MCC (0.55 versus 0.00 –
expected value in a random prediction) and AUC (0.86 vs. 0.50 –
expected value in a random prediction).

3.1.2 Protein–DNA binding site prediction The performance of
MV in protein–DNA binding site prediction was assessed using the
DNA-set and performing benchmark tests as previously described
(Xiong et al., 2011). The first test consisted of a 5-fold cross-
validation using the entire DNA-set. In terms of F1 scores and AUC
values, MV (F1: 0.49; AUC: 0.86) and the method described by
Xiong et al. (F1: 0.51; AUC: 0.82) performed at comparable levels
and the differences in performance were not significant (P>0.01). In
a second test, the DNA-set was derived into two subsets as described
in the original work (Xiong et al., 2011). One of the subsets was
used as the training set while the other subset, including the bound
and unbound conformations, was used as the test set. Again the
performance of MV in terms of F1 (bound: 0.50; unbound: 0.44)
and AUC (bound: 0.85; unbound: 0.80) values were comparable
with those reported in the original publication (F1; bound: 0.51;
unbound: 0.44; AUC: bound: 0.84; unbound: 0.78).

3.1.3 Protein–RNA binding site prediction The RNA-set was
used to assess the performance of MV in protein–RNA binding site

prediction. This set was recently derived to benchmark a RNA-
binding site prediction method (Liu et al., 2010). The first test
consisted of a 5-fold cross-validation on the entire RNA-set. In
terms of F1-scores and AUC values, MV (F1-score: 0.80; AUC:
0.88) slightly underperformed in comparison with the method of
Zhi-Ping et al. (F1-score: 0.85; AUC: 0.92) although the differences
were marginal and not significant (P>0.01). The second test
consisted on the prediction of RNA-binding sites on a randomly
chosen independent set of 100 complexes. In order to compare
the performance of MV under the same conditions, the same 100
complexes were selected. In this comparison, the original method of
Zhi-Ping (F1-score: 0.79; MCC: 0.49) performed marginally better
than MV (F1-score: 0.79; MCC: 0.43) although again differences
were minimal and not significant (P>0.01).

In summary, MV is competitive in peptide-, DNA- and RNA-
binding site predictions when compared with recent individual
methods developed for the prediction of these specific functional
sites. Thus, having a single method able to predict different
interface types and still be competitive makes MV a useful resource.
Moreover, the low computational cost of the RF approach makes
the prediction process sufficiently fast to be implemented as a web
application with almost no waiting time (see below in Section 3.4).

3.2 Selectivity of the predictions
A central consideration during the development of MV was to
explore the selectivity or discriminative nature of the predictions.
For example, did DNA-binding sites show consistently higher scores
when using MV to predict DNA-binding sites that when predictions
were made using the specific RNA-binding statistical model? To
answer this question, a number of cross-prediction experiments were
performed. MV was used with each dataset (PROT-set, PEP-set,
DNA-set and RNA-set) to predict protein-, peptide-, DNA- and
RNA-binding sites. When the training and testing set were the
same, the scores were calculated using a 5-fold cross-validation. The
distributions of raw scores of the interfaces residues were plotted
against each of the predicted interface types.

As shown in Figure 2, the distribution of scores and median
values of interface residues were significantly different (P<0.01)
when predicted interfaces and dataset types coincided. For example,
the prediction scores for protein-binding interfaces in the PROT-
set were higher and median values were significantly different than
peptide-, DNA- and RNA-binding site prediction scores. This was
also true for the PEP-set, DNA-set and RNA-set. In the case of
peptide-binding predictions on the PROT-set, there were a number of
outlier protein complexes, i.e. protein–protein interfaces that scored
very high (Fig. 2; shown in red).

The analysis of these outliers revealed that protein–protein
interactions were mediated by linear stretches of the polypeptide
chain, i.e. one of the protein partners binds to the cognate partner
via a stretch of residues in an extended conformation. An example
is illustrated in Supplementary Fig. S2. The interaction in protein
complex formed by PPIase A and protein Gag-Pol is mediated by
the recognition of a long and flexible loop of Gag-Pol. Thus, the
actual interface mediating the interaction is structurally more similar
to a peptide-binding site than a protein-binding site and consequently
MV assigned high scores to this region of the protein.

The selectivity of the predictions was further assessed by
analyzing the COMB-set. The COMB-set included three different
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Fig. 2. Residue binding site score box plots. The different colors represent
the different datasets: light blue PROT-set, light green PEP-set, red DNA-set
and orange RNA-set. In each dataset, four binding site types were predicted
as shown in the X -axis: prot, pep, DNA and RNA for protein-, peptide-,
DNA- and RNA-binding site prediction, respectively. The central horizontal
line in the box marks the median and the box edges the first and third quartile;
errors bars show minimum and maximum values and outliers are represented
by empty circles

types of complexes: protein–protein–peptide, protein–protein–DNA
and protein–protein–RNA (full list of PDB codes is available in
the Supplementary Data). As shown in the Supplementary Data
(Supplementary Fig. S3), the prediction scores were consistently
higher when interface and prediction type was the same and lower
and distributed in a narrower interval when different, e.g. scores
assigned to an actual DNA-binding site when predicting a protein-
binding site. Two examples of combined predictions are depicted in
Sections 3.3 and 3.4.

3.3 Combined predictions
3.3.1 A protein–protein–peptide complex An example of a
combined prediction of protein- and peptide-binding sites is depicted
in Figure 3. Cyclin-A2 recognizes both a globular protein and a
peptide and so can bind to both the cell division kinase 2 (CDK2) and
the CDK2 substrate peptide. As shown in Figure 3, when predicting
protein-binding sites, MV assigned high scores to the actual interface
to CDK2 (red) and low scores to the rest of the exposed surface and
the peptide-binding site (blue). On the contrary, when predicting
peptide-binding sites, only the region that recognizes the substrate
peptide scored high. Therefore, and in accordance to the data shown
in Figure 2 and Supplementary Fig. S3, MV was able to discriminate
between two different types of interfaces and correctly locate the
interaction patches on the surface of the protein.

3.3.2 A protein–protein–DNA complex The crystal structure of
an engineered heterodimeric I-CreI endonuclease composed of two
subunits V2 and V3 is an example of a protein that interacts both

Fig. 3. Structural mapping of protein- and peptide-binding site predictions
onto the crystal structure of cyclin-A2 complexed with CDK2 and the CDK2
substrate peptide: Nt-PKTPKKAKKL-Ct (PDB code: 3qhr). Cyclin-A2 is
shown in surface representation, while CDK2 and substrate peptide are
depicted in ribbon. Cyclin-A2 colored according to prediction scores (s): red
s > 0.8; orange 0.6 < s < 0.8; yellow 0.4 < s < 0.6; green 0.2 < s < 0.3;
light blue 0.3 < s < 0.2; blue s < 0.2. (A) protein-binding site prediction;
(B) peptide-binding site prediction. Peptide-binding site highlighted using
a solid ellipse. Figs. 3 and 4 were generated using PyMOL (http://pymol.
sourceforge.net)

with a protein and DNA. The prediction of both protein- and DNA-
binding sites on subunit V2 is depicted in Figure 4. MV predicted
with a high accuracy the actual DNA-binding site (red) of the V2
endonuclease (chain A), while scoring low (blue) the interface with
V3 endonuclease. Likewise, MV assigned high scores to the actual
protein interface between V2 and V3 endonucleases (red), while
scoring low the DNA interface (blue). Again, this example shows
the discriminative power of the predictions in agreement with the
data shown in Figure 2 and Supplementary Fig. S3.

3.4 Web-server interface
For end-users two of the most important aspects of a computer-
based application are accessibility and ease of use. To achieve
that, an ad hoc web-server and visualization tool was developed
to both allow access to the method and to facilitate the analysis
and visualization of the predictions. The interface allows the
visualization of the multiple predicted interfaces simultaneously and
in the context of the protein structure by using a composite viewer,
and thus facilitating the analysis and assessment of the predictions
(Supplementary Fig. S4). Each independent viewer is synchronized,
such that any structural manipulation (e.g. a rotation) occurs
simultaneously in the other views. The web application has other
in-built functionalities including choice of surface representation,
the selection of raw or normalized scores and clickable residue
lists sorted by prediction scores. Prediction scores are mapped onto
the structure of the protein and are represented by a color gradient
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Fig. 4. Structural mapping of protein- and DNA-binding site predictions
onto the crystal structure of an engineered heterodimeric I-CreI endonuclease
complexed with a 24-bp oligonucleotide of the human RAG1 gene sequence
(PDB code: 3mxb). V2 endonuclease is shown in surface representation,
while V3 and DNA are shown in ribbon. V2 colored according to prediction
scores as described in Fig. 3. (A) Protein-binding site prediction; (B) DNA-
binding site prediction

between 0 (blue) and 1 (red). Furthermore, the atomic coordinates of
the protein in PDB format with modified B factors to represent the
predicted residue scores and tables containing the predicted scores
are available for download.

4 CONCLUSION
A novel computational method, MV, has been developed to predict
protein-, peptide-, DNA- and RNA-binding sites. MV has been
compared with recently published methods that predict individual
types of interactions with a positive outcome. The structural mapping
of functional sites is highly selective, allowing multiple sites to be
predicted with high accuracy and reliability. A user-friendly web
application has been developed to easily access to the method.
Prediction results are readily available for download or can be
analyzed within the same web-browser by using a web-application
and a special graphic visualization viewer.
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