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Abstract 

The optimization of the electronic properties of molecular materials based on optically or 

electrically active organic building blocks requires a fine-tuning of their self-assembly 

properties at surfaces. Such a fine-tuning can be obtained on a scale up to 10 nm by 

mastering principles of supramolecular chemistry, i.e. by using suitably designed 

molecules interacting via pre-programmed non-covalent forces. The control and fine-

tuning on a greater length scale is more difficult and challenging. 

This Research News highlights recent results we obtained on a new class of 

macromolecules that possess a very rigid backbone and side chains that point away from 

this backbone. Each side chain contains an organic semiconducting moiety, whose 

position and electronic interaction with neighbouring moieties are dictated by the central 

macromolecular scaffold. A combined experimental and theoretical approach has made it 

possible to unravel the physical and chemical properties of this system across multiple 

length scales The (opto)electronic properties of the new functional architectures have 

been explored by constructing prototypes of field-effect transistors and solar cells, 

thereby providing direct insight into the relationship between architecture and function. 

 

 

 



 3 

Introduction 

The physico-chemical properties of organic (multi)component films for opto-electronic 

applications depend on both the mesoscopic and nanoscale architecture within the 

semiconducting material.
[1]

 Two main classes of semiconducting materials are commonly 

employed: polymers and (liquid)-crystals of small aromatic molecules. Whereas 

polymers (e.g. polyphenylenevinylenes and polythiophenes) are easily solution-

processable in thin and uniform layers,
[2]

 small molecules can form highly defined 

(liquid)-crystalline structures featuring high charge mobilities.
[3]

  

The self-assembly of -conjugated (macro)molecules at surfaces forming highly ordered 

supramolecular architectures has been widely explored in the last two decades. 
[4]

 

Through the proper design of side-functionalities attached to the conjugated backbone, it 

has been possible to control the self-assembly at the 1-10 nm scale. This was 

accomplished by the synthesis of molecular systems undergoing recognition events 

through a variety of non-covalent interactions.
[5]

 To expand the control to conjugated 

assemblies at larger length scales, strategies involving extrinsic forces have been 

proposed. This includes the use of pre-patterned surfaces,
[6]

 hydrodynamic forces,
[7]

 and 

electric
[8]

 or magnetic fields.
[9]

 The involved procedures are, however, often cumbersome 

and the parameters vary from system to system. 

We have recently devised a practical protocol for achieving a full control over the 

position of functional molecular units in 2D on a scale up to some hundreds of 

nanometres. This strategy relies on the use of a rigid polymeric scaffold, i.e. a structurally 

well-defined nano-object, which is employed as a backbone upon which functional 

groups can be exactly postioned. In this way the interaction between the functional 

groups can be fully controlled from the sub-nanometre up to the few hundreds of 

nanometres scale. 

The scaffold that we have designed and synthesized is a poly(isocyanide) derivative 

bearing L-alanine-D-alanine methyl ester side groups (LD-PIAA) (see Figure 1a).
[10]

 In 

2002 we demonstrated that such a polymer is extremely rigid and possesses a persistence 

length of at least 76 nm, being as stiff as double stranded DNA.
[11]

 This high rigidity is 

due to the 41 helical backbone of the polymer and the hydrogen bonding network formed 

between the pendant alanine side-chains (see Figure 1b). The synthetic versatility of this 
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macromolecular system allows the controlled functionalization of the side-chains with a 

broad arsenal of moieties.  

We are particularly interested in electrically and optically active -conjugated systems 

for optoelectronic applications such as LEDs,
[2, 12]

 field-effect,
[13]

 light-emitting 

transistors,
[14]

 flexible displays,
[15]

 and solar cells,
[16]

 in which the control over the 

architecture is critical for the properties of the material and the device, in particular on its 

performance. 

In this connection we have chosen as prototypical functional system the 

perylenebis(dicarboximide) (M-PDI) group
[17]

 which is a well-known n-type 

semiconductor and of interest as active component in the fabrication of field-effect 

transistors (FETs)
[18]

 and solar cells.
[19, 20]

  

 

 

 

 

 

a)

b)

 
 

Fig. 1: Molecular formulae and (a) helical motif of a P-PDI. (b) Molecular modelling and 

spectroscopic studies suggest that P-PDI-1 adopts a right-handed helix with ~3.75 repeat 

units per turn and edge-one interactions between the chromophores.  
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Synthesis, solution processing and modeling 

We have developed different synthetic strategies to covalently attach a M-PDI group to 

the side-chain of the polyisocyanide backbone. The PDI appended polymers are prepared 

by a nickel catalyzed polymerization reaction of the isocyanide monomers M-PDI-1 and 

M-PDI-2 (Figure 1).
[21]

   Polymer P-PDI-2, has bulky phenoxy groups in the bay area of 

the PDI and this feature can be expected to hinder the tendency of PDIs to stack through 

- interactions.  Polymer P-PDI-1 bears long alkyl tails in its side chains to increase the 

solubility of the compound in organic solvents. The polymers were soluble in chlorinated 

solvents (CH2Cl2, CHCl3, dichloroethane, tetrachloroethane) and other solvents such as 

benzene, toluene and tetrahydrofuran. From IR spectroscopy studies, i.e. from the 

disappearance of the isocyanide signal at 2140 cm
–1

, it was determined that the 

polymerization reaction was complete after ~15 minutes. Upon polymerization the IR-

absorptions at 3438 and 3391 cm
–1

, attributed to the trans and cis amide N-H stretching 

vibrations, respectively, shifted to 3294 cm
–1

. This shift is indicative of hydrogen bond 

formation between the amide functions in the side chains as also observed for LD-PIAA 

(Figure 1). Atomic Force Microscopy (AFM) images of the polymers revealed an average 

contour length of 180 nm for P-PDI-1 and 110 nm for P-PDI-2, which corresponds to 

Mn’s in the order of 10
5
–10

6 
g mol

–1
. 

The versatility of this synthetic strategy has been demonstrated through the syntheses of 

polyisocyanides exposing other chromophores, such as porphyrins
[22]

 and thiophenes.
[23]

 

A more modular approach, which involves the post-modification of a polyisocyanide 

scaffold relies on the use of the well-established click-chemistry.
[24]

 A polymer scaffold 

with two alanine groups in its side chain and a terminal acetylene functionality,
[25]

 was 

synthesized  and (co)-clicked with a variety of azides leading to,  for the first time, 

chromophoric water-soluble polyisocyanopeptides.
[26]

  The wide variety of available 

azides allows the synthesis of a vast array of functionalized polymers with varying 

properties. 

Spectroscopic analyses and extensive molecular dynamics studies on P-PDI-1 revealed a 

well defined 41 helix in which the PDI moieties form four “helter skelter-like” 

overlapping pathways along which excitons and electrons can be predicted to rapidly 

migrate. Quantitatively, molecular dynamics (MD) simulations at room temperature have 
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yielded electronic transfer integrals with an average value of 350 cm
-1

. Compared to 

single crystals of small molecules such as the oligoacenes,
[27]

 this is a significantly large 

value that should allow for efficient intramolecular electron transport along the polymer 

direction. The sizeable transfer integrals arise from the close packing of the PDI units and 

commensurate electronic coupling.  The well-defined polymer scaffold is stabilized by 

hydrogen bonding arrays in the 4 side chains, to which the chromophores are attached, 

accounting for the precise architectural definition, and molecular stiffness observed for 

these compounds. MD studies showed that the chirality present in the polymer side 

chains is expressed in the formation of stable right-handed helices. The formation of 

chiral supramolecular structures is further supported by the observed and calculated 

bisignated Cotton effects. The structural definition of the chromophores aligned in one 

direction along the polymer backbone is highlighted by the extremely high exciton 

migration rates, as demonstrated experimentally. In particular, polarization-sensitive 

transient absorption measurements on P-PDI-1 showed that the anisotropy in photo-

induced absorption decays on timescales of the order of picoseconds, which is faster than 

in other studied -conjugated polymers, such as polythiophene.
[28]

 These rapid 

depolarization processes are due to the compact helical structure,
[29]

 which promotes 

rapid exciton migration along the chiral arrangement of perylene stacks. In addition, high 

fractional changes in optical density (above ca. 1% in solution) are observed at short 

times after photo-excitation, as measured with transient absorption spectroscopy, 

showing an extremely high charged-excitation density on chains. 

Overall, these multi-chromophoric arrays are unique as they combine an ultra-stiff central 

polymer main-chain scaffold along which the PDI chromophores can self-organize 

through  stacking, and polymer processability making them interesting and versatile 

nanowires for electronic devices. 

 

Morphology at surfaces 

The assembly behaviour of the polyisocyanides at surfaces has been explored with AFM 

by comparing the results obtained from three polymers featuring different side-groups: 

(LD-PIAA) no chromophores, (P-PDI-1) chromophores capable of - stacking, (P-PDI-

2) chromophores where the stacking is hindered by the presence of bulky substituents in 
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the bay area of the PDI. The effect of the different side chain functionalization on the 

macromolecule assembly at surfaces was explored by studying the morphology and 

aggregation tendency of all three polymers when adsorbed on silicon, mica and graphite 

substrates.  

When deposited on a substrate, P-PDI-1 molecules formed well defined bundles with a 

strong tendency of the molecules to supercoil. In particular, the major effect of stacking 

interactions between the PDI chromophores is to favour both inter-chain and intra-chain 

interactions, with the molecules tending to form well defined bundles and supercoils. The  

LD-PIAAs were found also to assemble into bundles of fibers through strong intra- and 

inter-molecular aggregation, although in this case no supercoiling was observed. In 

contrast, P-PDI-2 was found to form shorter polymer strands and rounded structures, due 

to the absence of intermolecular interactions, caused by the sterically demanding side 

substituents. 
[30]

 

The results obtained indicate that, in multi-chromophoric polymers, the relationship 

between the central polymer backbone and the side functionalizations is not a simple 

“master-slave” interaction, in which the central backbone dictates the overall morphology 

forcing the pending perylene units to arrange themselves, only influencing the electronic 

properties of the material. Instead, the presence of side chain PDIs, and in particular their 

stacking behaviour, plays a fundamental role in the material architecture, highlighted  by 

the different self-assembling behaviour of P-PDI-1 from that of P-PDI-2.  

Overall, the macromolecular conformation is dictated by a complex interplay between i) 

the covalent bonds of the polymer backbone, ii) the hydrogen bonding arrays between the 

amide units, and iii) the - interactions between the PDIs. 

 

Solar Cells 

In solar cells, the use of bulk hetero junction (BHJ) devices, in which acceptor and donor 

material are mixed to give maximal charge separation, represented a breakthrough in the 

field.
[16]

 In these kinds of solar cell the high contact area between the two materials 

facilitates photogenerated excitons to successfully reach the interface between the 

acceptor and the donor. Preferably the interpenetration length should be on a length scale 

comparable to the mean exciton diffusion length, which amounts typically to 5-6 nm.
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Moreover the structures within the active layer should provide efficient pathways for the 

photogenerated charges to migrate to the corresponding electrodes and promote charge 

transport over charge recombination. Hence, the “ideal” blend for BHJ requires the 

combination of the following features: i) the electron-acceptor and -donor materials must 

be interpenetrating on the nm scale, thus phase separation on macroscopic scales must be 

hindered. ii) the electron-acceptor and -donor materials must form continuous paths to the 

electrodes, and charge accumulation or recombination in dead ends and bottlenecks needs 

to be prevented. iii) charge transport must be efficient with good charge mobility and low 

presence of structural defects within each phase. In the case of molecular materials, such 

properties can be achieved in highly crystalline systems exhibiting optimal overlap 

between stacked - orbitals to provide efficient charge hopping transport.  

In the light of these rules of thumb, P-PDI-1 appears to be an ideal model electron 

acceptor system to fabricate prototypical solar cells. To this end we have blended P-PDI-

1 with electron donors such as polythiophene- and polyfluorene-based conjugated 

polymers. Prototypical devices with nominal (1:1) blend weight ratios of the 

polyisocyanide with poly(3-hexylthiophene) (P3HT) and poly(9,9′-dioctylfluorene-co-

bis(N,N′-(4-butylphenyl))-bis(N,N′-phenyl)-1,4-phenyldiamine) (PFB) readily showed an 

order of magnitude improvement in power conversion efficiency, as compared to 

analogous blend using M-PDI, whereas the performance of strongly phase-separated 

F8BT (poly(9,9′-dioctylfluorene-co-benzothiadiazole) blend devices showed no such 

improvement.  

In addition to the favourable phase separation and mixing of P-PDI-1 blends with P3HT 

and PFB, as evidenced by AFM studies, the interpenetrating networks of P-PDI-1 

bundles offer an interesting means by which the connectivity of charge conduits back to 

the collecting electrodes may be improved. Commensurate improvements in both open-

circuit voltage and short-circuit current, relative to analogous PDI-blend devices, have 

been observed. Additionally, we find that the quenching of photoluminescence (PL) in 

these photovoltaic blends of P-PDI-1, due to charge separation at the heterojunction 

interfaces, correlates very closely with the device efficiencies; the poorly performing P-

PDI-1/F8BT blends show very low PL quenching efficiencies. 
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Figure 2: Potential  maps of thin films of P3HT and P-PDI-1 recorded with KPFM. a) 

AFM topography image of an ultra-thin blend of P-PDI-1 and P3HT deposited on 

silicon. c) Surface potential (SP) image of the same area as in a), with no illumination and 

e) under white light (60 mW cm
-2

) illumination. An overall negative potential shift upon 

light illumination is known to occur in these types of KPFM measurements, as previously 

reported for thick layers (see text): this is the reason why both P-PDI-1 and P3HT appear 

more negative than the exposed bare silicon areas upon illumination. b), d) and f) 

Measured (black lines and circles) and simulated (red lines) profiles obtained tracing an 

arbitrary line in the corresponding images a), c) and e). Thus SP values depicted are the 

measured ones and therefore differ from the calculated asymptotical true values. Z-

ranges: a) 32 nm, c) 120 mV, e) 120 mV.
[31]
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In order to obtain a greater insight in the relationship between this enhanced photovoltaic 

behaviour and the architecture of the material, Atomic Force Microscopy investigations 

on the mixtures P-PDI-1:P3HT were carried out. These studies revealed that the two 

polymers form a continuous path of interpenetrated bundles, with no evidence of 

macroscopic phase separation, as observed in blends based on monomeric PDI.
[20]

 To 

better clarify P-PDI-1:P3HT interactions on the nanometric scale, the same blend was 

also deposited in the form of ultra-thin layers, where the single polymeric fibers can be 

resolved.  Two different kinds of structures were observed (Fig. 2a): sparse, thick fibers 

(black arrow) surrounded by a denser network of thinner fibers (white arrow). 

Unfortunately, topography images do not offer information on the chemical composition 

of the observed features. Yet the surface potential map obtained by KPFM 

unambiguously reveals a clear difference in contrast between the two architectures (Fig. 

5b). The surface potential (SP) of the thick fibers appears much more negative (darker in 

the KPFM image) than the silicon substrate, whereas the potential of the thin fibers is 

slightly more positive. The potential difference (30 mV) observed between the two 

structures, which arises from a partial transfer of charge between the two materials, 

indicates that the thick fibers are (mostly) composed of electron accepting P-PDI-1 and 

the thin ones of electron donating P3HT. This bi-component motif exhibits a nanophase 

segregated character, with a high density of contact points between the electron accepting 

and donating phases.  

By illuminating both P-PDI-1:P3HT blends with white light, a sudden change in the 

surface voltage was observed (Fig. 2e). Most significantly, an increase of the SP 

difference between acceptor and donor assemblies was observed revealing a photovoltaic 

effect occurring in P-PDI-1:P3HT aggregates with a resolution even down to the single 

P3HT strands. Figures 2b,d,f  show the profiles obtained by tracing an arbitrary line in 

the corresponding three KPFM images in which we can distinguish both types of  fibers 

(large and small) and substrate. The typical characteristic time scale of exciton splitting 

and charge generation are several orders of magnitude smaller than the time-resolution of 

the KPFM technique, i.e. a few ms. The measurements were however performed under 

steady-state conditions. During the illumination, charge generation and recombination 

cannot be monitored because both the deep and the shallow traps are continuously 
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populated, hence, the measured SP values are an average of the charge density which 

does not reflect any time-dependence.  

A clear and reproducible difference in the surface SP on such sub-monolayer thick films 

(Figure 2) was observed upon turning on and off the light, highlighting the different 

behaviours between charging and de-charging. The surface potential measured at 

different points on the P-PDI-1 fibers appeared to be uniform within experimental error, 

indicating a uniform level of charging of the material. 
[31]

 

Such a KPFM study on the nanoscale could for the first time give a direct insight into the 

correlation between surface potential variations and molecular structure, through the 

direct visualization of the photovoltaic activity occurring in such a nanoscale phase 

segregated ultrathin film. The ability to obtain highly resolved and quantitative mapping 

of the photovoltaic activity on a nanoscale has a huge potential for gaining a greater 

understanding of the processes of charge separation and charge mobility in polymer 

chains.  

Overall, the AFM and KPFM data measured on both thick and ultra-thin layers show that 

thick films of P-PDI-1 and P3HT exhibit architectures that are effectively phase-

segregated yet interdigitated on the hundreds of nanometres scale, featuring both a high 

contact area between the two materials and well defined percolation paths for charges. 

This behaviour is in contrast with that observed in M-PDI:P3HT ultra-thin blends, in 

which crystal islands sit in a sea of P3HT.
[32]

 This observation accounts for the results 

obtained macroscopically on the solar cells efficiency comparison. 

This is crucial for the optimization of various fundamental photophysical properties of a 

functional bi-component macromolecular system, and ultimately for the improvement of 

the performances of any organic solar cell, e.g. its power conversion efficiency.  

The obtained results on the electron-acceptor and electron-donor blends incorporating the 

P-PDI-1 molecule provided evidence that the use of polyisocyanides as a molecular 

scaffold offers a great control over the morphology and connectivity of photovoltaic 

blends, leading to improved properties. 
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Field-Effect transistor 

 
  

1 m

c )a )

300 nm

b )

e )
d )

 
 

Fig. 3: a) Schematic drawing of co-deposited M-PDI and P-PDI-1 leading the polymer 

fibers bridging monomeric crystals. b,c) AFM topographical images of ultrathin film of 

blended monomeric M-PDI and P-PDI-1 deposited from CHCl3 on mica showing 

polymer fibers bridging monomeric crystals. d) Transfer characteristics, at source-drain 

bias of 25V, of P-PDI-1:M-PDI bottom-gate FETs with varying weight fractions of P-

PDI-1, as indicated. The channel length and width was 2 m and 10,000 m respectively, 

and the direction of gate-voltage sweep is indicated by the arrows. e) Shows the gated 

resistance, defined as Vsd/Isd at Vgate = +50V, as a function of channel length (L), for case 

of 17% P-PDI-1. The inferred contact resistance at L = 0 is 4.6 M. 
[33]

 

 

To probe the intrinsic electrical characteristics of P-PDI-1 films, and in particular their 

charge transport properties through the four helical stacks of perylene-bis(dicarboximide) 

(PDI) chromophores prototypes of bottom-gate field-effect transistors were fabricated 

and characterized. The P-PDI-1 fibers were found to exhibit n-type electroactivity in thin 

films, with carrier mobilities in the order of 10
-4

 to 10
-5

 cm
2
 V

-1
 s
-1

 at room temperature, 

rising to ~10
-3

 cm
2
 V

-1
 s
-1

 at 350 K, which are limited by inter-chain transport processes 

with significant activation energies. Such an electrical property is determined by the 

transfer of electrons through the  stack of PDIs. Conversely, P-PDI-2, in which  

interactions were sterically hindered, exhibited much poorer device characteristics, as 

efficient intra-chain transport is inhibited. KPFM measurements of the work function of 

the P-PDIs nanostructures were in satisfactory agreement with electrochemical 
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measurements of HOMO and LUMO levels from cyclic voltammetry. In particular, 

polymer P-PDI-1 showed a much higher WF than either the polymer without PDIs (LD-

PIAA) or the P-PDI-2. Theoretical modelling of the helical P-PDI-1 system confirms the 

charges can be transported efficiently through the 1D architecture. 
[34]

 

The electron transfer integrals between adjacent PDIs, calculated at the INDO quantum-

chemical level on the basis of snapshots extracted from the molecular dynamics 

simulations, gave an average value of 350 cm
-1

. Compared to single crystals of small 

molecules such as the oligoacenes,
[27]

 this is a significant value, which allows for 

efficient intramolecular electron transport along the polymer. However, because of 

positional disorder, the electronic couplings mediating electron transport showed a broad 

distribution. In particular, fluctuations of the rotation angles (around an equilibrium value 

of ~22°) between adjacent chromophores strongly influence the wavefunction overlap 

and the resulting transfer integral. We are now exploring molecular design strategies that 

reduce the average rotation angle to promote larger electronic communication between 

the PDIs. 

It is however known that, while the highest charge mobilities in transistors have been 

obtained by employing single crystals of small molecules as electroactive 

architectures,
[35]

 typical devices are based on nano- or micro-crystalline layers. In such 

systems the interfaces between different crystals act as bottlenecks for charge 

transport.
[36]

 The generation of highly crystalline films featuring efficient percolation 

paths for charges is thus a crucial characteristic feature required to achieve elevated 

charge transport within an organic thin film. Monomeric PDIs forming polycrystalline 

films have been thoroughly employed as active layers in FETs.
[18]

 To improve charge 

transport between the different crystals, an interesting strategy is to use flexible 

polymeric linkers, which can act as charge-carrying bridges between neighbouring 

nanocrystals (Fig 3a). This approach is similar to what occurs spontaneously in 

polythiophene semicrystalline layers, where a single polymeric chain can span many 

different neighbouring nanocrystalline fibers or domains, thereby bridging them. In our 

specific case P-PDI-1 appeared as the ideal systems to accomplish this goal. We  

therefore first investigated the self-assembly of bi-component films consisting of an M-

PDI and P-PDI-1 co-deposited on SiOx and mica substrates from solution. The 
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morphology of these bi-component films was characterized by AFM. The studies 

revealed that monomer-polymer interactions can be controlled by varying solvent and/or 

substrate polarity, so that either the monomer packing dictates the polymer morphology 

or vice versa, leading to a morphology in which M-PDI nanocrystals are connected with 

each other by P-PDI-1 polymer wires (Fig. 3b-c).
[33]

 

KPFM analysis on the nanoscale showed minimal differences in surface potential 

between the two phases, which suggests a low potential barrier for charge transport. 

Compared to pure M-PDI or P-PDI-1 films, bi-component films containg 17 % of 

polymer, possess polymer interconnections between crystallites of the monomer display a 

significant improvement in electrical connectivity and a two orders of magnitude increase 

in charge carrier mobility within the film, as measured in FET devices (Fig. 3d-e). 
[33]

 

Our technique based on the controlled formation of percolation pathways for charge 

transport through the use of P-PDI-1 fibers offers an attractive strategy to improve the 

performance of electronic devices based on semiconducting polycrystalline films, without 

the formation of prohibitive charge-trapping sites or injection barriers at the connection 

points. The strategy presented here for promoting charge transport in polycrystalline 

films for organic electronics is not limited to PDI electroactive derivatives, and can be 

more generally applied to any combination of a small electroactive molecule and its 

polymeric analogue that is linked to a rigid scaffold, including high performance 

molecular moieties such as thiophenes or polyfluorenes. 

 

Conclusions and outlooks  

We have devised a new strategy based on a polyisocyanide scaffold to achieve control 

over the position of functional molecular units, with a precision on the sub-ångström 

scale, up to a length scale of several hundreds of nanometres. The main features of the 

scaffold can be summarized as follows. 

(i) it has a highly rigid architecture, which adopts a helical conformation when bulky 

groups are attached to its backbone; 

(ii) it possesses chiral alanine side chains, which interact through hydrogen bonding, not 

only allowing  the backbone to adopt a 41 (four repeats per turn) helical conformation 
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with a preferred handedness, but also providing greater rigidity and stability to the 

polymer; 

(iii) it has small flexible linkers between the chromophores and the polymer backbone, 

making it possible to the chromophores to remain close to the polymeric chain, but 

simultaneously allows them to orientate themselves on a molecular scale to maximize 

their - interactions;  

(iv) it contains aromatic chromophores, which provides the electronic and optical 

functions to the architecture, and finally 

(v) it possesses flexible alkyl  chains, which offer increased solubility in organic solvents. 

The combination of these features results in macromolecules possessing extremely high 

rigidity, good solution processibility, and the capacity to generate and transport charges. 

The macromolecules moreover have a high molecular weight. 

The use of rigid polymer chains as scaffolds to control the position of electroactive 

moieties is not limited to PDI chromophores attached to polyisocyanides, and a wide 

variety of ultra-stiff nanowires based on different functional groups is accessible.
[22]

 The 

possibility to tune independently, by chemical modification, the mechanical properties of 

the polymer, i.e. the rigidity of the wire  (on the nanometres scale), the linker flexibility 

and the functional group stacking (on the molecular scale) will add a new class of 

materials with much improved mechanical and electronic properties to the continuously 

growing toolbox of nanoelectronics. By exploiting the click-chemistry approach in a 

modular fashion, the covalent attachment of various building blocks of interest for solar 

cell (e.g. C60s) or transistor (e.g. pentacene) applications is conceivable. Intriguingly, at 

the single molecule level, the presence of cumulative local dipoles along the backbone 

generates an electric field resulting in an energy gradient for charge migration. P-PDI-1 

might thus be an interesting candidate for single molecule rectification. It is worth noting 

that the use of a flexible spacer connecting the stiff polymer backbone to the electronic 

functional unit (i.e. PDI) grants to the system a certain degree of conformational freedom 

that allows the PDI stacking to occur, ultimately providing an electronic function to the 

architecture. 

Overall, as an alternative to the use of supramolecular scaffolds for controlling the 

position of functional units in space (in particular in 2D),
[37]

 our macromolecular 
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scaffolding strategy appears to be highly suitable to explore the relationship between 

architecture and function in molecular materials, not only for electronics, but also for 

catalysis and medicine. 
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