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764 Application of indirect Hamiltonian tomography to complex systems with short coherence times

The identification of parameters in the Hamiltonian that describes complex many-body
quantum systems is generally a very hard task. Recent attention has focused on such
problems of Hamiltonian tomography for networks constructed with two-level systems.
For open quantum systems, the fact that injected signals are likely to decay before they
accumulate sufficient information for parameter estimation poses additional challenges.
In this paper, we consider use of the gateway approach to Hamiltonian tomography

[1, 2] to complex quantum systems with a limited set of state preparation and measure-
ment probes. We classify graph properties of networks for which the Hamiltonian may
be estimated under equivalent conditions on state preparation and measurement. We
then examine the extent to which the gateway approach may be applied to estimation

of Hamiltonian parameters for network graphs with non-trivial topologies mimicking
biomolecular systems.

Keywords: Hamiltonian tomography, complex system, dissipation

Communicated by: S Braustein & J Eisert

1 Introduction

Precise information about the Hamiltonian of many-body quantum systems is crucially im-

portant for analysis and prediction of their dynamics, especially to understand the extent

to which a given subsystem behaves quantum mechanically. If the subsystem of interest is

well isolated from the remainder, i.e., from its environment, in the sense that its dynamics is

immune to the effect of noise, then the time evolution is unitary and observable data may be

considered ‘clean’ enough to extract good information on the subsystem Hamiltonian. How-

ever this is clearly an idealized situation that is rarely encountered. Furthermore, the general

procedures to estimate even a small part of the Hamiltonian that acts on a many-body system

are, in general, very complex and require a large number of measurements of different observ-

ables. This leads to a further challenge which is that as the data acquisition process becomes

more elaborate and accesses more of the system, it is likely to introduce an increasing amount

of measurement noise.

Several approaches for Hamiltonian identification, or Hamiltonian tomography, have been

recently proposed that seek to reduce the complexity of the procedure by making use of some

a priori knowledge about the physical system [3, 4, 5, 6, 7, 8, 9, 10, 11]. One approach is to

map the many-body system onto a quantum network and to make use of knowledge about

the topology of this network to devise protocols that extract desired Hamiltonian parameters

from measurements on a restricted portion of the network. Following the demonstration that

the Hamiltonian parameters of one-dimensional chain of spin-1/2 particles may be determined

by measurements on a single spin [1, 12], this approach has been generalized to more general

spin networks with restricted measurement access on a small gateway region [2] as well as to

more general Hamiltonians [13]. Reference [12] also showed that such an estimation scheme

may be robust against noise under weak-coupling conditions. For sparse Hamiltonians, a

different approach has recently been developed using the method of compressed sensing [14,

15], which has also been applied to quantum state tomography [16]. Compressed sensing

allows determination of both higher order Hamiltonians and system-bath interactions, but

is limited to sparse Hamiltonians. Other approaches have been developed that are based on

convex optimization [17] and Bayesian estimation [8]. While these Hamiltonian tomography

approaches are related to the better known quantum process tomography (QPT) [18, 19,



K. Maruyama, D. Burgarth, A. Ishizaki, T. Takui, and K.B. Whaley 765

20, 21, 22] that (together with quantum state and quantum measurement tomographies)

provides a complete characterization of quantum dynamics, they differ from QPT in seeking

to reconstruct the desired parameters with a minimal amount of resources.

In this paper we explore the use of the gateway scheme outlined in [2] for determination

of Hamiltonian parameters for an open quantum system under conditions of restricted access.

The approach of Ref. [2] was based on the assumption of long coherence times, which allowed

the injected signal (spin wave) to go back and forth in the network many times so that the

information about spin interactions may be encoded in the signal. For dissipative systems, we

cannot in general expect such a long lifetime of the signal and it will generally be susceptible

to decay before coming back to the injection site, even though the initial time evolution for

a short time may be seen to be coherent. We therefore limit our attention here to complex

systems in which a subsystem does show such coherent short time evolution.

One prototype of this latter situation that is of considerable current interest is the subsys-

tem of pigments in photosynthetic light harvesting systems. Recent spectroscopic experiments

have shown that electronic energy transfer dynamics in such systems displays coherence for

several hundreds of femtoseconds [23, 24, 25, 26, 27]. Although the extent of vibrational con-

tributions is not entirely clear [28], these coherences are generally accepted to reflect quantum

coherences between different excitonic states that may be described by superpositions of single

molecule electronic excitations, and are thus amenable to a two-level pseudo-spin represen-

tation. In this work we shall consider a network of pseudo-spins that mimics pigments in a

light harvesting protein.

We first review the gateway scheme of Refs. [1, 2], introducing the graph theoretic descrip-

tion and notion of infection between different regions of the network (graph) (Sec. 2). We then

summarize the minimal restrictions on measurement access via spectroscopic measurements in

a pigment-protein complex (Sec. 3). These differ from the measurement requirements for spin

networks [2] and thus necessitate an extension of that approach. We present a classification of

network topologies that are accessible to Hamiltonian tomography under the current scheme.

In Sec. 4 we then investigate the extent to which the scheme may be applied to a network

graph mimicking pigments embedded in the Fenna-Matthews-Olson protein of photosynthetic

green bacteria [29]. A discussion and analysis of the limitation posed by restriction to short

time scales of coherent evolution, together with indications for extensions to remedy this,

follows in Sec. 5.

2 Gateway scheme of Hamiltonian tomography

In the ‘gateway scheme’ of Hamiltonian identification [1, 2], we consider a network of spin 1/2

pseudo-spins subject to a unitary dynamics generated by a Hamiltonian containing pairwise

interaction terms and Zeeman terms. For clarity and conciseness we describe here only the

case of excitation-conserving Hamiltonians, namely those satisfying [H,
∑

n Zn] = 0, i.e.,

conserving the total magnetization of the pseudo-spin network. We further assume that all

coupling strengths cn between spins are real and the (relative) signs of these, but not the

magnitudes, are known. We shall consider the determination of the Hamiltonian parameters

in the first excitation subspace, i.e., the subspace in which there is only one ’up’ pseudo-spin

and all other pseudo-spins are ‘down’. (Note that this places a restriction on the interaction

between pseudo-spins.) The basis states describing one excitation localized on a single pseudo-
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spin will be denoted by |1〉 ≡ | ↑↓ . . . ↓〉 = |10 . . . 0〉, where N is the number of pseudo-spins.

Other states with a single up-spin will be denoted similarly hereafter, i.e., |n〉 = | ↓ . . . ↑ . . . ↓〉
contains only a single spin up at the n-th site. The energy eigenstates will be denoted |Ej〉.
We define ρn(t) = tr 6=n[U(t)|ψ0〉〈ψ0|U(t)†] to be the reduced density matrix on site n, where

U(t) = exp(−iHt) is a time evolution operator for the network.

We illustrate the scheme here for a 1D spin chain with nearest-neighbor interactions.The

Hamiltonian in the first excitation subspace is given by

H1D =











b1 c1
c1 b2 c2

. . . cN−1

cN−1 bN











. (1)

For a 1D chain, we start our procedure by measuring all eigenenergies {Ej} and coefficients

{〈Ej |1〉} for j = 1, 2, . . . , N . First we initialize the state of the chain as |ψ0〉 := 1/
√
2(|0〉+|1〉),

i.e., 1/
√
2(|0〉 + |1〉) ⊗ |0 . . . 0〉. Such an initialization is possible by accessing only the first

spin [30]. We then perform state tomography on the first spin after a time lapse t to extract

the reduced density matrix ρ1(t) and repeat this at various time delays to obtain ρ1(t) as

a function of time. Up to an irrelevant phase factor, the diagonal element of ρ1(t) can be

written as

f11(t) := 〈1| exp(−iHt)|1〉 =
∑

j

exp(−iEjt)|〈Ej |1〉|2.

The eigenenergies {Ej} and the coefficients {|〈Ej |1〉|} can then be obtained by performing

the time Fourier transform of f11(t). Due to the arbitrariness of the global phase, we can

choose all 〈Ej |1〉 to be real and positive. Detailed discussion of the factors determining the

efficiency of the Fourier transform are discussed in Ref. [1]. As noted there, it is necessary to

observe repeated reflections of the signal (at least N times) in order to obtain an adequate

signal to noise ratio. Consequently a long time coherence is necessary for implementation of

Hamiltonian tomography with measurements only on a single spin.

With the information about {Ej} and {〈Ej |1〉} obtained from these single spin measure-

ments, we can proceed to the parameter estimation by constructing a set of N2 equations

representing 〈Ej |H1D|n〉 for 1 ≤ j, n ≤ N . These equations are given by

Ej〈Ej |1〉 = b1〈Ej |1〉+ c1〈Ej |2〉, (2)

Ej〈Ej |n〉 = cn−1〈Ej |n− 1〉+ bn〈Ej |n〉+ cn〈Ej |n+ 1〉 (1 < n < N), (3)

Ej〈Ej |N〉 = cN−1〈Ej |N− 1〉+ bN 〈Ej |N〉. (4)

Noting that b1 = 〈1|H|1〉 =
∑

j Ej |〈Ej |1〉|2, each factor of which has been determined by

state tomography on spin 1, the expansion of |2〉 in the basis |Ej〉 can be obtained up to the

constant c1. The value of c1 can then be obtained within a sign factor by requiring that |2〉 be
normalized to unity. All other parameters bl, cm and 〈Ej |n〉 are then subsequently obtained

in the same manner from Eq. (3) (for l = N − 1,m = N) and Eq. (4). The intensities

of any local magnetic fields (which will be assumed imposed in the z-direction) can be then

estimated from {bl}.
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Fig. 1. An example of graph infection. (a) Initially, three colored nodes in the region C are
‘infected’. (b) Since the node ν is the only uninfected node among the neighbors of µ, it becomes

infected as time evolves. (c) In a similar manner, ν′ becomes infected by µ′. (d) Eventually all
nodes will be infected sequentially.

This scheme can be generalized to more complex graphs by enlarging the accessible area

C as was shown in Ref. [2]. In that work the Hamiltonian tomography of a general graph

formed by a network of spin-1/2 systems was found to be possible if C infects the entire graph.

The infection process is defined as follows. Starting with a subset C of a larger set of nodes

V , suppose that all nodes in C possess, i.e., are infected with some property. This property

then spreads and infects other nodes according to the following rule: an infected node infects

a healthy (uninfected) neighbor if and only if the latter is the unique healthy neighbor of the

former. If eventually all nodes are infected by this process, the initial set C is referred to as

an infecting subset. Figure 1 depicts the infecting process with a simple example.

We will see below that in general, although this requirement of infection is a necessary

condition of the graph, it is not always a sufficient condition for Hamiltonian tomography

under arbitrary measurements. In particular, we will show that there exist graphs that

are not amenable to tomography under the spectrally restricted measurement assumptions

employed in the current work.

3 Spectrally restricted Hamiltonian tomography for pseudo-spin networks

We now discuss an extension of the gateway scheme for Hamiltonian tomography of a subsys-

tem, given access to a restricted set of spectral measurements and some short time subsystem

coherence.

We consider a pseudo-spin network with XY-type interactions and local external magnetic

fields, namely

H =
1

2

∑

(m,n)∈E

cmn(XmXn + YmYn) +
∑

m∈V

bmZm

=
∑

(m,n)∈E

cmn(σ
+
mσ

−
n + σ−

mσ
+
n ) +

∑

m∈V

bmZm. (5)

This defines a graph G = (V,E) with V the set of pseudo-spin sites and E the links defined

by the spin hopping between sites. The Hamiltonian parameters are the coupling strengths

cmn, and the energy gaps 2bm due to the Zeeman terms,
∑

bmZm. We employ the notation,

Xi, Yi, and Zi, for the standard Pauli matrices throughout this paper: σ±
m = (1/2)(Xm+ iYm)

are thus the raising and lowering operators for the m-th pseudo-spin.

For a network of pigments such as that considered later in this paper (Sec. 4), the pseudo-

spin sites are individual molecules with pseudo-spin states |0〉, |1〉 corresponding to the ground



768 Application of indirect Hamiltonian tomography to complex systems with short coherence times

and first excited electronic states, with energy gaps 2bm, while the links are given by the

matrix elements of coupling between transition dipole moments on different molecules. This

corresponds to the usual Heitler-London description of excitonic coupling between pigments

[31]. Since we restrict the analysis here to short times during which the dynamics are coherent,

we do not explicitly include other degrees of freedom here (but see discussion in Sec. 5).

Given a finite window of quantum coherence of subsystem dynamics, we may develop a

variant of the gateway Hamiltonian tomography scheme via a set of spectral measurements

at short times. This is possible with the following set of assumptions.

(i) The network topology is known. That is, the set of interacting pairs of sites which play

a dominant role in the overall dynamics is known without precise information on the

values of the coupling strengths, cmn. The latter may, without loss of generality, be

assumed real.

(ii) The sign of each cmn is known, but not the magnitude.

(iii) The energy gaps between the two pseudo-spin levels are known for the specific sites that

we need to access.

(iv) Single site excitation is possible when we have the information on energy gaps.

(v) The energy eigenvalues of the system are known.

(vi) Measurement in the energy eigenbasis {|Ej〉} is possible, i.e., the probability of finding

an eigenstate |Ej〉 in a state with a single site excitation |n〉, i.e., |〈Ej |n〉|2, can be

measured.

Assumptions (i) and (ii) are the same as in the original scheme described in the previ-

ous section. Assumption (iii) is necessary for the single site excitation in Assumption (iv).

Assumptions (iv) and (v) differ from the assumptions of the original gateway scheme of

Refs. [1, 2], which required waiting for a signal to travel back and forth in the chain/network

(Sec. 2). Since that procedure requires long coherence times, in situations where the time

over which the quantum dynamics are coherent is limited, a global measurement in the energy

basis provides an alternative route to acquire information about the subsystem before the ex-

citation decays, provided that such a measurement may be implemented on a fast enough

timescale. With use of such a global measurement, the term “to access the site n” then gains

a slightly different meaning, namely “to prepare a state” or “to excite the molecule” at the

site n, rather than to “to measure at site n” as was implicitly understood in Ref. [1].

The motivation for this measurement in the energy eigenbasis is that all necessary informa-

tion for the gateway scheme are the sets of {Ej} and 〈Ej |n〉 for all n ∈ C. In Section 4 below,

we discuss the feasibility of measurements in the different bases for the case of biomolecu-

lar networks. Clearly, which variant of the Hamiltonian tomography scheme is chosen for a

particular physical realization of a pseudo-spin network, i.e., the spectrally restricted version

presented here or the original gateway scheme of Refs. [1, 2], will depend on the relative ease

of making measurements in site or energy bases.

The fact that the quantities we obtain are the modulus of 〈Ej |n〉 gives rise to modifications

to the choice of sites that should be accessed and the class of graphs to which the scheme is

applicable, as we discuss below. For 1D chains, it still suffices to access an end site, as in the

original proposal in Ref. [1]. If the graph derived from the pseudo-spin network has branches

without loops, the end sites of all branches should be accessed. Figure 2(a) shows an example
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1 2 3
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(a)

1 2
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4

5 6

7

8

(b)

Fig. 2. Two examples of graphs to which the present spectrally restricted Hamiltonian tomography

scheme can be applied. (a) For graphs with branches, the end pseudo-spin of each branch should be
accessed, i.e., this pseudo-spin should locally excited before the measurement in the |Ej〉-basis. In
this example, sites 1, 5, and 8 (each encircled with red lines) need to be accessed. A measurement
at one of them defines the global phase, e.g., the site 1. The coefficients |〈Ej |n〉| are measured
after exciting the red encircled sites at the other end of the graph. (b) If there is a loop in the
graph, then in addition to the end sites of branches emerging from the loop (sites 1, 6 and 8), the
remaining sites contributing to the loop (e.g., site 3, also encircled in red) need to be accessed.
Note that in both examples we need to access a larger set of sites than the smallest infecting set.

of such a situation. If we set the global phase by 〈Ej |1〉, then measurements can only give

the modulus of 〈Ej |5〉 (and 〈Ej |8〉), without their relative phases. At site 5 we have

(Ej − b5)〈Ej |5〉 = c45〈Ej |4〉. (6)

Summing up the modulus squared of this equation over j, we can find c245. With the assumed

knowledge of the sign, we then obtain the value of c45, which can then be used to obtain

the value of |〈Ej |4〉|. The procedure is repeated until we reach the branching site, i.e.,

site 3 in Figure 2(a) where two branches meet. The coupling strength between sites 3 and

4 in Figure 2(a), for instance, can be obtained by evaluating
∑

j | · |2 of (Ej − b4)〈Ej |4〉 =

c34〈Ej |3〉+c45〈Ej |4〉, resulting in c234 =
∑

j(Ej−b4)2|〈Ej |4〉|2, from which b4 can be obtained

as before. (See text after Eq. (4).)

If there is a loop in the graph, all sites n that contribute the loop need to be accessed in

order to determine |〈Ej |n〉|. The necessity of knowing all |〈Ej |n〉| for the loop-forming sites

n derives from the requirement of having sufficient equations to determine the couplings. If

branches extrude from the loop, the access sites should be chosen to be the end sites of these

branches, just as in the case of simple graphs having branches. (See Figure 2(b).)

These examples show that the present variant of the gateway scheme for Hamiltonian

tomography cannot be applied once there are two or more loops in a connected graph. The

constraint on the available measurement given by Assumption (v) above poses a further

condition on the network topologies to which the current scheme is applicable. We illustrate

this for two simple examples of graphs in Figure 3. Because the original gateway scheme

is based on the fact that only one unknown term, e.g., cmn〈Ej |n〉, appears in the equation

deriving from the factor 〈Ej |H|m〉, we are able to obtain the value of one new coupling

strength, cmn, by using the previously obtained knowledge on parameters for sites other than

n. The property of infection then guarantees that all coupling strengths can be estimated

recursively in this manner, provided that all coefficients 〈Ej |m〉 are known for all sites m ∈ C,

as well as all eigenvalues {Ej}. However, when there is no information on the relative phase

of 〈Ej |m〉, the number of sites needs to be larger than or equal to the number of edges. The
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1

2 3

45

(a)

4

5

6

(b)

1

2

3

Fig. 3. Graphs containing more than one loop. In both examples here, the number of sites is less
than the number of edges, rendering the Hamiltonian unestimable with the spectrally restricted
approach using measurements in the energy basis.

graphs in Figure 3 do not fulfill this condition and as a result their Hamiltonians cannot be

estimated with the current approach.

4 Application to a molecular network

We now apply the gateway scheme with restricted spectral access outlined above for a network

of pseudo-spins to Hamiltonian tomography of a network graph with nontrivial topology

mimicking a pigment-protein complex. As an example, we take the geometry of the seven

coupled pigments embedded in the Fenna-Mathews-Olson (FMO) protein [29] and use the

dominant electronic couplings between pigments as in Refs. [32, 33]. This leads to the network

graph shown in Figure 4. Recent investigations have demonstrated that electronic quantum

coherence in such a pigment-protein complex persists for several hundreds of femtoseconds

even at physiological temperatures [24, 25, 26, 27]. This means that application of the present

Hamiltonian tomography scheme is restricted to measurements on the timescale of a few

hundred femtoseconds.

We note that the presence of quantum coherence does not necessarily imply purely unitary

dynamics. If the evolution is indeed unitary, the values of |〈Ej |n〉| are constant in time.

However, in the presence of dissipation, the measured values of |〈Ej |n〉| may vary. Provided

that the measurement can be made within the timescale in which the dynamics of |Ej〉
may be characterized by a phenomenological factor Γj , then this time dependence would

be reflected in measurement of time dependent coefficients |〈Ej |n〉| exp(−Γjt/2). Measuring

these quantities at various times within the relevant timescale would then allow estimations

of the values |〈Ej |n〉| by extrapolation back to t = 0. Current technology allows controlled

shaping of pulses with time duration 10–20 femtoseconds [34, 35, 36, 37], suggesting that such

an estimation might be feasible.

There are several additional aspects of the scheme and in particular, of the six assump-

tions laid out in the previous section, that need to be carefully considered for application to

a biomolecular network. Assumptions (i) and (ii) are satisfied for a well-studied system such

as FMO, for which crystal structures have been determined [38, 39]. For this system, there

is also considerable experimental spectroscopic and theoretical information on the pseudo-

spin energy levels [40] (Assumption (iii)) and on the energy eigenvalues of the system [41]

(Assumption (v)). The key requirements to consider are thus Assumption (iv), that single

site excitation is possible, and Assumption (vi), that measurement in the energy eigenbasis

is possible. Achieving single site addressability in a multichromophoric pigment-protein com-
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1
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3
4

7

6

5

Fig. 4. An example of the set of pigment molecules to be excited in a small pigment-protein

complex. Exciting those at sites 1, 5, 6 and 7 (encircled by red dashed lines) individually is
sufficient to determine all the Hamiltonian parameters.

plex where chromophores are typically separated by 1-5 nm is a challenging task. Several

theoretical studies have addressed the extent to which selective electronic excitation of one

chromophore in FMO may be realized by use of phase, amplitude and polarization shaped

pulses, both in ensemble and single molecule settings [42, 43, 44]. While theoretical optimiza-

tion of such coherently controlled excitation generally relies on knowledge of the transition

dipole matrix elements, such optimization may also be implemented experimentally with-

out this knowledge, by so-called “learning control” [45]. The requirement of measurement

in the energy basis, while readily satisfied by fluorescence detection for the lowest lying en-

ergy eigenstate, might also be facilitated for other eigenstates by coherent control, e.g., using

pump-probe spectroscopy with shaped probe pulses to select the energy of interest. Effects

of homogeneous broadening may be reduced by working at low temperatures and effects of

inhomogeneous broadening and orientational disorder by doing single molecule studies. In

future work it will be important to examine the effects of incomplete initialization and im-

perfect measurements, as well as uncertainties in the energy parameters, with a robustness

analysis of the gateway scheme.

Using the data of {Ej} and {〈Ej |m〉 (m ∈ C)} and following the procedure described

above with Eqs. (2)-(4), we can then construct the matrix elements of the symmetric matrix

corresponding to the Hamiltonian in the one-excitation subspace.

Since the network in Figure 4 contains a loop formed by four sites, we need to access at

least four sites, 1, 5, 6, and 7, as described in Sec 3. Let us follow the estimation procedure

again briefly for clarity. Suppose that we start from |1〉, that is, we set the global phase of

|Ej〉 so that 〈Ej |1〉 are real and positive for all j. Then, using Eq. (2), we have

∑

j

|(Ej − b1)〈Ej |1〉|2 = c12〈Ej |2〉, (7)

where b1 can be known from Ej and 〈Ej |1〉, thus the left-hand side of Eq. (7) is equal to
∑

j E
2
j 〈Ej |1〉2 − b21. The estimation process then proceeds to site 4 according to Eq. (3),

obtaining the values of c34 and 〈Ej |4〉 with a correct phase. With the measured values of

|〈5|Ej〉|, |〈6|Ej〉|, and |〈7|Ej〉|, we can then make use of the following set of equations to

obtain the coupling strengths:

(Ej − b4)〈Ej |4〉 − c34〈Ej |3〉 = c45〈Ej |5〉+ c47〈Ej |7〉, (8)

(Ej − b5)〈Ej |5〉 = c45〈Ej |4〉+ c56〈Ej |6〉, (9)
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(Ej − b6)〈Ej |6〉 = c56〈Ej |5〉+ c67〈Ej |7〉, (10)

(Ej − b7)〈Ej |7〉 = c67〈Ej |6〉+ c47〈Ej |4〉. (11)

Summing up the modulus squared of each equation over j gives four equations with four

unknown parameters, c245, c
2
56, c

2
67, and c

2
47. Together with the a priori knowledge on the signs

of the set {cn} that was assumed initially, all coupling strengths cij can now be estimated.

The remaining parameters, i.e., b5, b6, and b7, may be evaluated from |〈Ej |n〉| (n = 5, 6, 7).

For example, b5 = 〈5|H|5〉 = ∑

j Ej |〈Ej |5〉|2. Thus all parameters of the Hamiltonian have

now been identified, despite the lack of the precise information about the phase of 〈Ej |n〉.

5 Discussion

We have developed an extension of the gateway scheme of Hamiltonian tomography to es-

timation of Hamiltonian parameters for subsystems of complex quantum systems that show

coherent dynamics for a limited period of time. We circumvent the problem of decay of quan-

tum coherence preventing the observation of reflections of the injected signal that was required

in the original scheme of Ref. [1] by employing instead a measurement in the {|Ej〉}-basis.
Assuming the feasibility of such a spectrally restricted measurement, we then showed that by

choosing the right set of accessible (i.e., spectroscopically excitable) sites, the Hamiltonian of a

given network of pseudo-spins can be estimated. These constraints on measurable quantities,

in particular the lack of feasibility of measurements in the site basis, were found to modify

the requirements for the graph properties. While the Hamiltonians of one-dimensional chains

are still estimable by accessing, i.e., preparing, a state at the end site only, as in the original

gateway scheme, we now find that, in general, the set of accessible sites needs to be larger than

an infecting set. Furthermore, there exist networks to which the current estimation scheme

cannot be applied, regardless of the choice of accessible sites, because of the detailed structure

of the network topology. This major difference results from the constraint on feasible mea-

surements imposed here and raises interesting questions for the interplay between network

topology and measurement capabilities in Hamiltonian identification schemes in general.

As noted in Section 1, when the Hamiltonian matrix for the pseudo-spin system is a

sparse matrix, Hamiltonian estimation techniques based on compressed sensing [14, 15, 16]

might also be applicable. The Hamiltonian for our one-dimensional example, Eq. (1), is

indeed sparse, but in this and the biomolecular applications considered in this work (which

may not be sparse in general), the pattern of non-zero elements and their range is known.

Furthermore the Hamiltonians are in general not of low rank. Therefore for such systems

the use of compressed sensing does not appear to offer benefits, although for large scale

general pseudo-spin networks satisfying the requirements on sparsity with unknown pattern

of couplings and/or range of couplings, combining compressed sensing approaches with the

current Hamiltonian tomography approach may provide a fruitful avenue of exploration.

Application of this spectrally restricted Hamiltonian tomography approach to a small

scale network of molecular pigments indicated that provided the spectral measurements can

be made on a timescale significantly shorter than the characteristic time for loss of coher-

ence, the Hamiltonian tomography approach may yield useful estimates for parameters of

the electronic Hamiltonian describing excitonic energy transfer through a well-characterized

aggregate of pigments or pigment-protein complexes. We note nevertheless that realistic ap-

plication to such systems will require extension of the current approach to include dissipation
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and decoherence in a more quantitative manner, e.g., as in Refs. [4, 8, 12, 15, 46, 47, 48], to

account for the lack of unitarity that is associated with the subsystem dynamics despite the

appearance of quantum coherences at short times. It will also be useful to investigate the ro-

bustness of the present scheme to uncertainties in the known parameters and to imperfections

in the state initialization and measurement.
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