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Abstract

In-plane deformation of foams was studied experimentally by subjecting bidisperse foams to cycles of

traction and compression at a prescribed rate. Each foam contained bubbles of two sizes with given area

ratio and one of three initial arrangements: sorted perpendicular to the axis of deformation (iso-strain),

sorted parallel to the axis of deformation (iso-stress), or randomly mixed. Image analysis was used to

measure the characteristics of the foams, including the number of edges separating small from large

bubbles Nsl, the perimeter (surface energy), the distribution of the number of sides of the bubbles, and

the topological disorder µ2(N).

Foams that were initially mixed were found to remain mixed after the deformation. The response

of sorted foams, however, depends on the initial geometry, including the area fraction of small bubbles

and the total number of bubbles. For a given experiment we find that (i) the perimeter of a sorted

foam varies little; (ii) each foam tends towards a mixed state, measured through the saturation of Nsl;

and (iii) the topological disorder µ2(N) increases up to an “equilibrium” value. The results of different

experiments show that (i) the change in disorder, ∆µ2(N) decreases with the area fraction of small

bubbles under iso-strain, but is independent of it under iso-stress; and (ii) ∆µ2(N) increases with ∆Nsl

under iso-strain, but is again independent of it under iso-stress. We offer explanations for these effects

in terms of elementary topological processes induced by the deformation that occur at the bubble scale.

Keywords: Two-dimensional foams, uniaxial deformation, segregation and mixing

1 Introduction

A liquid foam is an assembly of gas bubbles surrounded by liquid films. A bidisperse, or binary, foam

consists of bubbles of only two sizes. The bubbles in a bidisperse foam may arrange in one of two possible

kinds of configurations: (i) mixed, i.e., randomly dispersed, as usually occurs; and (ii) sorted, where there is

segregation into regions containing only bubbles of one size. The important difference between mixed and

segregated arrangements of bubbles can be seen in the fact that different regions of a foam will have different

mechanical properties such as shear modulus. In granular materials, such a segregation is found frequently,

and is well understood (the Brazil-nut effect), but has not been studied extensively in foams.

∗Corresponding author - fatima.vaz@ist.utl.pt; fax: +351 218418132
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A liquid foam tries to locally minimize its surface energy, which in two dimensions (2D) is proportional to

the total perimeter. A further question then arises: to what extent can this local optimisation lead to a global

optimisation? That is, given sufficient external stimulus, can the foam explore all possible sorted/segregated

arrangements of the bubbles (a sort of ergodic hypothesis for foams) and find its energetic groundstate? The

work reported here is a first step towards answering this question.

A study of the structure of static random bidisperse foams in 3D concluded that the fraction of larger

bubbles and the ratio of bubble sizes were the two main factors that affected the (globally) optimal ar-

rangement, in the sense of least energy (perimeter), of the foam [1]. Teixeira et al. [2] analysed whether

sorted or mixed configurations of bubbles of two different sizes in 2D represent the global minimum energy

state for bidisperse foams, given a bubble area ratio. Broadly speaking, if there is a large difference in the

areas, bubbles tend to “mix”, while if the areas are similar, the bubbles tend to “sort”, i.e., segregate or

assume phase-separated arrangements. Much greater complexity arises at intermediate area ratios, where

the optimal state alternates between mixed and segregated.

An analogy can be made between bidisperse foams and the arrangement of solid objects. In fact, packings

of discs or spheres are often used to study processes of mixing and sorting of biological cells and soap bubble

arrangements. Several theoretical, experimental and numerical works on the assemblies or packing of two-

size distribution of discs or spheres can be found in the literature [3, 4, 5, 6]. Some characteristics of the

arrangements of random distribution of small and large discs, such as the number of edges separating small

and large particles, Nsl, divided by the total number of edges Nt, were found to depend on the fraction of

small bubbles and on the area ratio [4, 5, 6]. In a random bidisperse packing, Nsl/Nt attains a maximum

value of 0.5 [6]. Values of Nsl/Nt smaller than 0.5 indicate phase separation or sorting of discs, as predicted

by Richard et al. [5].

Foams, as well as granular media and emulsions, exhibit elastic-plastic behaviour when subjected to

shear deformation, for example. The deformation or flow of foams is of extreme importance in industry, with

applications in enhanced oil recovery, ore separation and personal care products, among many others. While

the deformation of monodisperse or polydisperse foams has been studied extensively, there has been less

work on the shear of bidisperse foams [7, 8, 9, 10]. In fact, bidisperse foams were found to behave differently

to monodisperse foams when subjected to shear flow [7, 8, 9]. This difference in mechanical properties

induced by the distribution of bubble sizes, and the relevance of foam flow to industry, makes this subject

of particular importance.

Surface Evolver simulations of bidisperse foams under cyclic shear deformation [11] with fixed boundary

conditions showed that the degree of mixing depended strongly on the liquid fraction and on the applied

strain or extension: higher strains mean that more energy is pumped into the system, and high liquid fraction

means that topological changes are triggered more easily. In both cases this leads to greater exploration of

the energy landscape, suggesting that being mixed is the favoured state for the foam.

In this paper, we describe experiments on cyclic deformation of bidisperse foams. A cycle has two steps:

one of traction and one of compression. Initially, the foam is subjected to traction, attains a maximum

applied deformation, and is then compressed. One of the questions we address is whether a foam with

initially well separated domains of large and small bubbles becomes mixed after being subjected to several

deformation cycles. Another question is related to the evolution of an initially mixed configuration: are there

conditions under which it will evolve to another arrangement or will it remain in the mixed configuration?

(That is, what is the effective diffusion coefficient of the small bubbles, say, within the large ones?) In

section 2 we describe the experimental procedure, and present our results in Section 3. These are discussed

in Section 4, and we draw some conclusions in Section 5.

2 Experimental procedure

We denote by al the area of the large bubbles and as the area of the small bubbles. Each foam has ns small

bubbles and nl large bubbles, giving a total of nt = ns +nl bubbles. The number fraction of small bubbles is

the ratio νs = ns/nt and the area fraction of small bubbles is xs = nsas/(nsas + nlal). Table 1 summarizes
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Number Strain Number Number fraction Area Area fraction

Identifier of Extension ratio of bubbles of small as al ratio of small

cycles ǫ R nt bubbles νs (mm2) (mm2) al/as bubbles xs

A1 20 0.72 0.010 259 0.72 3.16 13.05 4.13 0.38

A2 20 1.53 0.135 34 0.79 2.13 7.53 3.54 0.52

A3 20 1.27 0.143 64 0.70 1.56 7.24 4.64 0.34

A4 20 1.27 0.267 178 0.76 2.52 9.23 3.66 0.47

A5 20 1.45 0.096 147 0.67 2.51 9.13 3.64 0.36

B1 20 0.52 1.264 424 0.82 3.15 15.2 4.83 0.48

B2 20 1.84 0.511 35 0.51 2.46 9.5 3.86 0.22

B3 20 2.73 0.375 83 0.23 1.89 7.3 3.86 0.46

B4 20 0.51 0.296 255 0.68 2.37 9.02 3.81 0.36

C1 6 3.09 0.011 296 0.65 1.95 6.54 3.35 0.35

C2 6 1.61 0.310 223 0.65 1.68 9.55 5.68 0.25

C3 6 2.03 0.145 278 0.65 1.75 7.67 4.38 0.30

Table 1: Characteristics of the foams. Bubble areas are accurate to within 5%.

the geometrical properties of the different foams studied.

Foams were produced by the “liquid-glass” technique [12, 13, 14], in which bubbles are blown through

a nozzle in a detergent solution. Two nozzles with different diameters were used to create small and large

bubbles simultaneously, with a size dispersity of about 5% in each. The bubbles float to the surface and are

trapped between the solution and a horizontal plexiglas plate, see Figure 1a. The gap width between the

plate and the solution was around g = 3 mm in most of the experiments; small changes in g can be used to

vary the effective liquid fraction.

Experiments were undertaken starting with three possible initial configurations of small/large bubbles

as illustrated in Figure 2. Figures 2a and 2b show sorted distributions of bubbles in which large and small

bubbles are separated by an interface almost parallel (type A) or perpendicular (type B) to the axis of

deformation. Figure 2c shows a foam in which small and large bubbles are initially mixed (type C).

The foam is contained between two horizontal bars: one is fixed and the other moveable, to allow in-

plane deformation of the foam. We denote by h the separation between the bars, as indicated in Figure 1a.

In one cycle, the movable bar is displaced smoothly, parallel to the fixed bar, from the initial separation

himit (see Figure 1b) up to a maximum separation, hmax (traction, see Figure 1c), returns past the initial

state, hinit to a minimum separation hmin (compression, see figure 1d ) and then back to hinit i.e. a fatigue

test. hmax and hmin are not symmetrical relative to hinit; the applied extensional strain is defined as

ǫ = (hmax − hmin)/hmin, and the strain ratio is R = (hinit − hmin)/(hmax − hinit) (see Table 1).

Each cycle of traction and compression takes 60 seconds. Initially, experiments were performed with

6 cycles. While for type C foams, 6 cycles were enough to determine their behaviour, as the results were

almost the same after 6 or 20 cycles, 6 cycles were too few to probe the dynamics of foams of types A and B.

Therefore the experiments on those latter foams were continued to 20 cycles. No film ruptures were observed

during the first 20 cycles, but after more than 20 cycles we found that bubbles started to break.

We chose to fix the deformation rate throughout. The maximum deformation is set by the size of the

device and by the number of bubbles, since if a foam with a large number of bubbles is compressed to a

small value of h, bubbles will escape from the device.

In order to assess the effect of deformation, we measured the number of edges that separate large from

small bubbles, Nsl, normalized by total number of edges Nt, both as functions of time. The difference

between the initial and final values of this measure of sorting is denoted by ∆(Nsl/Nt).

The image analysis software SigmaScan Pro 5 [15] allowed us to measure the liquid fraction as the area

occupied by the liquid divided by the total foam area. We found values of between 3% and 9%. The

foam was then skeletonized, and the total perimeter P , equivalent to the surface energy in units of the film

3
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Figure 1: Sketch of the in-plane deformation of a bidisperse foam. (a) The foam consists of a single layer of

bubbles sandwiched between a pool of liquid at the bottom and a plexiglas plate on top. The layer thickness

is the width of the gap between liquid and plate, g. The foam is bounded laterally by two bars, one fixed

and one moveable, a (variable) distance h apart; this allows extensional strains to be applied in the plane of

the foam. (b) Top view of the initial stage: the separation between bars is hinit; (c) top view of foam under

maximum traction; and (d) top view of foam under maximum compression. The arrows indicate the axis of

deformation.

(a) (b) (c)

Figure 2: Photographs, taken from above, illustrating the three initial distributions of bidisperse 2D foams:

(a) large and small bubbles are initially separated by an interface almost parallel to the axis of deformation

(type A); (b) large and small bubbles are initially separated by an interface almost perpendicular to the axis

of deformation (type B); (c) large and small bubbles are initially mixed (type C).
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(a) (b)

Figure 3: Initial (a) and final (b) configurations of foam A3, after 20 cycles.

tension γ, of the resulting dry foam was measured. Note that γ is not measured, and indeed not required to

understand the change in the topology of the foam. In order to be able to compare different foams, we scale

the perimeter by the total area of the foam to give what we shall refer to as the “normalized perimeter”:

P̂ =
P√

nsas + nlal
. (1)

Distribution functions for the number of neighbours surrounding each bubble were determined both

before and after the deformation. The topological disorder of the number of neighbours was evaluated from

the second moment of the distribution µ2(N) = Σp(N)(N − 〈N〉)2, where p(N) is the fraction of bubbles

with N sides, and the difference between the initial and final values, ∆µ2(N), was calculated.

3 Results

Figure 3 shows photographs of a foam of type A, before and after 20 cycles of deformation. Even after 20

cycles of deformation, some areas of the foam remain size segregated (sorted). Nonetheless, it would appear

that the foam has started to mix.

Figure 4 presents the evolution of the fraction of edges separating large from small bubbles Nsl/Nt as a

function of the number of cycles, for several experiments of type A, B and C. Note that in the case of foams

of type C, Nsl/Nt remains almost constant throughout the experiment, so we performed only 6 cycles in each

of the three runs. For foams of types A and B, the value of Nsl/Nt increases towards one half, indicating a

transition from sorted to mixed arrangements as anticipated in the photographs of Figure 3.

In Figure 5, the evolution of Nsl/Nt in a single experiment of type A (the result is similar for a foam

of type B) is compared with the corresponding values of the normalized perimeter P̂ and disorder µ2(N).

The perimeter changes little with repeated deformation, although it does oscillate during each cycle due

to film stretching followed by topological changes, while µ2(N) increases in much the same way as Nsl/Nt,

indicating that the disorder appears to offer another measure of the degree of mixing. The error associated

with the normalized perimeter is around 6%.

Figure 6 presents the distribution of the number of sides of small and large bubbles, n, both before and

after 20 cycles of deformation, for foams of types A and B. To emphasise the shift in the distribution of large

bubbles to higher n, data from four experiments were averaged.

4 Discussion

In the present paper, the effect of a dynamic deformation – the application of traction/compression cycles –

on the structure of a bidisperse two-dimensional foam was studied. To characterise the foams and the degree

of mixing/sorting, we measured the number of edges separating small from large bubbles, the perimeter

(surface energy), the topological disorder and the number of sides of a bubble.

For initially mixed foams, type C, there is no dependence of these measures on the number of cycles, for

example Nsl/Nt remains constant around 0.5 (see Figure 4c). As a result, a mixed arrangement keeps its

mixed character and does not evolve towards another type of configuration.
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Figure 4: Fraction of edges separating large from small bubbles, Nsl/Nt for different bidisperse foams with

an initial distribution of cells of type A (a), type B (b) and type C (c), as a function of the number of cycles.
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Figure 5: Evolution of foam A3 during an experiment of 20 cycles: (a) fraction of edges Nsl/Nt (from figure

4); (b) normalized perimeter P̂ ; and (c) disorder, µ2(N).
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Figure 6: Shift in the distribution of the number of sides of small and large bubbles, comparing the initial

distribution with that after 20 cycles. The data are obtained from an average over four experiments: A2,

A3, B2 and B3.
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Figure 7: (a) The measured and estimated normalized perimeter P̂ at the end of an experiment as a

function of the total number of bubbles, nt, has approximately square-root behaviour; instead we make

a direct comparison with eq. (2), which is seen to capture the same effect but slightly overestimates the

experimental data. (b) The change in disorder ∆µ2(N) increases with the change in the fraction of edges

between small and large bubbles for foams of type A, but is independent of this fraction for foams of type

B. (c) The change in disorder ∆µ2(N) decreases with the area fraction of small bubbles xs for foams of type

A – the line shown is a linear fit to this data – but is independent of this fraction for foams of type B. In all

cases error bars were estimated by performing three independent measurements of each quantity.

In foams of type A and of type B, an initially sorted foam evolves towards a mixed arrangement. The

evolution observed here is by no means complete: there remain regions with only small or large bubbles.

Nonetheless, Nsl/Nt increases with the number of cycles and in some cases it reaches values close to 0.5,

which is expected for a mixed foam [6], as in experiments of type C. We believe that the theoretical value

would be attained under ideal conditions: an infinite number of cycles and no film rupture.

The normalized perimeter was examined to assess if the deformation induced a motion towards the

energetic groundstate. As can be seen in Figure 5b), within a single experiment P̂ fluctuates around a

constant value, being slightly higher in traction than in compression. Although the arrangement tends to a

mixed state (Figure 4b), the change in the perimeter of the system remains smaller than the fluctuations,

indicating that P̂ depends mainly on the total number of bubbles, as shown in Figure 7a), rather than the

details of the arrangement, and is only slightly over-estimated by the formula of Vaz et al. [16]:

P̂ =
3.72

2

Σia
1/2

i

(Σiai)
1/2

+ 2.04. (2)

That is, P̂ should increase with the square-root of the number of bubbles. Note that this equation was
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derived for a circular foam, which is not the case here, so the last term should be somewhat higher than

2.04.

The number of sides of each bubble of the foam was measured. Since no differences were found in the side

distribution functions of type A compared to type B foams (data not shown) we show an average over four

experiments in Figure 6. At the beginning of the experiments, the distribution functions of the large and

small bubbles are not clearly distinct. However, by the end of experiments the distributions are separated,

with large bubbles now having a larger number of sides. A smaller effect, a decrease in the number of sides,

is also apparent for small bubbles. Thus at the end of the deformation, larger bubbles will be surrounded by

a larger number of sides, while small bubbles will have a lower number of sides, moving the structure into

line with the qualitative predictions of Lewis and Feltham (see [17] and references therein).

In any given experiment, the topological disorder of the number of sides, which was evaluated by the

second moment of the distribution, µ2(N), increases initially but appears to reach a plateau (Figure 5c), just

as it does during the diffusion-driven coarsening of an initially ordered bubble structure [18]. The evolution

of the topological disorder of a bidisperse foam, under cyclic shear deformation, was also similar [8]. This

suggests that our foams may have reached an asymptotic regime, which we have yet to characterize fully.

In order to make comparisons between different experiments, it is necessary to measure the change in our

two measures of mixing, ∆(Nsl/Nt) and ∆µ2(N). In figure 7b) we see a striking difference between foams of

types A and B: in the former case, the change in disorder varies widely with ∆(Nsl/Nt), while in the latter

case the two are independent. We attribute this to the fact that the deformation of a type A foam can be

viewed as an iso-strain experiment, in which both halves of the foam are subjected to the same strain but

respond in different ways due to the difference in bubble size (leading to different stiffnesses). On the other

hand, the deformation of a foam of type B is an iso-stress experiment, since despite the differences in bubble

size both halves of the foam must experience the same stress. This means that the development of a more

mixed state in the iso-strain case (type A) is accompanied by a large change in disorder, while in the case

of iso-stress (type B) the change in disorder is constant and is not a good measure of the degree of mixing.

Of all the geometrical parameters that describe an arrangement of bubbles, the area fraction of small

bubbles appears to play a fundamental role: for foams of type A the change in disorder decreases as the area

fraction of small bubbles, xs, increases (see Figure 7c; the rms error in the fit is 0.158). Thus, an arrangement

with small xs, will have a large change in disorder. This dependence on area fraction is in agreement with

earlier work [1, 2, 5, 6]; note the contrast with foams of type B, and with static conditions, for which the

arrangement of bidisperse bubbles or discs depends mainly on the number fraction of small bubbles (a fit of

our data to number fraction has an rms error of 0.246).

Previously, simulations with fixed rectangular boundary conditions and liquid fractions up to about 3%

[11] suggested that high liquid fractions and high strains promote mixing. Our experiments showed no effect

on the degree of mixing as liquid fraction varied (in the range 6 to 9%), or strain increased. We speculate

that with weaker constraints on the motion of the foam (i.e., not completely confining the foam), high strain

is insufficient to trigger mixing; moreover, a moderate liquid fraction appears to be required, but provided

it is above a certain threshold, its value is not important.

5 Conclusions

The effect of uniaxial deformation on the mixed and sorted characteristics of bidisperse foams was assessed.

Several foam arrangements with different properties were studied. Although various parameters may be used

to characterize a foam configuration, the geometrical parameter that controlled the deformation process was

found to be the area fraction of small bubbles.

Arrangements of random mixed foams remain mixed after a few cycles of traction/compression. Initially

sorted arrangements become increasingly mixed with deformation, measured by either an increase in the

number of edges between small and large bubbles or by an increase in the topological disorder. The final

arrangement of the foam consists of large bubbles surrounded by an above average number of bubbles, while

small bubbles have fewer neighbours than average. It seems that initially sorted configurations of bubbles
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tend to achieve an “equilibrium” or steady state, characterized by a constant value of the second moment

of the distribution of sides.

In the future, it would be instructive to exactly reproduce a given arrangement and vary the parameters

more widely. Experiments of the type described here could also be performed at higher deformation rate,

to test the effect of rate on mixing. Finally, to determine the relation between local and global energy

optimization, more theoretical work is required to find the groundstate configurations of a bidisperse foam

cluster as a function of area fraction and area ratio.
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