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Extending Data Reliability Measure to a Filter
Approach for Soft Subspace Clustering

Tossapon Boongoen, Changjing Shang, Natthakan Iam-On and Qiang Shen

Abstract—The measure of data reliability has recently
proven useful for a number of data analysis tasks. This pa-
per extends the underlying metric to a new problem of soft
subspace clustering. The concept of subspace clustering has
been increasingly recognized as an effective alternative to
conventional algorithms (which search for clusters without
differentiating the significance of different data attributes).
While a large number of crisp subspace approaches have
been proposed, only a handful of soft counterparts are
developed with the common goal of acquiring the optimal
cluster-specific dimension weights. Most soft subspace
clustering methods work based on the exploitation of k-
means and greatly rely on the iteratively disclosed cluster
centres for the determination of local weights. Unlike such
wrapper techniques, this paper presents a filter approach
which is efficient and generally applicable to different
types of clustering. Systematical experimental evaluations
have been carried out over a collection of published
gene expression datasets. The results demonstrate that the
reliability-based methods generally enhance their corre-
sponding baseline models and outperform several well-
known subspace clustering algorithms.

Index Terms—Data reliability, soft subspace clustering,
wrapper and filter, attribute weight, gene expression anal-
ysis.

I. INTRODUCTION

The concept of data reliability was initially introduced
for the task of information aggregation, with the prelim-
inary measure being formulated using the proximity to a
‘local cluster’ [4]. Despite its inefficiency, the underlying
measure has proven effective for classification and fea-
ture selection problems. Recently, an enhanced variation
has been proposed in [5], where a hierarchical clustering
process required by the original model is replaced by
a search of nearest neighbors. The resulting metric has
been successfully used to establish a data fusion method
for detecting possible terrorists’ alias names [6]. In
addition, an unsupervised feature selection technique was
also built on top of the data reliability measure, with the
performance being superior to alike algorithms found in

T. Boongoen, C. Shang, N. Iam-On and Q. Shen are with the De-
partment of Computer Science, Aberystwyth University, Aberystwyth
SY23 3DB, UK e-mail:{tsb,cns,nii07,qqs}@aber.ac.uk

the literature. Inspired by such achievement, this research
extends the application of data reliability measure to
the problem of ‘soft subspace clustering’, which has
attracted a great deal of interests amongst data analysts
and researchers in the past decade (e.g. [12], [13], [15],
[18], [25]).

The practice of subspace clustering or bi-clustering
has recently emerged in response to the challenges
of high-dimensional data, especially in gene expres-
sion analysis [8], [20], [24], [34], [41], [42]. With the
revolution of microarray technology, gene expression
data obtained from microarray experiments has inspired
several novel applications, including the identification
of differentially expressed genes for further molecular
studies [35], [43], and the creation of classification
systems for improved cancer diagnosis [9], [38]. Another
typical application is to reveal natural structures and
identify interesting patterns in expression data [24], [37].
In particular, traditional algorithms such as k-means
and agglomerative hierarchical clusterings have proven
useful for identifying biologically relevant clusters of
tissue samples and genes. The present research focuses
on the work where samples with similar profiles of gene
expression values are grouped together [11].

Generally, cluster detection is based on a dis-
tance/proximity measure between objects of interest.
However, with high-dimensional data, meaningful clus-
ters cannot be easily identified as distances are increas-
ingly indifferent as dimensionality increases [3], [23]. To
disclose patterns obscured by irrelevant dimensions, a
global feature selection/reduction method, e.g. principle
components analysis (PCA) [26], is effective only to
some extent. Particularly, it fails to detect in each dimen-
sion, locally varying relevance for distinct object groups.
In order to overcome such limitations, many different
subspace clustering algorithms have been proposed with
the common objective of discovering locally relevant
dimensions per cluster (see [29] for a survey). In Fig.1,
for example, which represents different clusters of n
objects (x1, x2, . . . , xn) in d dimensions (f1, f2, . . . , fd),
Cluster 1 corresponds to a traditional cluster in a full data
space, whilst the other clusters associate with specific
dimensional subsets.
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Fig. 1. Illustration of clusters in different subspaces defined by
subsets of the original data attributes.

Regarding the techniques introduced for the determi-
nation of cluster-specific subspaces, subspace clustering
approaches can be characterized in two categories: crisp
and soft. The former finds an exact subspace for each
cluster (see [1], [7], [29] for examples). The latter, a
soft subspace clustering method detects clusters in a
full data space. For each cluster, different dimensions
are assigned with dissimilar weights in accordance with
their relevance in identifying the underlying cluster. In
practice, an optimal subspace can be obtained using
either wrapper or filter approach [14]. The former wraps
the search around a specific clustering algorithm (e.g.
k-means), whilst the latter selects the feature subspaces,
prior to the actual unsupervised learning process.

Existing soft clustering techniques (e.g. [13], [15],
[18], [25]) rely on a specific clustering method, typi-
cally k-means to search for the optimal set of weights.
Unfortunately, this implementation of a wrapper nature
cannot be extended beyond the underlying basic clus-
tering mechanism. Such algorithms repeatedly update
dimension weights from intermediate cluster centers (or
centroids) which are iteratively modified such that the
overall intra-cluster variance is minimized. In so doing,
the accuracy of cluster-specific weights may not be
retained and the quality of discovered centroids is usually
arbitrary.

In order to overcome these shortcomings, this paper
presents a ‘filter’ approach to soft subspace clustering. It
makes use of the data reliability measure [5] to construct
the object-dimension association matrix, which can be
employed to guide the weight configuration within a
clustering process. Note that such a method is generally
applicable to a wide range of clustering algorithms: k-
means, spectral [30] and hierarchical clusterings [22],
for instance. As for the k-means alike techniques where
the object-dimension information remains unchanged

overtime, the underlying weight modification is partially
dependent of disclosed centroids, thereby improving the
likelihood of weight accuracy being maintained. This
intuitive implementation has shown to be effective on a
number of published gene expression data and is robust
to parameter perturbation.

The rest of this paper is organized as follows. Sec-
tion II introduces the concepts of soft subspace cluster-
ing upon which the current research is established. In
Section III, the filter method for soft subspace clustering
and the theoretical ideas underlying this approach are
presented. The performance evaluation of the proposed
algorithms against other comparable techniques, over
several gene expression datasets, is reported and dis-
cussed in Section IV. The paper is concluded in Sec-
tion V, with a discussion of future work.

II. SOFT SUBSPACE CLUSTERING: CONCEPTS AND

EXISTING TECHNIQUES

The idea of soft subspace clustering was originally
observed in the study of [15], where the ‘Clustering
Objects on Subsets of Attributes (COSA)’ algorithm was
introduced to determine a weight to every dimension
in each cluster. Fig.2 illustrates this concept, where
the weighted dimensional space allows a cluster to
be visualized and identified more easily. Specific to
‘Cluster1’ in this example, the weights w1

x and w1
y of

the dimensions fx and fy, respectively, are equal in
the original setting, shown in Fig. 2(a). With respect
to Fig. 2(b) in which these weights are adjusted such
that w1

x remains unchanged and w1
y = 1

3w
1
x, the cluster

becomes more structurally rigid and clearly identifiable.
Similarly, ‘Cluster2’ is separable from the former in
Fig. 2(b), where w2

x = 1
4w

2
y . Despite its promising

performance, this method has been heavily criticized for
its inefficiency [29].

Fig. 2. Illustration of clusters in (a) original data-attribute space and
(b) weighted space, where clusters are clearly separable.

Following this initial approach, a few well-known
extensions of k-means have been proposed for a less
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expensive soft subspace clustering [13], [18], [25].
With these wrapper methods, cluster-specific dimension
weights are repeatedly updated, along the iterative mini-
mization of intra-cluster variances in k-means clustering.
Let X = {x1, . . . , xn} be a set of objects and each
object xi = (xi1, . . . , xid), i = 1 . . . n is a vector of
values characterized by a set of features or attributes F =
{f1, . . . , fd}. The k-means searches for the partition
C = {C1, . . . , Ck} of X into k clusters, minimizeing
the following objective function:

J0(U,Z) =

k∑
l=1

n∑
i=1

d∑
j=1

uil (xij − zlj)2 (1)

where
∑k

l=1 uil = 1, U ∈ Rn×k is a matrix in which
each entry uil represents a membership degree that object
i has with regard to cluster l (uil ∈ {0, 1} and uil ∈ [0, 1]
for crisp and soft clustering, respectively). In addition,
Z = {z1, . . . , zk} denotes a vector representing the cen-
troids of k clusters, i.e. zl = (zl1, . . . , zld), l = 1 . . . k.

Specifically to the wrapper method of [25], called En-
tropy Weight k-Means (EWKM), the objective function
J1(U,Z,W ) modified from that of the classical k-means,
is defined as

k∑
l=1

[ n∑
i=1

d∑
j=1

uil wlj(xij − zlj)2+

γ

d∑
j=1

wlj logwlj

]
(2)

Here, γ ∈ R denotes a constant that controls the
incentive of weight changes, W ∈ Rk×d is a matrix in
which each entry wlj represents a weight of dimension
j in cluster l, wlj ∈ [0, 1], ∀l = 1 . . . k, j = 1 . . . d and∑d

j=1wlj = 1. In each iteration of the k-means alike
process, W is updated by

wlj =
exp

(
−Dlj
γ

)
∑d

t=1 exp
(
−Dlt
γ

) (3)

and

Dlj =

n∑
i=1

uil(xij − zlj)2 (4)

In addition to this technique, a similar wrapper model
has been introduced in [13], namely the Locally Adaptive
Clustering (LAC) algorithm. The corresponding objec-
tive function J2(U,Z,W ) is specified as follows, where
|Cl| is the cardinality of the cluster Cl, l = 1 . . . k:

k∑
l=1

d∑
j=1

[wljOlj + h wlj logwlj ] (5)

h ≥ 0 which is the constant that controls the relative
differences between dimension weights, and Olj is cal-
culated by

Olj =
1

|Cl|
∑
∀xi∈Cl

(xij − zlj)2 (6)

As with EWKM, LAC works also by repeatedly
updating W using the following:

wlj =
exp

(
−Olj
h

)
∑d

t=1 exp
(−Olt

h

) (7)

Finally, another wrapper technique called Fuzzy Sub-
space Clustering (FSC) has also been proposed in [18]
with the following objective function, J3(U,Z,W ):

β∑
l=1

d∑
j=1

wδlj

[
n∑
i=1

uil(xij − zlj)2 + ε

]
(8)

where δ ∈ (1,∞) denotes a weight component (or
fuzzy index) and ε is a very small positive number. FSC
iteratively updates W by:

wlj =
1

∑d
t=1

 n∑
i=1

uil(xij−zlj)2+ε
n∑
i=1

uil(xit−zlt)2+ε

1/(δ−1) (9)

With these wrapper methods, cluster-specific dimen-
sion weights are repeatedly updated, along the iterative
minimization of intra-cluster variances in k-means clus-
tering. The modification process is based typically on
the distances between object members to the disclosed
cluster centers, which can be sub-optimal. Hence, the
accuracy of weights cannot always be maintained. To
address this important shortcoming, a new filter approach
is introduced in the next section to extend k-means,
amongst other basic clustering techniques, such that the
resulting soft subspace clustering algorithm becomes less
dependent of recovered centroids, enabling the update of
cluster-specific weights to be more accurate.

III. A NOVEL FILTER APPROACH TO SOFT SUBSPACE

CLUSTERING

The existing methods [13], [25] for soft subspace
clustering are based on the wrapper framework, which
inherently limits their applications only to a single
type of clustering algorithm – k-means, for instance.
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To overcome this limitation, a new filter approach is
introduced here, with its extensions to several different
basic clustering techniques. The new method exploits the
data reliability measure of [5] to preliminarily construct
an object-dimension association matrix that represents
locally relevance degree of each dimension for every data
object.

Let α ∈ {1 . . . (n − 1)} be the number of nearest
neighbors of any object under examination. The object-
dimension association matrix ASα ∈ Rn×d is a collec-
tion of informative entries ASαij ∈ [0, 1] representing
the strengths that an object xi ∈ X is similar to (or
associated with) a set Nα

ij ⊂ X of its α nearest-
neighboring objects in a given dimension fj ∈ F .
Formally, the underlying measure can be defined as

ASαij = 1−
(
Dα
ij

Dα
∗

)
(10)

where

Dα
∗ = max

∀i,j
Dα
ij (11)

with Dα
ij being

Dα
ij =

1

α

∑
∀q∈Nα

ij

√
(xij − qj)2 (12)

Note that the estimation of data reliability relies on
the search for α nearest neighbors of any object in
question. Particularly, the following ‘NN’ algorithm is
employed to find Nα

ij ,∀i = 1 . . . n, j = 1 . . . d. The
‘SORT’ function exploited here can be any efficient
algorithm in the literature, e.g. the ‘pancake’ sort [10]
whose time complexity is O(z) where z is the number of
values to be sorted. The resulting NN is computationally
less expensive than the previous algorithm presented in
[5], with the complexity being reduced from O(n2) to
approximately O(nd).

ALGORITHM: NN(X,α)

Nα
ij , a set of α nearest neighbors of xi ∈ X in dimensionfj ∈ F ;

dist(xij , xi′j) =
√

(xij − xi′j)2, a distance between xij and xi′j ;

(1) For each fj ∈ F
(2) T = {(x1j , 1), . . . , (xnj , n)}
(3) ST = SORT (T |xij , i = 1 . . . n)

(4) For each stq ∈ ST, stq = (xij , i)

(5) STij = {stq−α, . . . , stq−1, stq+1, . . . , stq+α}
(6) Dij = ∅
(7) For each σ ∈ STij , σ = (xi′j , i

′)

(8) Dij = Dij ∪ (dist(xij , xi′j), xi′j , i
′)

(9) Nij = SORT (Dij |dist(xij , xi′j), ∀i′)
(10) Nα

ij = {g1, . . . , gα}, gβ ∈ Nij

The measure ASαij has an intuitive interpretation to-
wards the problem of subspace clustering. When it
approaches 1, the dimension fj is highly relevant to the
local cluster which object xi is an element in. If however,
the underlying measure is close to 0, the dimension
is irrelevant to the clustering of xi. Conceptually, the
resulting ASα matrix can be used to configure the
dimensional weighting scheme of disclosed clusters. To
illustrate the effectiveness and generality of this measure,
it is applied to several basic clustering algorithms, each
of which is discussed below.

Reliability-based k-means (R-KM) extends the conven-
tional k-means algorithm such that the association values
in ASα are automatically employed in formulating object
clusters. Its objective function is defined as

JR(U,Z,W ) =

k∑
l=1

n∑
i=1

d∑
j=1

uil wlj(xij − zlj)2 (13)

For the initial stage where centroids Z = {z1, . . . , zk}
correspond to a set of randomly selected objects, the
weight wlj of the l-th cluster is estimated by

wlj =
ASαij∑d
t=1AS

α
it

, j = 1 . . . d (14)

given that xi = zl. In the following iterations, the
dimension weight wlj of each cluster Cl is updated by

wlj =
MAαlj∑d
t=1MAαlt

, j = 1 . . . d (15)

where MAαlj is the association measure to the j-th
dimension which is minimally shared by all members
in Cl:

MAαlj = min
∀xi∈Cl

ASαij (16)

With Z and W being fixed, the cluster membership uil ∈
U, i = 1 . . . n, l = 1 . . . k can be specified such that

uil =

 1 if l = argmin
s=1...k

d∑
j=1

wsj(xij − zsj)2

0 otherwise

(17)

Similar to the typical k-means method, the set of cen-
troids Z is updated using the following equation:

zlj =

∑n
i=1 uil xij∑n
i=1 uil

(18)

The R-KM algorithm that minimizes the objective
function defined in Eq. 13 is summarized as follows:
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ALGORITHM: R-KM(k,ASα)

(1) Randomly initialize Z

(2) Calculate initial weights using Eq. 14

(3) Repeat
(4) Update U by Eq. 17

(5) Update Z by Eq. 18

(6) UpdateW by Eq. 15

(7) Until the objective function obtains its local minimum

The R-KM algorithm converges to a local minimum
of the objective function defined in Eq. 13. Formally,
let Zπ, W π and Uπ respectively denote the centroids,
weights, and cluster assignments derived in the πth

iteration. In Uπ, each data object xi is assigned to its
closest cluster according to the weights and centroids in
the previous iteration, i.e. Zπ−1 and W π−1. From this,
the following relation results:

JR(U
π, Zπ−1,W π−1) ≤ JR(Uπ−1, Zπ−1,W π−1)

For the given Uπ, the optimal Zπ and W π are com-
puted using Eqs. 18 and 15. Hence, the following also
holds:

JR(U
π, Zπ,W π) ≤ JR(Uπ, Zπ−1,W π−1)

Overall, it can be concluded that JR(Uπ,Zπ−1,W π−1)
is no greater than JR(Uπ−1,Zπ−1,W π−1). It is guaran-
teed that R-KM reduces the objective value in iterations.
The clustering problem is to group n objects into k
disjoint sets and there are only a finite number of data
partitions. For a given U , the minimal objective value
is determined for the corresponding optimal centroids
and weights. Therefore, the objective value for a given
assignment is lower-bounded. The objective value in
the R-KM algorithm decreases gradually until the value
reaches a fixed point. This fixed point is a local minimal
of JR(U,Z,W ).

Reliability-based hierarchical clustering (R-CL) ex-
tends the well-known agglomerative hierarchical clus-
tering technique [22]. It generates a tree (called ‘dendo-
gram’) as nested groups of data organized hierarchically.
The algorithm begins by considering each data sample as
a cluster, and then gradually merges similar clusters until
all the clusters are combined into one big group (i.e. the
top node of the resulting dendogram). The hierarchical
dendogram reveals cluster-subcluster relations, and the
order in which the clusters were merged or split. Par-
ticularly to the ‘complete linkage (CL)’ approach [28]
that is of interest in the present work, this is obtained by

defining the distance DS(C,C ′) between two clusters
C ⊂ X and C ′ ⊂ X such that

DS(C,C ′) = max
∀xi∈C,xi′∈C′

d∑
j=1

(xij − xi′j)2 (19)

Note that the CL technique requires an adjacency
matrix A ∈ Rn×n that represents pairwise-proximity
measures amongst objects as an input. The original
A is based on a uniform dimensional weight setting,
which may be enhanced using the information of local
relevance in ASα. Effectively, each entry A(xi, xi′) ∈ A
which corresponds to the weighted distance between
objects xi, xi′ ∈ X , can be defined as

A(xi, xi′) =

d∑
j=1

wii′j(xij − xi′j)2 (20)

where wii′j is estimated by

wii′j =
min(ASαij , AS

α
i′j)∑d

t=1min(ASαit, AS
α
i′t)

, j = 1 . . . d (21)

Following these definitions, Eq. 19 is simplified as

DS(C,C ′) = max
∀xi∈C,xi′∈C′

A(xi, xi′) (22)

The R-CL algorithm is summarized as follows:

ALGORITHM: R-CL(k,ASα)
(1) Initialize a set of clusters C = {C1, . . . , Cn}, Ci = {xi},

i = 1 . . . n

(2) Create an adjacency matrixA using Eq. 20

(3) Repeat
(4) Find Cp, Cq ∈ C; DS(Cp, Cq) = min

∀C,C′∈C,C 6=C′
DSC,C′ ,

using Eq. 22

(5) Combine Cp and Cq; Co = Cp ∪ Cq
(6) Update C; C = ((C− Cp)− Cq) ∪ Co
(7) Until |C| = 1

Reliability-based spectral clustering (R-SPT) extends
the spectral clustering technique of [30], which operates
on the pairwise similarity matrix S ∈ Rn×n, given that
S = 1 − A. Similar to the conventional hierarchical
clustering method, the original S is estimated from an
unweighted dimensional space. For this purpose, a new
similarity matrix is constructed from the adjacency ma-
trix created by Eq 20. Then, the k largest eigenvectors of
S, v1, . . . , vk, are found (chosen to be orthogonal to each
other in the case of repeated eigenvalues), forming the
matrix V = [v1, . . . , vk] by stacking the eigenvectors in
columns. Another matrix V ∗ is subsequently constructed
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from V by normalizing each row of V to have a unit
length. By considering each row of V ∗ as k-dimensional
embedding of an object in X , k-means is used to divide
objects (i.e. rows of V ∗) into a partition of k clusters.

The R-SPT algorithm is summarized as follows:

ALGORITHM: R-SPT(k,ASα)
(1) Create a similarity matrix S ∈ Rn×n, S = 1−A, using Eq. 20

(2) Find k largest eigenvectors v1, . . . , vk of S

(3) Form a transformed data matrix V ∈ Rn×k, V = [v1, . . . , vk]

(4) Create a normalized matrix V ∗ ∈ Rn×k :

V ∗ij =
Vij√∑
∀j
V 2
ij

, i = 1 . . . n, j = 1 . . . k

(5) Apply k-means to V ∗

IV. PERFORMANCE EVALUATION

In order to investigate the performance of the filter-
based algorithms, experimental studies are set out in
comparison with standard and existing soft subspace
clustering methods, over real data. Examined datasets
and experiment design are outlined below, followed by
a discussion of experimental results, including parameter
analysis.

A. Investigated Gene Expression Datasets

This evaluation is conducted on gene expression data
obtained from six published microarray studies. Each of
the investigated datasets is briefly described below, with
its statistics summarized in Table I. Note that, to resolve
the problems with missing and extreme values, the pre-
processing procedure of [21] is applied to these datasets
(but the appreciation of the present results does not
require the understanding of this procedure). In addition
to the expert-directed number of sample classes (k), a
set of possible class numbers (C) is specified for each
dataset and used to assess the robustness of a given
clustering method.

TABLE I
DESCRIPTION OF INVESTIGATED DATASETS: NUMBERS OF

SAMPLES (n), GENES (d), GIVEN CLASSE NUMBER (k) AND A SET
OF POSSIBLE CLASS NUMBERS (C , WHERE k ∈ C).

Dataset n d k C
Leukemia1 [2] 72 2,194 3 {2, 3, 4, 5, 6}
Leukemia2 [19] 72 1,877 2 {2, 3, 4, 5, 6}
Brain-Tumor [32] 50 1,377 4 {2, 3, 4, 5, 6}
CNS [33] 42 1,379 5 {3, 4, 5, 6, 7}
Muti-Tissues [40] 174 1,571 10 {8, 9, 10, 11, 12}
SRBCT [27] 83 1,069 4 {2, 3, 4, 5, 6}

• Leukemia1 was originally obtained from the periph-
eral blood or bone marrow of affected individuals at

diagnosis or relapse [2]. In particular, three sample
classes are established: 20 cases of lymphoblastic
leukemia with MLL translocations (MLL), 24 and
28 conventional acute lymphoblastic (ALL) and
acute myelogenous leukemias (AML), respectively.

• Leukemia2 includes 72 bone marrow samples that
were obtained from acute leukemia patients at the
time of diagnosis [19]: 47 ALL and 25 AML.

• Brain-Tumor contains a collection of 50 gliomas
that were exploited in the investigation of [32]:
14 classic glioblastomas (CG), 14 non-classic
glioblastomas (NG), 7 classic anaplastic oligoden-
drogliomas (CO) and 15 non-classic anaplastic
oligodendrogliomas (NO).

• CNS includes embryonal tumors of the central ner-
vous system studied in [33]: 10 cases of medul-
loblastomas (MD), 8 primitive neuroectodermal tu-
mors (PNET), 10 atypical teratoid/rhabdoid tumors
(Rhab), 10 malignant gliomas (Mglio) and 4 normal
tissues.

• Multi-Tissues presents the collection of samples
used in the study of [40] that determines the cat-
egorization of human tumors according to their
primary anatomical site of original. A large-scale
RNA profiling was used to create a molecular
classification scheme, collectively accounting for
approximately 70% of all cancer-related deaths in
the United States.

• SRBCT contains small, round blue-cell tumors that
were investigated and classified to diagnostic cat-
egories [27]: neuroblastomas (NB), Burkitt lym-
phoma (BL), rhabdomyosarcoma (RMS) and Ewing
(EWS) tumors.

B. Experiment Design

The main focus of this experiment is to investigate the
performance of R-KM in comparison with other k-means
alike algorithms. This is motivated by the observation
that a number of such techniques have been introduced
in the literature, providing a good evaluation platform.
In addition, results in comparison with other filter-based
method, i.e. R-CL and R-SPT, are also obtained to
demonstrate the effectiveness and general applicability
of the proposed approach. The experiment settings are
given below.
• To investigate the robustness of the filter approach,

two models of each reliability-based clustering are
examined – for instance, R2-KM and R3-KM, with
α = 2 and α = 3, respectively.

• Compared methods include three baseline clustering
algorithms of KM, CL and SPT. In addition, three
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TABLE II
CA AND NMI MEASURES OF KM ALIKE CLUSTERING METHODS, GIVEN CLASS NUMBER k.

Dataset Method
R3-KM R2-KM KM LAC EWKM FSC ProClus

CA Measure

Leukemia1 0.748 0.738 0.664 0.681 0.551 0.702 0.625
(0.051) (0.046) (0.086) (0.051) (0.105) (0.087) (0.063)

Leukemia2 0.718 0.713 0.672 0.711 0.672 0.698 0.653
(0.023) (0.022) (0.044) (0.119) (0.049) (0.124) (0.054)

Brain-Tumor 0.608 0.596 0.566 0.536 0.458 0.534 0.460
(0.042) (0.024) (0.065) (0.066) (0.097) (0.071) (0.030)

CNS 0.519 0.457 0.410 0.571 0.451 0.441 0.548
(0.037) (0.050) (0.091) (0.060) (0.070) (0.093) (0.034)

Muti-Tissues 0.655 0.634 0.595 0.615 0.473 0.619 0.316
(0.061) (0.055) (0.075) (0.068) (0.077) (0.077) (0.025)

SRBCT 0.434 0.463 0.399 0.428 0.464 0.430 0.458
(0.034) (0.057) (0.064) (0.069) (0.076) (0.113) (0.047)

NMI Measure

Leukemia1 0.574 0.585 0.447 0.359 0.278 0.484 0.274
(0.087) (0.087) (0.146) (0.084) (0.101) (0.136) (0.059)

Leukemia2 0.187 0.171 0.092 0.154 0.064 0.202 0.261
(0.024) (0.017) (0.098) (0.105) (0.089) (0.184) (0.057)

Brain-Tumor 0.493 0.512 0.472 0.353 0.238 0.349 0.184
(0.072) (0.076) (0.122) (0.068) (0.108) (0.107) (0.041)

CNS 0.423 0.364 0.285 0.491 0.334 0.356 0.376
(0.034) (0.025) (0.113) (0.059) (0.096) (0.094) (0.028)

Muti-tissues 0.627 0.611 0.573 0.546 0.536 0.561 0.202
(0.032) (0.043) (0.074) (0.062) (0.060) (0.051) (0.032)

SRBCT 0.153 0.153 0.116 0.108 0.209 0.149 0.183
(0.040) (0.034) (0.110) (0.104) (0.090) (0.092) (0.050)

soft subspace clustering methods are also employed:
EWKM [25], LAC [13] and FSC [18]. In particular,,
for each trial, the parameter γ of EWKM is ran-
domly selected from [0.25, 1] and the parameter h of
LAC is randomly selected from {1, 2, . . . , 5}. Sim-
ilarly, the parameters δ and ε of FSC are arbitrarily
chosen from (1, 5] and [0.01, 0.1], respectively. See
Section II for details.

To consolidate the evaluation, the performance of
ProClus [1], one of the best known crisp subspace
algorithms, is also investigated. Principally, ProClus
is a k-medoid-like clustering method. It first ran-
domly selects a set of k potential cluster centers
(or medoids), M = {m1, . . . ,mk}, from the object
set X . Then, in its iterative cluster refinement phase,
the subspace of each medoid mg ∈M is determined
by minimizing the standard deviation of distances
between mg and its neighboring objects along each
dimension. Following that, objects are assigned to
the closest medoid considering the relevant sub-
space of each medoid. The clusters are refined by
replacing low-quality medoids with new medoids
from M . This continues as long as the clustering
quality (the average similarity between objects and

the nearest medoid) increases. In its post-processing
step, ProClus identifies outliers, i.e. objects that are
excessively far away from their closest medoids.
Since M is randomly identified, different runs with
the same parametrization usually result in dissimilar
clusterings. In this work, the minimum subspace
size per cluster which is a mandatory parameter
of ProClus, is manually adjusted for each dataset,
such that the number of outliers is minimized (i.e.
all objects are assigned to one of the disclosed
clusters).

• For any clustering technique that is non-
deterministic, its quality measure is the average of
20 trials.

• This evaluation compares the quality of partitions
generated by the proposed clustering model and
other comparable methods, over six gene expression
datasets. Two validity indices of CA (Classifica-
tion Accuracy) [31] and NMI (Normalized Mutual
Information) [39] are employed here to gauge the
goodness of a data partition.

C. Experiment Results

With an expert-directed cluster numbers k, Table II
presents both CA ∈ [0, 1] and NMI ∈ [0, 1] measures
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TABLE III
CA AND NMI MEASURES OF OTHER RELIABILITY-BASED CLUSTERING METHODS, GIVEN CLASS NUMBER k.

Dataset Method
R3-SPT R2-SPT SPT R3-CL R2-CL CL

CA Measure
Leukemia1 0.732 0.732 0.722 0.750 0.750 0.472

(0.000) (0.000) (0.000) (n/a) (n/a) (n/a)
Leukemia2 0.653 0.653 0.653 0.653 0.653 0.653

(0.000) (0.000) (0.000) (n/a) (n/a) (n/a)
Brain-Tumor 0.556 0.554 0.544 0.540 0.540 0.480

(0.009) (0.006) (0.013) (n/a) (n/a) (n/a)
CNS 0.488 0.490 0.381 0.500 0.500 0.405

(0.029) (0.043) (0.061) (n/a) (n/a) (n/a)
Muti-tissues 0.801 0.796 0.770 0.546 0.546 0.523

(0.014) (0.014) (0.042) (n/a) (n/a) (n/a)
SRBCT 0.439 0.435 0.428 0.386 0.373 0.349

(0.006) (0.006) (0.006) (n/a) (n/a) (n/a)
NMI Measure
Leukemia1 0.653 0.653 0.632 0.694 0.694 0.213

(0.000) (0.000) (0.000) (n/a) (n/a) (n/a)
Leukemia2 0.067 0.067 0.043 0.042 0.042 0.042

(0.040) (0.040) (0.039) (n/a) (n/a) (n/a)
Brain-Tumor 0.394 0.395 0.390 0.369 0.369 0.349

(0.011) (0.013) (0.030) (n/a) (n/a) (n/a)
CNS 0.434 0.437 0.356 0.435 0.435 0.380

(0.038) (0.031) (0.053) (n/a) (n/a) (n/a)
Muti-tissues 0.766 0.764 0.740 0.548 0.540 0.564

(0.017) (0.014) (0.034) (n/a) (n/a) (n/a)
SRBCT 0.122 0.122 0.116 0.100 0.085 0.063

(0.007) (0.006) (0.008) (n/a) (n/a) (n/a)

obtained by KM and its extensions for soft subspace
clustering. It is shown that both R2-KM and R3-KM per-
form consistently better than the baseline, i.e. KM. Fur-
thermore, they are usually more effective than EWKM,
LAC, FSC and ProClus. In addition to this finding,
Figs. 3-4 illustrate the performance of R3-KM that is
robust to a set of possible cluster numbers (C). Note
that the measures of R2-KM are similar to those of R3-
KM, thus they are not included in these figures for clear
presentation.

ProClus, which is a crisp subspace clustering tech-
nique, appears to be less effective than its soft subspace
clustering counterparts. This scenario occurs due to the
fact that ProClus attempts to find a crisp subspace in
which several relevant features may be unfortunately
dropped. EWKM, LAC and FSC are highly sensitive to
their input parameters (γ, h, δ and ε, respectively) where
a uniform setting is not obtainable for dissimilar data.
For instance, a particular parameter value might cause
an extremely drastic change of weights in one dataset,
and a constant pace in another. In addition, cluster-
specific weights are similarly updated with respect to
the distances between object members to the disclosed
cluster centroids, which can be sub-optimal. Hence,
the accuracy of weight modification cannot always be

maintained. This is reflected by their results which are
good only with few specific datasets, but generally worse
than those of R3-KM and R2-KM. Note that, with the
reliability-based KM models, weights are updated using
object-specific reliability measures, which represent true
characteristics of local relevance and remain unchanged
over time.

The results shown in Table III reinforce the observa-
tion that the proposed filter approach is effective and
generally applicable to different clustering algorithms.
In particular, both R3-SPT and R2-SPT improve their
baseline model (i.e. SPT), while R3-CL and R2-CL also
enhance the performance of the conventional CL tech-
nique. In this table, standard deviations of deterministic
techniques (CL, R3-CL and R2-CL) are marked as ‘n/a’,
since their performance measures are obtained from a
single trial. Based on these findings, the reliability based
framework presented here has proven useful for refining
the underlying distance measures employed by KM and
CL in an original data space, and for that done by SPT
in the reduced space (via transformation).

D. Parameter Analysis

To maximize the potential of a soft subspace clustering
algorithm, the major obstacle typically encountered is
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Fig. 3. CA measures obtained by examined clustering methods, displayed in accordance with each dataset and different cluster numbers
(k ∈ C).

Fig. 4. NMI measures obtained by examined clustering methods, displayed in accordance with each dataset and different cluster numbers
(k ∈ C).

the appropriate selection of input parameters. This might
also be the case with the use of R-KM, R-CL and R-SPT
techniques which require the size of nearest neighbours
(α) to be identified before hand. In addition to the above
performance comparison, it is therefore important to
demonstrate that the effectiveness of filter-based methods
is obtainable, with respect to the perturbation of α.

Fig. 5 shows the NMI measures obtained by R-KM
using different values of α and a given number of clusters

(k). These measures are summarized across all investi-
gated datasets. The results show that the performance of
R-KM is not strongly dependent of α and is consistently
better than LAC, EWKM and FSC. Similar results are
also observed using the CA measure and both R-CL and
R-SPT. This empirical evaluation indicates that the new
algorithms proposed in this paper are reliable in support
of cluster analysis.
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Fig. 5. NMI measures obtained by the R-KM algorithm across all
investigated datasets, with different sizes of nearest neighbours (α).
Note that the performance measures of other soft subspace clustering
techniques (LAC, EWKM and FSC) are included for comparison.

V. CONCLUSION

This paper has presented a novel filter approach to soft
subspace clustering, which is, unlike the existing wrap-
pers, applicable to different clustering algorithms. The
underlying measure has also been made more efficient
and feasible with large datasets. Based on the evaluation
over gene expression data, different reliability-based
models improve their corresponding baseline techniques
and outperform important soft and crisp subspace clus-
tering methods.

While the popular minimum operator currently em-
ployed is effective to summarize cluster-specific feature
weights, it has the bias on the smallest and ignores the
rest. It is therefore interesting to observe the behavior
of reliability-based methods with respect to other types
of aggregation operator, e.g. OWA (Ordered Weighted
Averaging) [44] and its data-dependant variants [4], [5].
Work is also ongoing to apply, and to further evaluate
the potential of, this filter methodology to completely
different high-dimensional data, e.g. large-scale true-
colors Mars images [36]. Its utilization in the context
of cluster ensembles for gene expression data [21] is
another significant future research. Additionally, the cur-
rent performance evaluation is carried out numerically.
To support user understanding and interpretation of the
results, it may be beneficial to investigate how advanced
techniques for fuzzy compositional modeling [16] may
be utilized to obtain linguistically valued performance
measures [17].
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