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ABSTRACT

This paper presents a novel application of advanced
machine learning techniques for Mars terrain image
classification. Fuzzy-rough feature selection (FRFS)
is employed in conjunction with Support Vector Ma-
chines (SVMs) to construct image classifiers. These
techniques are for the first time, integrated to address
problems in space engineering where the images are
of many classes and large-scale. The use of FRFS al-
lows the induction of low-dimensionality feature sets
from feature patterns of a much higher dimension-
ality. Experimental results demonstrate that FRFS
helps to enhance the efficacy of the conventional clas-
sifiers. The resultant SVM-based classifiers which
utilise FRFS-selected features generally outperform
K-Nearest Neighbours and Decision Tree based clas-
sifiers and those which use PCA-returned features.

1. INTRODUCTION

Automated and accurate analysis of Mars images ob-
tained by the front-line Panoramic Camera (Pancam)
instruments [1, 2] is an important task, especially for
surveying places (e.g. for geologic cues) in Mars
[3, 4, 5, 6]. A key element of analysing Pancam ter-
rain images is to detect rocks and other objects cap-
tured in such images. However, such objects on Mars
exhibit diverse morphologies, colours and textures.
They are often covered in dust, grouped into self-
occluding piles or partially embedded in the terrain
[2]. Also, Mars terrain images vary significantly in
terms of intensity, scale and rotation, and are blurred
with measurement and transmission noise. These fac-
tors make Martian image classification a challenging
problem [3, 5, 6].

One critical step to successfully build an image
classifier is to extract and use informative features
from given images [6, 7, 8]. To capture the essen-
tial characteristics of such images, many features may
have to be extracted without explicit prior knowledge
of what properties might best represent the underly-
ing scene reflected by the original image. However,
generating more features increases the computational

complexity, especially in light of on-board process-
ing of Mars images where demand for computational
memory and processing time must be minimised, de-
spite the nowadays generally available and relatively
cheap computer power. Besides, not all such features
may be useful to perform classification [6, 7, 9, 10].
Due to measurement noise the use of extra features
may even reduce the overall representational potential
of the feature set and hence, the classification accu-
racy . Thus, it is often necessary to employ a method
that can determine the most significant features, based
on sample measurements, to simplify the classifica-
tion process, while ensuring high classification per-
formance. Recently, there have been significant ad-
vances in developing methodologies that are capable
of minimising feature subsets in a noisy environment.
In particular, a resounding amount of research utilises
fuzzy and rough sets [9]. Amongst them is the fuzzy-
rough feature selection (FRFS) algorithm [11] that
has been shown to be a highly useful technique by
which discrete or real-valued noisy data (or a mixture
of both) can be effectively reduced, without the need
for user-supplied information.

Inspired by this observation, this paper presents
an integrated approach for performing large-scale
Mars image classification, by exploiting the poten-
tial of advanced classification and feature selection
techniques. In particular, Support Vector Machines
(SVMs) [12] are employed for image classification.
This is due to the recognition of their high generalisa-
tion performance in complex data sets [12, 13]. FRFS
is utilised to ensure that classification is carried out
with a subset of original features only.

The resulting integrated approach helps to im-
prove the effectiveness and efficiency of SVM-based
image classifiers. This is because only those in-
formative features are required to be generated in
performing actual classification, minimising both the
feature measurement noise and the computational
complexity (of both feature extraction and feature
pattern-based classification). Systematic experimen-
tal studies are carried out in comparison with the use
of classical classification techniques (e.g. Decision



Trees [14], and K-Nearest Neighbours [15]), with
features selected by FRAS or conventional dimen-
sionality reduction methods (e.g. PCA [15]). These
results show that the proposed approach entails rapid
and accurate learning of classifiers. This is of great
importance to on-board image classification in future
Mars rover missions. This is because flight projects
demand least memory requirement and simplest com-
putation possible.

The rest of this paper is organized as follows.
Section 2 introduces the Mars terrain images under
investigation. Sections 3, 4 and 5 outline the key
component techniques used in this work, including
feature extraction, (fuzzy-rough) feature selection
and supoort vector machine based feature pattern
classifiers. Section 6 shows the experimental results,
supported by comparative studies. The paper is con-
cluded in Section 7.

2. MCMURDO PANORAMA IMAGE

Although the approach taken in this research is gen-
eral, the present work concentrates on the classifi-
cation of the 360-degree view McMurdo panorama
image. This (composed) image is obtained from
the panoramic camera on NASA’s Mars Exploration
Rover Spirit and presented in approximately true
color [2], consisting of 1,449 Pancam images and rep-
resenting a raw data volume of nearly 500 megabytes.
Such an image reveals a tremendous amount of detail
in part of Spirit’s surroundings, including many dark,
porous-textured volcanic, brighter and smoother-
looking rocks, sand ripple, and gravel (mixture of
small stones and sand).

Fig. 1 shows the most part of the original Mc-
Murdo image (of a size 20480 x 4124). This image,
excluding the areas occupied by the instruments and
their black shadows, is used for the work here, involv-
ing eight major image classes which are of practical
significance. These image classes are listed in Table 1
and illustrated in Fig. 2. The ultimate task of this re-
search is to develop an image classifier that can detect
and recognise different class regions within a given
image.

3. FEATURE EXTRACTION

A variety of techniques may be used to capture and
represent the underlying characteristics of a given
image [7, 16]. In this work, low-level feature ex-
traction approaches are employed. In particular, lo-
cal colour histograms and the first and second order
colour statistics [13, 16] are exploited to produce a
feature vector for each individual pixel. Such fea-
tures are effective in depicting the underlying image
characteristics and are efficient to compute. Also, the

Fig. 1. Mars McMurdo panorama image.

resulting features are robust to image translation and
rotation, thereby potentially suitable for classification
of Mars images [6, 13].

3.1. Colour Statistics-Based Features

Images originally given in the RGB (Red, Green and
Blue) colour space are first transformed to those in the
HSV (Hue, Saturation and Value) space [16]. These
spaces are in bijection with one another, and the HSV
colour space is widely used in the literature. By com-
puting the first order (mean) and the second order
(standard deviation, denoted by STD) colour statis-
tics with respect to each of the R, G, B, H, S and V
channels, twelve features can be generated per pixel,



Fig. 2. Image classes as described in Table 1

Class Description | Label |
Rock-1 (textured/smoothed dark rock or shadows) C1
Rock-2 (smoothed bedding orange colored rock) Cc2
Rock-3 (graysmoothed rock) C3
Gravel-1 (mixed with small stone and sand) C4
Gravel-2 (mixed with small C5
black/orange colored rock and sand)

Rover tracks C6
Sand C7
Sand ripple C8

Table 1. Image classes and class labels

from a certain neighbourhood of that pixel. For pre-
sentational simplicity, the resulting features are here-
after denoted as MEANx and STDx, X € {R, G,
B, H, S, V}, representing the first and second order
statistics per colour space channel, respectively.

3.2. Local Histogram-Based Features

As the name indicates, such features are measured
off the histograms computed from local regions of a
given image [17]. In the present context, a histogram
is a summary graph showing a count of grey levels
falling in a number of resolution ranges (called bins),
within a predefined neighbourhood. For a certain
pixel, a set of histogram features Xj;,2 = 1,2, ..., B,
where X € {H,S,V}, are calculated (within the
given neighbourhood), with respect to a particular bin
size B (i.e. number of bins), regarding the H, S, and
V colour channels. Thus, feature X}, represents the
normalised frequency of the colour histogram in bin
1. Here, for simplicity, individual bin widths are set
equally, and the neighbourhood size is set to the same
as that used in the above colour feature extraction.
The bin size B is empirically set to 8 in this work.

4. FUZZY-ROUGH FEATURE SELECTION

The theoretical foundation of Fuzzy-Rough Feature
Selection (FRFS) algorithm is outlined below; further
details can be found in [9, 11].

Let U be the set of pixels within a given image, P
be a subset of features, and D be the set of all possible
image classes of interest. The concept of fuzzy-rough
dependency measure, of D upon P (which FRFS is
based on), is defined by [9]:
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and U/D denotes the (equivalence class) partition of
the image (i.e. pixel set) with respect to D, and [ is
a fuzzy implicator and 7" a t-norm [9]. Rp is a fuzzy
similarity relation induced by the feature subset P:

MRp<xay) = TAEP{:U’R{A} (may)} (4)

Here, yig, ,, (z,y) represents the degree to which pix-
els z and y are deemed similar with regard to feature
A. Tt may be defined in many ways, but in this work,
the following commonly used similarity relation [11]
is adopted:

[A(z) — Ay)|
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where A(x) and A(y) stand for the value of feature
A € P of pixel x and that of y, respectively, and
Az and A,,;, are the maximum and minimum val-
ues of feature A.
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FRFS works by employing the above dependency
measure to choose which features to add to the subset
of the current best features through a greedy hill-
climbing process. It terminates when the addition of
any remaining feature does not increase the depen-
dency. Fig. 4 outlines this feature selection algorithm;
what is returned by this algorithm is a subset of fea-
tures selected from the full set of original features.
Note that as the fuzzy-rough dependency measure is
nonmonotonic, it is possible that the hill-climbing
search terminates having reached only a local opti-
mum.

C': the set of all original features;
D: the set of possible image classes.
(1)R — {}’s Yvest = 0
(2) do
AT +— R, Yprev < Vbest
(4) foreach ¢ € (C — R)
() if Yru(a} (D) > (D)
(6) T+—RU {a}, Yoest < ’YTD
(HR«T
(8) until Ybest == Vprev
(9) return R
Fig. 3. The FRFS Algorithm

5. SVM-BASED CLASSIFIERS

Support Vector Machines (SVMs) [12] are herein
used to perform image classification, by mapping in-
put feature vectors onto the underlying image class
labels. Such a classifier seeks to find the optimal sep-
arating hyperplane among different classes by focus-
ing on those training points (named support vectors),
which are placed at the edge of the underlying feature
vectors and whose removal would change the solution
to be found.

More formally, SMVs construct a hyperplane in a
space of a dimensionality higher than that of the orig-
inal, which is then used for classification (or for other
tasks such as regression and prediction). The underly-
ing intuition is that by mapping the original data space
into a much higher-dimensional space, the class sep-
aration between data points will become easier in that
space. SVMs use a specific mapping such that the
cross products of data points in the larger space are
defined in terms of a kernel function [18] which is se-
lected to suit the given problem. In so doing, the cross
products may be computed in terms of the variables in
the original space, thereby minimising computational
effort. In particular, a hyperplane in the higher di-
mensional space is defined as the set of points whose
inner product with any vector in that space is constant.
A good hyperplane is learned over a training process
such that the resulting hyperplane has the largest dis-
tance to the nearest training data points of any given

class. This is in order to increase the discriminative
power of the trained classifier.

In the following, Radial Basis function (RBF)
kernel is adopted to implement the SVM-based clas-
sifiers, and the sequential minimal optimisation al-
gorithm of [19] is used to train the SVMs. Detailed
SVM learning mechanism is omitted, but can be
found in the literature (e.g. [12, 19]).

In order to increase the efficacy of the SVM clas-
sifiers, FRFS is used to rank the extracted features
and hence, to select those most informative during
the training phase. This is of practical significance
as for on-board application, classifiers are expected
to be built with mature technologies (rather than to-
tally new mechanisms that have limited experimental
data). SVMs are proven high-performance classifiers,
but they rely on quality input features. Adding SVMs
with FRFS-based feature selection helps to improve
the quality of their input. For learning such classi-
fiers, a set of training data is selected from the typical
parts (see Fig. 2) of the McMurdo image, with each
pixel represented by a feature vector which is manu-
ally assigned an underlying class label.

6. EXPERIMENTAL RESULTS

From the McMurdo image of Fig. 1, a set of 270 sub-
divided non-overlap images with a size of 512 x 512
each are used to perform this experiment. 1492 pixel
points are selected from 28 of these images for train-
ing and verification. Each of the pixels is labeled with
an identified class index (i.e. one of the eight image
classes: Rock-1, Rock-2, Rock-3, Gravel-1, Gravel-
2, Rover tracks, Sand and Sand ripple as listed in Ta-
ble 1). The rest of all these images are used as unseen
data for classification. Each training pixel is repre-
sented by a pattern vector of 36 features (see Sec-
tion 3). The size of a neighbourhood window used
for extracting features is set to 15 x 15. Of course,
the actual classification process only uses subsets of
selected features.

For comparison purposes, the commonly used K-
Nearest Neighbours (KNN) [15] and Decision Trees
(DT) [14] classifiers are also employed. The perfor-
mance of each classifier is measured using classifica-
tion accuracy, with ten-fold cross validation. For easy
cross-referencing, Table 2 lists the reference numbers
of the original features that may be extracted, where
1 < i < 8 (the empirically chosen bin size). The
SVM penalty parameter is set to 100, with standard
Gaussian Radial Basis function (RBF) employed.
Note that in the following, for KNN classification, the
results are first obtained with K set to 1, 3, 5, 8, and
10. Those classifiers which have the highest accuracy,
with respect to a given feature pattern dimensionality



No. Meaning [ No. Meaning [ No.

Meaning | 6.2. Use of Randomly Selected Features

Table 2. Feature meaning and reference number

and a certain number of nearest neighbours, are then
taken to run for performance comparison.

6.1. Use of Full Original Features

This subsection shows that, at least, the use of a se-
lected subset of features does not significantly reduce
the classification accuracy as compared to the use of
the full set of original features. For this problem,
FREFS returns 8 features out of the original thirty-six
(whose references are listed in Table 2). The selected
features are: STDgr, MEANg, STDg, MEANY,
STDg, Hyps, Hy5, Sp1 (see section 3 for their un-
derlying meaning), with the reference numbers being
2,3,6,7,10,16,17, and 26 respectively. This indi-
cates a dimensionality reduction rate of 78%. Table 4
lists the correct classification rates produced by the
SVM, DTREE and KNN classifiers, all with 10-fold-
cross-validation, where the number of the nearest
neighbours K used by these KNN classifiers are also
provided (in the first column). Clearly, the classi-

1  MEANgp | 2 STDg 3  MEANg _ o .

4 STDq 5 MEANg 6 STDg The above comparison ensured that little information

7 MEANR 8 STDRg 9 MEANgG | loss is incurred due to fuzzy-rough feature reduction.

10 STDg 1l MEANp | 12 STDp The question now is whether any other feature sets of
13-20 Hy; 21-28 Shi 29-36 Vi

a dimensionality 8 would perform similarly as those
identified via fuzzy-rough selection. To avoid a bi-
ased answer to this, without resorting to exhaustive
computation, 30 sets of eight features randomly cho-
sen were used to see what classification results might
be achieved.

Figure 3 shows the correct classification rates of
the corresponding 30 classifiers, along with the clas-
sification rates of the three classifiers that each use
the eight FRFS-selected features. Table 4 further
summarises these results, where the second, third
and forth columns present the worst, average and best
classification rates with the corresponding feature sets
used. The average rates of the classifiers that each
employ eight randomly selected features are only
76.44% for SVM, 73.15% for KNN, and 69.89% for
DTREE, far lower than those attained by their coun-
terparts which utilise the FRFS-returned features (of
the same dimensionality). The best result that a ran-
domly selected feature set achieves is 84.58% (with
features 3,6,9,13,15,18,24,27) when used by an
SVM classifier. This is much lower than that of using
FRFS-selected features (i.e. 2,3,6,7, 10,16, 17, 26).
This implies that randomly selected features led to
important information loss in the course of feature
reduction; this is not the case for the FRFS approach.

[ Classifier “ Set [ Dim. [ Feature No [ Rate ]
SVM FRFS 8 2,3,6,7,10,16,17,26 | 92.63% 95 i i i i i
SVM Full 36 1,2,...,35,36 92.06%
KNN(K8) FRFS 8 2,3,6,7,10,16,17,26 | 86.12% 90l . SVM—SFF‘FS
KNN(K5) Full 36 1,2,...,35,36 86.39%
DTREE FRFS 8 2,3,6,7,10,16,17,26 | 79.01% 851 KNN=-8FRFS
DTREE Full 36 1,2,...,35,36 80.02%

DTREE-8FRFS

@
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Table 3. FRFS-selected vs full original features
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features is higher than that of using the thirty-six

original features for SVM classifiers (92.63% vs.
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92.06%). For KNN and DTREE classifiers, the ac-
curacy resulting from using the eight FRFS-selected
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- =
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features remains very close to that from using the 0 5 10 15 20 25
full set of original features (86.12% vs. 86.39% for Feature sets

KNN, and 79.01% vs. 80.02% for DTREE). Overall,
the combined use of SVM and FRFS techniques of-
fers the best performance, with a classification rate of
92.63%. This is indicative of the potential of FRFS
in reducing not only redundant feature measurements
but also the noise associated with such measure-
ments, improving both effectiveness and efficiency of
the classification process.

Fig. 3. FRFS vs randomly selected features.

6.3. Use of PCA-Returned Features

Experimentation carried out in this study aims at ex-
amining the classifier performance while using differ-



CLF | Min. | Ave. | Max. [ FRFS | aided ones, whether they are implemented using SVM

SVM 65.95% | 76.44% | 84.58% | 92.63% or KNN. This situation only changes when almost all
KNN 59.31% | 73.15% | 80.16% | 86.12% the PCA-returned features are used where the corre-
DTREE | 58.44% | 69.89% | 75.13% | 79.01% sponding SVM classifiers may perform similarly or

slightly better (if the number of principal components
is larger than 25). Yet, this is at the expense of re-
quiring many more feature measurements and much
more complex classifier structures. Besides, PCA
alters the underlying semantics of the features during
its transformation process. Those features returned
by PCA are not the original ones, but their linear
combinations.

Table 4. FRFS vs randomly selected original feature
sets of the same dimensionality (8)
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6.4. Classified and Segmented Images

The ultimate task of this research is to classify Mars
panoramic camera images and to detect different ob-
jects or regions in such images. The SVM which em-
ploys the 8 FRFS-selected features, and which was

o]
o
T

]
o
T

Correct classification rate (%)

70 —f—-svm-rca |{ trained by the given 1492 labeled feature patterns, is

_H_g?g‘;g?ﬁm herein taken to accomplish the classification of the

65 % Svm-8FRFS |4 entire image of Fig. 1 (other than those excluded re-
X KNN-8FRFS . L ) . .

@ DTReE-sFrrs| | gions as indicated previously). As an illustration, five

60, s 0 15 20 25 a0 a5  ao Classified images are shown in Fig. 5, numbered by
Number of principal features (a), (b), (c), (d) and (e) respectively, where eight dif-

ferent colours represent the eight image types (Rock-

Fig. 4. Performance of KNN, DTREE and SVM vs. 1, Rock-2, Rock-3, Gravel-1, Gravel-2, Rover tracks,
the number of principal components. Sand and Sand ripple as listed in Table 1). From this,

boundaries between different class regions are identi-
fied and marked with white lines, resulting in the seg-
mented images also given in Fig. 5, correspondingly
numbered by (f), (g), (h), (i) and (j).

From these results, it can be seen that regions be-
longing to the eight image classes vary in terms of

ods for dimensionality reduction, it is adopted here their size, rotation, colour, contrast, shapes, and tex-
as the benchmark for comparison. Fig. 4 shows the ture. For human eyes it can be difficult to identify
classification results of the SVM, KNN, and DTREE boundaries between certain image regions, such as
classifiers using a different number of principal fea- those between sand and gravel, apd tl.IOSC between
tures. For easy comparison, the results of the KNNs, rocks and sand. However, the classifier is able to per-
DTREE and SVM which use 8 FRFS-selected fea- form under such circumstances, showing its robust-

tures are also included, which are represented by x, e ness to image variations. This indicates that the small
and , respectively. subset of features selected by FRFS indeed convey

ent dimensionality reduction techniques. In particu-
lar, classifiers that are aided with FRFS are systemati-
cally compared to those supported by the use of PCA
[15] which is arguably one of the most popular meth-

These results demonstrate that the three classi- the most useful information of the Original. Note that
fiers which use FRFS-selected features have a sub- classification errors mainly occur within regions rep-
stantially higher classification accuracy than their resenting sand and gravel. This may be expected since
counterparts which use a subset of PCA-returned fea- gravel is itself a mixture of sand and small stones.
tures of the same dimensionality (92.63% vs. 83.58%
for SVM, 86.12% vs. 80.22% for KNN, and 79.01% 7. CONCLUSION
vs. 73.58% for DTREE,). This is achieved via a con-
siderably simpler computation, due to the substantial This paper has presented a study on Mars terrain im-
reduction of the complexity in the input patterns. The age classification, supported by advanced machine
figure also systematically presents the other cases learning techniques. For the first time, fuzzy-rough
where PCA-aided (SVM, KNN and DTREE) clas- feature selection has been adopted in conjunction
sifiers each employ a feature subset of a different with Support Vector Machines to help solve problems
dimensionality. However, these classifiers still gen- in space engineering. Unlike transformation-based

erally underperform than the corresponding FRFS- dimensionality reduction techniques, this approach



Fig. 5. Classified and segmented image.



retains the underlying semantics of the selected fea-
ture subset. This is very important to help ensure
that the classification results are understandable by
the user. Following this approach, the conventional
SVM, KNN and DTREE, which are sensitive to the
dimensionality of feature patterns, can be expected to
become effective on classification of images whose
pattern representation may otherwise involve a large
number of features. Although the real-world images
encountered are large-scale and complex, the result-
ing feature pattern dimensionality of selected features
is manageable. In particular, SVM (and also KNN
and DTREE) classifiers that are built using such se-
lected features generally outperform those using more
features or an equal number of features obtained
by conventional dimensionality reduction techniques
that are represented by PCA. This is confirmed by
systematic experimental investigations. In short, this
work helps to accomplish challenging image classi-
fication tasks effectively and efficiently. This is of
particular significance for classification and analysis
of real images on board or on ground in future Mars
rover missions.
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