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We implement an iterative quantum state transfer exploiting the natural dipolar couplings in a spin chain of
a liquid-crystal NMR system. During each iteration, a finite part of the amplitude of the state is transferred and,
by applying an external operation on only the last two spins, the transferred state is made to accumulate on the
spin at the end point. The transfer fidelity reaches one asymptotically through increasing the number of
iterations. We also implement the inverted version of the scheme which can transfer an arbitrary state from the
end point to any other position of the chain and entangle any pair of spins in the chain, acting as a full quantum
data bus.

DOI: 10.1103/PhysRevA.80.012316 PACS number�s�: 03.67.Lx, 76.60.�k

I. INTRODUCTION

In quantum computation and quantum communication,
the transfer of an arbitrary quantum state from one qubit to
another is a fundamental element. The most obvious method
to implement the quantum state transfer �QST� on an array of
qubits is based on a sequence of SWAP gates for neighboring
spins. In spin qubit systems, the SWAP gate �up to a known
phase factor� can be implemented through the evolution of
the dipolar coupling between the neighboring spins for 1 /2D
time by decoupling the other spins, where D denotes the
dipolar coupling strength. In experiments, however, the re-
quired decoupling operations are hard to implement if the
spins cannot be individually addressed by spectral selectivity,
e.g., in large-size solid-state NMR systems. This makes the
direct implementation of such gates in a large spin system
challenging.

To overcome this problem, schemes based on “always on”
spin systems were proposed �1,2�. The state can be trans-
ferred with unit fidelity in engineered spin chains or net-
works with XY interactions �3�. However, the required fine-
tuned XY couplings are not found in natural spin systems �4�.
In other schemes based on spin chains with Heisenberg in-
teractions �1,5� or with a double-quantum Hamiltonian �4�,
the fidelity of the QST cannot approach unity in scalable
systems.

The above limitations can be relaxed significantly by ap-
plying gate operations to receive and store the transferred
state �6,7�. The gates are only applied to two spins at one end
of a spin chain. In this paper, we experimentally implement
the QST in a liquid-crystal NMR system based on this
scheme. Opposed to previous experimental implementations
�7� where the required XY interactions were engineered by
radio-frequency pulses and scalar couplings, the dipolar cou-
plings exist naturally in the system and are directly exploited
for the QST. The dipolar couplings are much stronger �up to
2 to 3 orders of magnitude� than the scalar couplings and
therefore can significantly speed up the implementation of
the logical gates for quantum information processing �8�.
The transfer with high fidelity is achieved in an iterative

manner. Each iteration transfers a finite part of the input
amplitude to the target spin at the end of the chain. The
fidelity of the transfer asymptotically approaches unity by
increasing the number of iterations. We also experimentally
demonstrate the time-inverted version of �6�. Through this, a
full quantum data bus is implemented, where arbitrary un-
known quantum states can be steered to any position of the
chain. This is also useful for the selective excitation of one
spin, which is addressed by the two-spin gates, rather than by
its individual properties, e.g., chemical shift in NMR. As
opposed to previous schemes �9�, global control is not re-
quired. Surprisingly, the reversal operation can also be used
to entangle any pair of spins in the chain by operations at its
end only. We demonstrate the entangling operation in the
qubits at the end points of the chain.

The QST and its reversal operations mean that the chain is
really used as a wire with an input, an output, and no gates in
the middle; the many-body Hamiltonian of the chain is re-
sponsible for the transport. Only two spins at the end are
required to address. The fidelity of transfer converges expo-
nentially fast to unity with respect to the number of itera-
tions. The required number of iterations to achieve a good
fidelity �e.g., larger than 0.999� scales roughly linearly with
the system size �6�. Moreover, this method is stable when the
engineered Hamiltonian in implementation deviates the re-
quired Hamiltonian �10�. Hence, our method scales favorably
with the size of the spin chains and suitable for large-size
systems, such as solid- or liquid-crystal NMR systems,
where the differences of the chemical shifts are too small to
address all the spins individually.

II. ITERATIVE TRANSFER ALGORITHM
IN A SPIN CHAIN

Our first goal is to transfer the state ��0�+��1� from spins
j to N in an N-spin chain. The Hamiltonian for spins 1 to
N−1 is represented as
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H =
1

2
� �

j,k=1;k�j

N−1

Djk�2�z
j�z

k − �x
j�x

k − �y
j�y

k� , �1�

where �x
j , �y

j , and �z
j denote the Pauli matrices with j indi-

cating the affected spin. Noting that H preserves the total
number of excited spins �1,3�, we have

U��0� = ei��0� , �2�

U��j� = �
k=1

N−1

ak�k� , �3�

where U�=e−i�H and ei� is the �1,1� matrix element of U�.
The state �0� denotes all spins pointing up, and �j� denotes all
spins up except the spin j pointing down.

The main operation is the two-spin gate applied only on
spins N−1 and N, and, in iteration n, the gate is denoted as

W�cn,dn� = I1,2,. . .,N−2 � �
1 0 0 0

0 dn
� cn

� 0

0 − cn dn 0

0 0 0 1
	

N−1,N

, �4�

where I1,. . .,N−2 denotes the unit operator for spins 1 to N−2.
The basis order for spins N−1 and N is �00�, �01�, �10�, and
�11�. Noting �cn�2+ �dn�2=1, one finds

W�cn,dn��cn�N − 1� + dn�N�� = �N� . �5�

The N spin system is initialized into the input state
��0�+��j� by setting spin j in the system to state ��0�
+��1�. Here, j is the location of the sender �receiver� of the
QST for the �inverse� protocol, which is on some arbitrary
spin of the quantum data bus. It is sufficient to only discuss
the transfer of �j� because U� only introduces a known phase
factor before �0� �see Eq. �2�� and W�cn ,dn� does not change
�0� �see Eq. �4��. Iteration n is represented as

Qj,n = �I1,. . .,N−2 � W�cn,dn���U� � IN� . �6�

After n iterations, one obtains

�	n� = Tj,n�j� = �
k=1

N

Ak,n�k� , �7�

using Eqs. �3�–�6�. Here Tj,n=Qj,n . . .Qj,2Qj,1, AN−1,n=0, and

AN,n = 
pn, �8�

where

pn = pn−1 + ��N − 1�U� � IN�	n−1��2, �9�

with p0=0 and �	0�= �j�. W�cn ,dn� is obtained by setting

dn = ei�
pn−1/
pn, �10�

cn = �N − 1�U� � IN�	n−1�/
pn. �11�

In strict nearest-neighbor chains, it can be shown �6� that pn
converges to unity by increasing the number of iterations. In
the present case, we have also non-nearest-neighbor interac-

tions, but numerical results show pn still approaches unity,
with a convergence speed which depends on the evolution
time � �see Fig. 1�a��. The process of QST after a large
number of iterations can be presented as

Tj,n���0� + ��j�� → �ein��0� + ��N� , �12�

i.e., spin N ends with the state �ein��0�+��1� and ein� is
known.

We can exploit the inversion of Tj,n to implement the QST
from spin N to spin j, i.e., without applying the external
operation directly on the spin j to evolve it into state ��0�
+��1�. Hence, the spin chain functions as a quantum data
bus, which can transfer arbitrary unknown states to any qu-
bit. This method also allows to create a selective excitation
that does not require spectral selectivity, e.g., chemical shift
in NMR, to address spin j. The external operations are only
applied to spins N−1 and N. By taking the inner product of
Eq. �7� with �N� and using Eq. �8� one obtains

pn = ��j�Tj,n
−1�N��2, �13�

i.e., pn is the fidelity for generating �j� by applying Tn,j
−1 to

�N�. The creation of the selective excitation for spin j is
represented as

Tj,n
−1���0� + ��N�� → �e−in��0� + ��j� . �14�

By modifying the input state, one can obtain Tj,n
−1��ein��0�

+��N��→��0�+��j� �11�.
The method of the inverse QST, furthermore, can be used

to entangle arbitrary spins j ,k indirectly by acting at spins
N−1 and N only. This can be done by designing a pulse
analogously to Eq. �6�, and the required pulse sequence is
very similar to the inverse QST. For this purpose, we set the
input state as an entangled state of a pair of spins j and k
represented as
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FIG. 1. �Color online� The numerical simulation �solid� and ex-
perimental results �data marked by 
� for the probability pn of the
QST as a function of iterations in the four spin system used in
experiments �see text for dipolar couplings� for transferring a state
from spins 1 to 4 �a� and entangling the two spins �b� when �
=2.1 ms. In �b�, pn can be approximated as the observable coher-
ence Cn �dot dashed, see Eq. �19�� where �Cn− pn��0.017 5 when
n�2. The experimental data can be fitted as 0.65pn and 0.77Cn

shown as the dashed curves, respectively.
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�	 jk� = ��j� + �k��/
2. �15�

Iteration n can still be represented as Eq. �6�, where Qj,n is
rewritten as Qj,k,n, noting that it depends on the input state.
W�cn ,dn� is obtained in a similar way by changing p0
= ��N �	 jk��2 and �	0�= �	 jk�. After a large number of itera-
tions, we obtain

Tj,k,n�	 jk� → �N� , �16�

where Tj,k,n=Qj,k,n . . .Qj,k,2Qj,k,1. From Eq. �16� one can en-
tangle spins j and k with high fidelity by applying Tj,k,n

−1 on
�N�, represented as

Tj,k,n
−1 �N� → �	 jk� . �17�

The fidelity for generating �	 jk� is also represented by Eq.
�13� through replacing Tj,n

−1 by Tj,k,n
−1 , and �j� by �	 jk�. The

numerical simulation for pn is illustrated as Fig. 1�b�.

III. EXPERIMENTAL RESULTS

We use the four protons in orthochlorobromobenzene
�C6H4ClBr� dissolved in the liquid-crystal solvent ZLI-1132
as four qubits to implement the experiments. The Hamil-
tonian is represented as

HNMR = − ��
i=1

4

�i�z
i +

1

2
� �

k=2,jk

4

Djk�2�z
j�z

k − �x
j�x

k − �y
j�y

k� .

�18�

Through fitting the spectra �12� obtained by Cory48 �13� and
one-dimensional MREV-8 pulse sequences and referring to
the spectra of molecules with similar structures �8,14�, we
measure �1=106.2, �2=−187.7, �3=−58.6, and �4=91.3
with respect to the transmitter frequency, D12=−1233.7,
D13=−149.4, D14=−93.2, D23=−716.0, D24=−236.6, D34
=−1677.5 Hz, and the effective transverse relaxation times
�T2

�� as 91, 87, 88, and 82 ms �15�. The NMR spectrum
obtained by Cory48 from the thermal equilibrium state �th
=�i=1

4 �z
i is shown in Fig. 2�a�.

All experiments start with the deviation density matrix
�ini= �0000��0000�− �1111��1111�, which can be prepared by
the double-quantum coherence Hamiltonian �16� Hd

= 1
2��k=2,jk

4 Djk
d ��x

j�x
k−�y

j�y
k� in a molecule with C2v symme-

try �17�. However, we choose to generate the effective Hd
using a gradient ascent pulse engineering pulse �18�. Using
temporal averaging, we prepare �ini by summing the three
states Ud�thUd

†, Ud
†�thUd, 2�th, where Ud=e−itdHd by choosing

td=8.00 /D12
d �17�. In the numerical simulation, we prepare

�ini with fidelity of 99.97%. Figure 2�b� shows the NMR
spectrum obtained by a collective � /2 pulse in the experi-
ment when the system lies in �ini. The NMR peaks marked
by “+” indicate the single-quantum transitions between mag-
netic quantum numbers 2 and 1.

We demonstrate the QST by transferring �0 from spins 1
to 4 by choosing �0=�x, �y, �z, and I, respectively. Because
Tj,n is spin preserving, the transitions marked by + in Fig.
2�b� can represent the QST starting with the input state
�0�000��000�. We therefore can ignore �1111��1111� in �ini

and omit the negative frequency spectral region.
The input state is prepared by applying an operation Uini

to �ini. With increasing n, T1,n transforms �0�000��000� to
�000��000�� asymptotically, where �=ein��z/2�0e−in��z/2. In
experiments, we removed the phase factor between � and �0
by phase correction. For a fixed n, we implement the unitary
T1,nUini using one GRAPE pulse. The experimental results of
the QST after 100 iterations for the various input states are
shown as Figs. 3�a�–3�d�, respectively.

−20002000 0

Frequency (Hz)

a

b +

+ + +

FIG. 2. �Color online� NMR spectra �thick� obtained by Cory48
pulse sequence from the �a� thermal equilibrium state and by a �b�
collective � /2 pulse from �ini. The thin spectra show the results by
simulation. The plot’s vertical axes have arbitrary units. The NMR
peaks marked by + indicate the single-quantum transitions between
magnetic quantum numbers 2 and 1.
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FIG. 3. �Color online� �a�–�d� NMR spectra for implementing
the QST from spins 1 to 4 after 100 iterations, when the input states
are chosen as �x�000��000�, �y�000��000�, �z�000��000�, and

I�000��000�, respectively, where the readout operation ei��y
4/4 is ap-

plied to obtain observable signals in �c� or �d�. The plot’s vertical
axes have the same scale.
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Exploiting the transformation between the computational
basis and energy eigenbasis and ignoring the difference of T2

�

of the four protons, we can approximatively obtain Ak,n in
Eq. �7� through measuring the amplitudes of the peaks
marked by + in Figs. 3�a�–3�c� by choosing the signals in
Fig. 2�b� as the reference. Therefore, we obtain pn= �A4,n�2.
For the input states �x�000��000�, �y�000��000�, and
�z�000��000�, p100 is measured as 0.654�0.046,
0.660�0.052, and 0.693�0.037, respectively. All other
�Ak,100�2 are below 0.02.

To observe pn increasing with n, we also implement the
QST by choosing various n when the input state is
�x�000��000�. The measured pn is shown in Fig. 1�a� as the
data marked by “
,” which can be fitted as 0.65pn.

Next we implement the selective excitation or quantum
data bus for spin 2. The reverse QST starts with the input

state �000��000��x obtained by applying Ry
4=e−i�y

4
�/4 to �ini.

When n=100, T2,n
−1 transforms �000��000��x to �0��0���00��00�

with a probability close to 1, where �=e−in��z/2�xe
in��z/2. The

experimental results are shown in Fig. 4. The fidelity of ex-
citation is measured as 0.744�0.036.

We choose �	14�= ��1�+ �4�� /
2 as the target to demon-
strate the entangling operation in spins 1 and 4. To measure
the fidelity, we rewrite Eq. �13� as pn= ��0000 ��n��2 �19� by
replacing �j� by �	14�. Here ��n�= P†T1,4,n

−1 �4� where P de-
notes the operation to prepare �	14� from �0000� �e.g., see
�20��. When pn is close to 1, we can obtain pn approximately

by applying a readout operation ei��y
1/4 to ��n�. Noting that

�1111��1111� in �ini does not contribute observable signals
for measuring pn, we approximate pn as the coherence

Cn = �Tr�2�0000��1000��n�� , �19�

where �n=Utot,n�iniUtot,n
† with Utot,n=ei��y

1/4P†T1,4,n
−1 ei��x

4/2.
The simulated and measured Cn is shown in Fig. 1�b�. The

experimental data can be fitted as 0.77Cn. Figure 5 illustrates
the NMR spectra when n=8.

The operations Ud, Ud
†, Ry

4, T1,nUini, T2,n
−1 Ry

4, and Utot,n are
experimentally implemented using the GRAPE pulses with fi-
delities in theory larger than 0.99, respectively. The pulse
lengths are 10 ms for Ud and Ud

†, 20 ms for the other pulses.
The experimental errors could mainly result from the inho-
mogeneities of the magnetic field, imperfect implementation
of GRAPE pulses, and decoherence. In order to estimate the
quality of the experimental spectra, we also list the ideal
ones in simulation shown as the red thin curves in Figs. 2–5.

IV. CONCLUSION

We have given an NMR implementation for various im-
portant tasks of quantum control that, in principle, can be
achieved indirectly by controlling the end of a spin chain.
The dipolar couplings naturally existing in the liquid-crystal
NMR system are directly exploited for the QST. The experi-
mental results demonstrate the successful control of the spin
system with dipolar couplings by the GRAPE pulses. First, we
implemented the transfer of an arbitrary quantum state. Sec-
ond, by implementing the reverse QST, we have created a
full quantum data bus which is controlled by the two-qubit
end gates. Finally, as another application of the reverse QST,
we proposed and demonstrated a different method to imple-
ment an entangling operation.
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