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Abstract. Identifying the many-body Hamiltonian of a large quantum system
is essential in understanding many physical phenomena, yet extremely difficult
in general. We show that coupling strengths in networks of spin-1/2 particles can
be estimated indirectly through a gateway, provided that the coupling topology
is known. The criterion for the feasibility of identification is described only
by a simple topological property concerning how the gateway is connected to
the entire network. We also address the issues of process efficiency and how
degeneracies of the system can be lifted.
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1. Introduction

When studying any quantum mechanical system, precise knowledge of its nature is crucially
important. In quantum mechanics, any observable phenomena can be explained rigorously, in
principle, if we have complete knowledge of the system. More specifically, we need to identify
the states of the system and the Hamiltonian that governs their dynamics.

The full information acquisition is, however, in general very hard from an operational
as well as from a computational and mathematical points of view, even for small
systems [1]–[5]. For large many-body systems spectroscopy reveals only little information
about the Hamiltonian, and generally local addressing of its components is required in order to
obtain details about the system. Instead, we may access and manipulate the system by operating
individual spins in a small subsystem, as a gateway. Such situations, in which only a subsystem
is accessible, arise for example in networks of ‘dark spins’ in diamond and solid state quantum
devices [6]–[8].

Yet, a common dilemma is that such a gateway not only allows us to interact with
the system but also introduces noise to it (see figure 1). From a Hamiltonian identification
perspective, it is therefore crucial to find minimal gateways that suffice to obtain full knowledge
on the system. While this is impossible to answer in general, bounds can be derived if the
topology of the system is known. In this context, some positive results have been presented
for the case of one-dimensional (1D) chains of spin-1/2 particles [9, 10]. That is, the coupling
strengths between neighbouring spins can be estimated by accessing only the spin at the end
of the chain. Since schemes to initialize the state of spins as | ↓↓ . . . ↓〉 by operating on the
chain end are known [11], such identification of the Hamiltonian is sufficient to determine the
dynamics of the system completely. These results are of interest in their own right, yet they were
limited to the simplest of networks, i.e. 1D chains.

Here, we present an estimation scheme for general graphs of spins (for an example see
figure 2). As well as the details of the Hamiltonian identification procedure, we give a precise
condition for the ‘gateway’ (accessible region) that suffices to make the identification possible.
For the important cases of finite 2D/3D lattices such a gateway is given by tone edge or one
face of the lattice, respectively. This is remarkable because the ratio between the gateway size
and the unknown parameters is higher than in the 1D case. We will also show that while in
the 1D case the decay properties of the state in the gateway can identify the Hamiltonian, in
the 2D case we need its decay properties as well as the transport properties within the gateway.
Interestingly, our general condition turns out to coincide with the criterion for the controllability
of spin networks [12].

We will study a network with Heisenberg-type interaction. This allows us to describe an
estimation procedure that is numerically stable, mathematically simple and efficient (given that
we consider arbitrary and large systems). What we attempt to estimate are the coupling strengths
between interacting spins and the strengths of local magnetic fields. Such inhomogeneous fields
are very common in experiments, and can cause much trouble through dephasing. Hence it is
worth estimating them (such analysis was lacking in [9, 10]). Another interesting new aspect
we introduce in this paper is how to lift degeneracies on the system by applying extra fields on
the gateway. We show that this is always possible, a result which might be relevant beyond the
scope of estimation.
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Figure 1. In classical mechanics, restricted estimation becomes important when
access to the whole system is not possible. In quantum mechanics, restricted
estimation is useful even if in principle the whole system could be accessed.
This is because the control required for the estimation opens up a gateway to the
classical world, introducing noise.

Figure 2. All coupling strengths (black lines) and local magnetic fields (blue
background) of a 2D network G = (V, E) of spins (white circles) can be
estimated indirectly by quantum state tomography on a gateway C (enclosed by
the dashed red line). The coupling strengths and field intensities are represented
by the width of lines and the depth of the background colour, respectively.

2. Setup and main result

Suppose that we have a network of spin-1/2 particles, such as the one in figure 2. We assume
that we have knowledge of the graph G = (V, E), which describes the network: nodes V of the
graph correspond to spins and edges E connect spins that are interacting with each other. The
pairwise interaction between spins is Heisenberg type with a known anisotropy 1, and there is
an inhomogeneous magnetic field applied on the spins. Then, the Hamiltonian we consider has
the form

H =

∑
(m,n)∈E

cmn

(
σ x

mσ x
n + σ y

mσ y
n + 1σ z

mσ z
n

)
+

∑
n∈V

bnσ
z
n ,

where cmn represent the unknown coupling strengths between spins m and n, and bn the un-
known intensity of the magnetic field at n, respectively. Here, we also assume cmn < 0 for all m
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Figure 3. An example of graph infection. (a) Initially, three coloured nodes in the
region C are ‘infected’. As the node ν is the only one uninfected node among the
neighbours of µ, it becomes infected as in (b). (c) Similarly, ν ′ becomes infected
by µ′. (d) Eventually all nodes will be infected one by one.

and n, i.e. ferromagnetic interactions, though the setup is readily generalized to other cases. In
the above, σ i

n(i = x, y, z) are the standard Pauli matrices. The purpose of the following will
be to estimate cmn and bn over the entire set V of spins by only accessing a small gateway,
described by a subset C ⊂ V (see figure 2). For almost all practical cases of the Hamiltonian
identification problem, analysing the dynamics in the single excitation sector H1 turns out to be
sufficient. We will thus denote a single excitation state as |n〉 ∈H1 when the spin n ∈ V is in
the state | ↑〉 and all others are in | ↓〉 for clarity. The state with all spins in | ↓〉 will be written
as |0〉.

Naturally, the challenge here is to obtain information about the inaccessible spins
C̄ ≡ V \C , which could be the large majority of the set. The question is however how small
can C be such that we can (in principle) still learn all the couplings and fields in V ?

This can be answered by using a graph property, known as ‘infecting,’ of a subset C ⊂ V
of the nodes [12]–[14]. In many-body quantum mechanics this property has many interesting
consequences on the controllability and on relaxation properties of the system [12, 13]. The
infection process can be described as follows. Suppose that a subset C of nodes of the graph
is ‘infected’ with some property. This property then spreads, infecting other nodes, by the
following rule: an infected node infects a ‘healthy’ (uninfected) neighbour if and only if it
is its unique healthy neighbour. If eventually all nodes are infected, the initial set C is called
‘infecting’. The graphs in figures 2 and 3 are examples in which C infects V (we encourage the
reader to confirm this by colouring the nodes in region C and applying the above propagation
rule—this will make the following proof much more intuitive). With this definition, the main
result of the paper is the following: if C infects V, then all cnm and bn can be obtained by
acting on C only. Thus, we provide an upper bound on the smallest number of spins we need
to access in order to perform Hamiltonian tomography, i.e. given by the cardinality |C | of the
smallest set C that infects V . To prove the above statement, let us assume that C infects V
and that all eigenvalues E j ( j = 1, . . . , |V |) in H1 are known. Furthermore, assume that for all
orthonormal eigenstates |E j〉 in H1 the coefficients 〈n|E j〉 are known for all n ∈ C. We first
show that these assumptions lead to full Hamiltonian identification, and then show how the data
for the assumptions can be obtained by simple tomography experiments.

We observe that the coupling strengths between spins within C are easily obtained because
of the relation

cmn = 〈m|H |n〉 =

∑
Ek〈m|Ek〉〈Ek|n〉, (1)
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Figure 4. An example of graphs for non-nearest neighbour interactions. The
graph for next-nearest interaction (left) can be infected by C as it is easily seen
after deforming (right).

where we defined cmm ≡ 〈m|H |m〉 for the diagonal terms. Since C infects V there is a µ ∈ C
and a ν ∈ C̄ ≡ V \C such that ν is the only neighbour of µ outside of C, i.e.

〈n|H |µ〉 = 0 ∀n ∈ C̄\{ν}. (2)

For an example see figure 3. Using the eigenequation, we obtain for all j

E j |E j〉 = H |E j〉 =

∑
m∈C

〈m|E j〉H |m〉 +
∑

n∈V \C

〈n|E j〉H |n〉.

Multiplying with 〈µ| and using equation (2), we obtain

E j〈µ|E j〉 −

∑
m∈C

cµm〈m|E j〉 = cµν〈ν|E j〉.

By assumption and by equation (1), the left-hand side (LHS) is known for all j. This means that
up to an unknown constant cµν < 0 the expansion of |ν〉 in the basis |E j〉 is known. Through
normalization of |ν〉, we then obtain cµν and hence 〈ν|E j〉. Redefining C ⇒ C ∪ {µ}, it follows
by induction that all cmn are known. Finally, we have

cmm = 〈m|H |m〉 = E0 − 1
∑

n∈N (m)

cmn + 2bm, (3)

where N (m) stands for the (directly connected) neighbourhood of m, and

E0 =
1

2
1

∑
(m,n)∈V

cmn −

∑
n∈V

bn (4)

is the energy of the ground state |0〉. Summing equation (3) over all m ∈ V and using
equation (4), we can have the value of

∑
n∈V bn, thus that of E0 as well, since all other parameters

are already known. Then we obtain the strength of each local magnetic field, bm , from
equation (3).

An interesting application of the above scheme is a 1D spin chain with non-nearest
neighbour interactions [15]. If spins interact with the next-nearest neighbours in addition to
the nearest ones, the whole graph can be infected by setting the two end spins as C , as shown
in figure 4. Similarly, if spins interact with up to kth nearest neighbours, all coupling strengths
can be estimated by including the k end spins in C .
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3. Tomography

Here, we describe how to obtain the information that is assumed to be known in the above
proof. That is, we need to know the energy eigenvalues E j in H1 and the coefficients 〈n|E j〉

for all n ∈ C by controlling/measuring the spins in C . Let us consider the case where the
eigenvalues in H1 are non-degenerate. The general case is discussed in section 4. To start the
estimation, we initialize the system as 1

√
2
(|0〉 + |1〉). As discussed in [11], this can be done

efficiently by acting on the region C only. Then, we perform quantum state tomography on the
spin n ∈ C after a time lapse t . By repeating the preparation and tomographic measurements
on spin n for various times t , we obtain the following matrix elements of the time evolution
operator as a function of t :

eiE0t
〈n|U (t)|1〉 =

∑
j

〈n|E j〉〈E j |1〉e−i(E j −E0)t . (5)

If we take n = 1 and Fourier transform equation (5) we can get information on the energy
spectrum of the Hamiltonian in H1. Up to an unknown constant E0, which will turn out to be
irrelevant later, we learn the values of all E j corresponding to eigenstates that have nonzero
overlap with |1〉. We also obtain the values of |〈1|E j〉|

2 for all eigenstates. Due to the freedom
in determining the overall phase of a state, we can assume that the coefficients for |1〉 of all |E j〉

are real and positive, 〈1|E j〉 > 0. Hence observing the decay/revival of an excitation at n = 1,
we can already learn some E j and all the 〈1|E j〉. This is analogous to the 1D case, where this
knowledge would suffice to obtain the full Hamiltonian [9].

In arbitrary graphs, however, this is no longer the case. In fact, even if we observed the
decay/revival at each n ∈ C , we would only obtain the |〈n|E j〉|

2, but could not determine
their phase freely anymore. To obtain the required knowledge about E j and 〈n|E j〉 for the
Hamiltonian identification, we need to observe the transport within C. This is represented by
Fourier transforming equation (5) for n 6= 1, allowing us to extract the coefficient 〈n|E j〉 cor-
rectly, including their relative phase with respect to 〈1|E j〉. We also obtain those eigenvalues E j ,
for which 〈n|E j〉 6= 0. Continuing this analysis over all elements of C, we learn all eigenvalues
which have overlap with some n ∈ C. Could there be eigenstates in H1 that have no overlap
with any n ∈ C? The answer is no, as it is shown in [13]. Therefore, we can conclude that all
eigenvalues in the H1 can be obtained. Although tomography cannot determine the extra phase
shift E0, it does not affect the estimation procedure (it is straightforward to check that it cancels
out in the above estimation).

4. Efficiency and degeneracy

The efficiency analysis of the Hamiltonian tomography is roughly the same as in [9]. Due to
the conservation of excitations, the sampling can be restricted to an effective |V |-dimensional
Hilbert space, and the speed is some polynomial in |V |, provided localization is negligible.
Also decoherence could lower the accuracy of the estimation practically, but our scheme is
rather stable. That is, since the couplings are obtained from a linear system of equations, errors
in the tomography or effects of noise degrade the estimation only linearly.

In the above, the spectrum in H1 was assumed to be non-degenerate. While this is always
true in the 1D case, [17], the assumption may break down in general spin networks. Of course
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‘exact degeneracy’ is highly unlikely; however, approximate degeneracy could make the scheme
less efficient.

Here, we suggest to lift degeneracies by applying extra fields on the gateway C. Since C is
only a small subset of the graph, it is not obvious at all that this is possible. We prove a perhaps
startling consequence of the infection property: there always exists an operator BC on C that
lifts all degeneracies of H in the single excitation subspace. In the following, we demonstrate
the existence of such a BC by explicitly constructing it, assuming the full knowledge about H .
Without the full knowledge of H (as is the case in the estimation scenario), we could only guess
a BC and have it right probabilistically. Nevertheless, as it is clear from the discussion below,
the parameter space for the degeneracy-lifting BC has a finite volume, thus even by choosing BC

randomly the probability of lifiting the degeneracies converges exponentially fast to one. Once
all degeneracies are lifted, we can estimate the full Hamiltonian H + λBC and subtracting the
known part λBC completes our identification task.

Let us denote the eigenvalues of H as Ek and the eigenstates as |Ed
k 〉, where d =

1, . . . , D(k) is a label for the D(k)-fold degenerate states. Let us first concentrate on one specific
eigenspace {|Ed

k 〉, d = 1, . . . , D(k)} corresponding to an eigenvalue Ek. Since the eigenstates
considered here are in the single excitation subspace H1, we can always decompose them
as |Ed

k 〉CC̄ = |φd
k 〉C ⊗ |0〉C̄ + |0〉C ⊗ |ψd

k 〉C̄ , where the unnormalized states |φd
k 〉C and |ψd

k 〉C̄ are
in the single excitation subspace of C and C̄, respectively. As shown in [13] we know that
|φd

k 〉C 6= 0 ∀d, because if there was an eigenstate in the form of |0〉C ⊗ |ψd
k 〉C̄ then applying H

repeatedly on it will necessarily introduce an excitation to the region C, in contradiction to being
an eigenstate. Furthermore, the set {|φd

k 〉C , d = 1, . . . , D(k)} must be linearly independent: for,
if it was linearly dependent, there would be complex numbers αkd such that

∑
d αkd |φ

d
k 〉C = 0,

and because the eigenstates are degenerate,
∑

d αkd |Ed
k 〉CC̄ =

∑
d αkd |0〉C ⊗ |ψd

k 〉C̄ would be
an eigenstate with no excitation in C, again contradicting [13]. This leads to an interesting
observation that the degeneracy of each eigenspace can be maximally |C |−fold, because there
can be only |C | linearly independent vectors at most in the single excitation sector on C .
Thus, the minimal infecting set of a graph, a topological property, is related to some bounds
on possible degeneracies, a somewhat algebraic property of the Hamiltonian.

Now we consider a Hermitian perturbation λk BkC ⊗ 1C̄ (to be specified later) on the system
and compute the shift in energies. We shall see that it suffices to assume that BkC |0〉C = 0. In
the first order, we need to compute the eigenvalues of the perturbation matrix CC̄〈Ed

k |BkC ⊗

1C̄ |Ed ′

k 〉CC̄ = C〈φ
d
k |BkC |φd ′

k 〉C . Can we find a BkC such that all eigenvalues differ? For that,
note that {|φd

k 〉C̄} are linearly independent, which means that there is a similarity transform Sk

(not necessarily unitary, but invertible) such that the vectors |ξ d
k 〉C ≡ S−1

k |φd
k 〉C are orthonormal.

The perturbation matrix can then be written as C〈ξ d
k |S

†
k BkC Sk|ξ

d ′

k 〉C . If we set S†
k BkC Sk =∑

d εkd |ξ
d
k 〉C〈ξ d

k | we can see that the Hermitian operator BkC ≡
∑

d εkd(S†
k )

−1
|ξ d

k 〉C〈ξ d
k |S

−1
k gives

us energy shifts εkd . Therefore, as long as we choose the εkd mutually different from each
other, the degeneracy in this eigenspace is lifted by BkC . This happens for an arbitrarily
small perturbation λk. We choose λk such that the lifting is large, but in a way such
that no new degeneracies are created, i.e. ||λk BkC || 6= 1Ei j , where 1Ei j = Ei − E j are the
energy gaps of H. Note that by construction BkC conserves the number of excitations in
the system. Therefore, we can now consider the perturbed Hamiltonian H ′

= H + λk BkC and
find its remaining degenerate eigenspaces in H1. Following the above procedure, we pick one
degenerate eigenspace and find an operator Bk′C . We continue to add perturbations, until a sum
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Figure 5. Numerical example for lifting degeneracies on a 3 × 3 lattice with
homogeneous coupling strengths. A homogeneous magnetic field λBC is applied
to C , i.e. one lattice edge consisting of three spins, where BC is of the same order
of magnitude as the lattice coupling strength. Without field, there are two singlet,
two doublet and one triplet levels. For most field strengths λ > 0 all nine levels
are clearly visible.

of perturbations BC =
∑

k BkC lifts all degeneracies inH1. By perturbation theory a ball of finite
volume around BC has the same property. In practice, we expect that almost all operators will
lift the degeneracy, with a good candidate being a simple homogeneous magnetic field on C.

This is confirmed by numerical simulations (see figure 5 for an example).

5. Conclusions

We have shown how a small gateway can efficiently be used to estimate a many-body
Heisenberg Hamiltonian, given that the topology of the system is known. It is surprising to
see how a simple topological property of a network of coupled spins—infection—implies so
many far-reaching properties, from control to relaxation, from the structure of eigenstates to
possible degeneracies, and, as we have shown here, for Hamiltonian identification.

Our results can be seen as an example of inverse problems in quantum setting. Such
problems have been actively studied in plenty of fields in science and engineering. It would be
intriguing to explore a possible link between ours and similar problems in classical settings [17],
such as 2D graphs of masses connected with springs. Further applications may include, for
example, the indirect probing of open system dynamics [16] and Anderson localization.
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