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In this addendum to our paper [D. Burgarth and V. Giovannetti, Phys. Rev. Lett. 99, 100501 (2007)] we prove
that during the transformation that allows one to enforce control by relaxation on a quantum system, the ancillary
memory can be kept at a finite size, independently from the fidelity one wants to achieve. The result is obtained by
introducing the quantum analog of defragmentation algorithms which are employed for efficiently reorganizing
classical information in conventional hard disks.

DOI: 10.1103/PhysRevA.82.024302 PACS number(s): 03.67.Hk, 05.60.Gg

In recent years, increasing attention has been devoted to
developing schemes that allow one to achieve global control
on a large many-body quantum system V = C ∪ C by only
having direct access to a relatively small subpart C [1–11].
The majority of results obtained so far have been derived
within the general framework of an “algebraic” approach to
control theory where the allowed operations are parametrized
by specifying which (local) components of the system Hamil-
tonian can be manipulated via proper choices of classical
pulses (e.g., see Ref. [12]). An independent approach was
recently proposed by us in Refs. [7,8], introducing the notion
of local controllability of quantum systems via “relaxation.”
In this scheme a method of controlling V = C ∪ C by acting
on C and on an external memory system M was suggested.
This is essentially achieved by transferring the states of V

into M through a sequence of iterative operational steps (see
Fig. 1) which induces an effective relaxation of V into the
memory degree of freedom. The states are then controlled in M

and, by using the inverted sequence of steps, transferred back
to V .

Such a method can be important in inhomogeneous sce-
narios, where some parts (e.g., M) are easier to control
than others (e.g., V ). It also allows for an easy-to-check
criterion to determine whether a given system V is con-
trollable, which can be applied to large systems [7,8] and
which was subsequently generalized to the algebraic control
scenario [6]. Finally, compared to algebraic control, the
scheme proposed in Refs. [7,8] has the advantage that the
control protocol is constructive and follows a clear physical
intuition.

The main drawback of the controllability by relaxation
approach stems from the fact that it cannot reduce the size
of the controlled system (in contrast to algebraic control).
Indeed to be able to transfer arbitrary states from V to the
ancillary memory M the latter must be at least as large as
the former (i.e., dim M � dimV ). Even more problematic is
the fact that up till now no upper bounds were known on
the minimal size of M which is needed to accomplish the
control. In this paper we fix this problem by showing that
M can be kept at a finite size, which is maximally twice as
large as V . This is a major improvement to [7,8], where M

was arbitrarily large. The result is derived by introducing the
quantum analog of defragmentation algorithms. In computer
science, defragmentation is a process that allows one to reduce

the amount of fragmentation in file systems. This is obtained
by reorganizing the contents of the disk to store the pieces
of each file close together and contiguously while creating
larger regions of free space. Here we use a similar idea to
(coherently) compress quantum information in the quantum
memory M during its transfer from V . This results in a more
efficient storing of messages, which saves valuable memory
space for the subsequent data-processing transformations.

Referring to Refs. [7,8] for details, we can summarize the
scheme of control by relaxation by saying that it consists of a
downloading stage in which C is iteratively coupled to a fixed,
finite-dimensional subspace (say a qubit) M1 of M that is
reprepared into a fiduciary state |0〉M1 after each iteration. The
�th step of this process is described by a unitary downloading
operation W�, which for large � moves arbitrary states |ψ〉CC

of the system into the memory, that is,

W�|ψ〉CC ⊗ |0〉M ≈ |0〉CC ⊗ |�(ψ)〉M, (1)

with |�(ψ)〉M being a linear function of the input state |ψ〉CC .
They are then controlled in M and moved back to the system
in an uploading stage that reverses the process (1). It is
worth stressing that the transformations W� are known and
are independent from the input state of the system.

This introduction seems to suggest that indeed M = CC is
large enough to contain images of all possible states. This is not
the case, however, as states are only transferred asymptotically
and for intermediate � the downloading operator W� is
generating entanglement between CC and M . However, by
introducing an orthonormal basis {|k〉CC} of CC, a generic
state |ψ〉 = ∑

k αk|k〉CC after � steps can be written as

W�

∑

k

αk|k〉CC ⊗ |0〉M =
∑

kk′
αkω

(�)
kk′ |k′〉CC ⊗ ∣∣ξ (�)

kk′
〉
M

, (2)

with |ξ (�)
kk′ 〉M being a set of (dim CC)2 not-necessarily orthog-

onal vectors of M . Independently of the value of �, the states
{|ξ (�)

kk′ 〉M}kk′ span a space of dimension smaller than or equal
to (dim CC)2: They can thus be fitted into a subsystem M0

of M which is twice as large as CC. Therefore, by including
an extra defragmentation step into the protocol of Ref. [7],
the memory can be kept at a finite size. Explicitely, we can
write M = M0 ⊗ M1. Then the defragmentation consists of
operating on the memory with a unitary transformation which
maps the |ξ (�)

kk′ 〉M into states of the form |ξ̃ (�)
kk′ 〉M0 ⊗ |0〉M1 with
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CC̄ M ≤ (CC̄)2 + C

FIG. 1. Schematics of the control by relaxation scheme. The
control on the large system V = C ∪ C is exerted through an auxiliary
(fully controllable) quantum memory M , which is directly coupled
to the subsystem C.

|0〉M1 being the fiduciary state of the downloading stage, while
the |ξ̃ (�)

kk′ 〉M0 are instead characterized by having the same

mutual scalar product as the |ξ (�)
kk′ 〉M , that is,

M0

〈
ξ̃

(�)
k′′k′′′

∣∣ξ̃ (�)
kk′

〉
M0

= M

〈
ξ

(�)
k′′k′′′

∣∣ξ (�)
kk′

〉
M

, (3)

for all k,k′,k′′, and k′′′. The whole procedure can be iterated
easily by observing that at the (� + 1)th step the state of the
system can be still described as in Eq. (2) for a proper choice
of the vectors |ξ (�+1)

kk′ 〉M .
It is worth noticing that the defragmentation procedure

presented here also finds useful application in the context
of spin network communication [13]. Indeed generalizing
the result of the end-gate protocol of Refs. [5,14] to the
multiexcitation sector case shows that the memory-assisted
transmission scheme of Ref. [15] can be implemented with
finite resources.
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