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Motivated by some recent results of quantum control theory, we discuss the feasibility of local operator control
in arrays of interacting qubits modeled as isotropic Heisenberg spin chains. Acting on one of the end spins, we
aim at finding piecewise-constant control pulses that lead to optimal fidelities for a chosen set of quantum gates.
We analyze the robustness of the obtained results for the gate fidelities to random errors in the control fields,
finding that with faster switching between piecewise-constant controls the system is less susceptible to these
errors. The observed behavior falls into a generic class of physical phenomena that are related to a competition
between resonance- and relaxation-type behavior, exemplified by motional narrowing in NMR experiments.
Finally, we discuss how the obtained optimal gate fidelities are altered when the corresponding rapidly varying
piecewise-constant control fields are smoothened through spectral filtering.

DOI: 10.1103/PhysRevA.82.052333 PACS number(s): 03.67.Hk, 03.67.Lx, 75.10.Pq

I. INTRODUCTION

The ability to manipulate the state and/or the dynamics of
complex quantum systems is one of the main objectives of
quantum information science [1]. In this context, quantum
control [2] has been successfully utilized to address two
general classes of issues. In state-selective control, the main
question is how to steer a physical system from an initial
reference state to a desired final state. In operator (state-
independent) control, one seeks to implement a predetermined
unitary transformation (target quantum gate) irrespective of
the initial state of the system, which is often unknown. The
rigorous mathematical foundations of the field, based on
the notion of controllability and framed using Lie-algebraic
concepts, have long been known [3]. Recent quantum-control
studies have been focused around two sets of questions.

First, even when a system is fully controllable in principle,
it is of interest to know how to control it most efficiently,
taking into account various practical constraints. Issues of
this type are not likely to yield universal answers, except
for well-understood general topological features of optimal-
control landscapes [4]. Second, it is desirable to know whether
the system can be partly or fully controlled by acting only on a
small subsystem. This is the main idea behind the local-control
(minimal actuation) approach. Such an approach is applicable
only in interacting systems like coupled spin chains, where the
interaction will effectively turn the local control applied to the
small subsystem to a global one. Uses of such “always-on”
interactions in quantum information processing include, e.g.,
systems which can serve as data buses [5] enabling state [6–9]
and entanglement transfer [10]. Several notable results have
recently been reported [11–14]. For instance, controlling only
one of the end spins of an XXZ-Heisenberg spin chain ensures
full controllability of the chain [12]. In addition, universal
quantum computation with the XY spin chain can be effected
by controlling two spins at the end of the chain [13]. Finally,
a magnetic field in the z direction acting only on a single spin
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suffices for generating perfect entanglement between the ends
of a Heisenberg chain [14].

Apart from being interesting from a conceptual point of
view, the local-control approach also has some practical im-
portance. In addition to its easier implementation, lowering the
number of control actuators reduces the effects of decoherence.
This is of crucial importance in many quantum-computer
architectures, such as superconducting qubits [15,16].

In this article, motivated in part by the rigorous results of
Ref. [12], we consider an implementation of local operator
control in arrays of interacting qubits modeled as spin chains
with isotropic Heisenberg interaction. Acting only on one of
the end spins, we determine piecewise-constant control fields
resulting in the highest possible fidelities for a chosen set of
quantum gates. By treating the amplitudes of these control
fields as optimization variables, we find the optimal fidelities
for chains with up to four spins [17]. While our work focuses
on Heisenberg-coupled spin chains, its results are relevant for
any physical implementation of interacting qubit arrays.

While some elements of the quantum control of spin chains
have already been studied [18]—even in the open-system
scenario [19]—we discuss in detail some aspects that have
so far not received due attention. In particular, we carry out a
sensitivity analysis, i.e., consider the robustness of the obtained
results for the gate fidelities with respect to random errors
in the control fields. Our analysis shows that with faster
switching between piecewise-constant controls, the system
is less susceptible to these errors. Importantly, we explain
this behavior by making a link to a class of phenomena
exemplified by motional narrowing in NMR experiments [20].
To bridge the gap between theoretical considerations and
future experimental implementations of the system under
study, we discuss how the optimal fidelities are affected
when the control pulses are smoothened by eliminating
high-frequency components in their Fourier spectra (spectral
filtering). We establish some qualitative criteria regarding the
performance of such an approach.

The article is organized as follows. To set the stage, in Sec. II
we introduce the system and our control objectives. In Sec. III
we present detailed results for the optimal gate fidelities and
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the corresponding control fields in chains with three and four
spins. We also discuss minimal action times for the control
fields needed to realize certain quantum gates. Section IV is
set aside for the sensitivity analysis, while Sec. V deals with the
effects of spectral filtering of the optimal piecewise-constant
control fields on the resulting gate fidelities. We conclude with
a brief summary of the article and some general remarks in
Sec. VI. Some numerical details are described in the Appendix.

II. SYSTEM AND METHOD

A. Hamiltonian and control objectives

We consider an isotropic Heisenberg spin-1/2 chain of
length Ns , with control fields acting on the first spin only.
It is governed by the total Hamiltonian

H (t) = H0 + Hc(t), (1)

where H0 is the Heisenberg Hamiltonian

H0 = J

Ns−1∑
i=1

(SixSi+1,x + SiySi+1,y + SizSi+1,z), (2)

while

Hc(t) = hx(t)S1x + hy(t)S1y (3)

is the Zeeman-like control Hamiltonian. The time dependence
of the control fields hx(t) and hy(t) will be specified shortly.
For convenience, throughout this article we set h̄ = 1. As a
consequence, all frequencies and control-field amplitudes can
be expressed in units of the coupling strength J , and all times
in units of 1/J .

Regarding the choice of Hamiltonian in Eq. (2) two remarks
are in order. First, while the algebraic result of Ref. [12] is even
applicable to the more general (anisotropic) XXZ-Heisenberg
Hamiltonian, for simplicity we here discuss the isotropic case
only. Second, whether the spin chain is ferromagnetic (J < 0)
or antiferromagnetic (J > 0) is unessential for our present
purposes, because we are concerned with operator control.
For concreteness we assume that J > 0.

In Ref. [12], using the graph infection criterion, it was
shown that controlling the x and y components of the field
acting on the first spin guarantees the complete controllability
of a Heisenberg chain. Moreover, there are unitary transforma-
tions that require even smaller degrees of control, i.e., a control
field only in one direction. For instance, to achieve a spin-flip
operation X on the last spin of the chain, where X is the
Pauli matrix, one needs only a control field in the x direction.
The corresponding dynamical Lie algebra Lx , generated by
{−iH0, − iS1x}, is a subalgebra of su(d). The action of the
Ns-qubit gate XNs

, which flips the last spin in the Heisenberg
chain, is defined by

XNs
:= 1 ⊗ 1 ⊗ · · · ⊗ 1 ⊗ X. (4)

To prove the reachability of XNs
, i.e., that XNs

∈ eLx [where
eLx is the connected Lie subgroup of SU(d) with Lie algebra
Lx], we have to show that there exists an element A of the
dynamical Lie algebra Lx such that XNs

= eA. By calculating
the (repeated) commutators of the operators which generate
the algebra, we find that XNs

is an element of Lx . Since XNs

is both unitary and Hermitian (hence X2
Ns

= 1), the operator
A = −i π

2 XNs
, an element of Lx , has the property that eA =

−iXNs
. This concludes the proof that the x field is sufficient

to reach XNs
. More generally, any unitary U , which is also

Hermitian and for which −iU belongs to the dynamical Lie
algebra L, is an element of the reachable set eL.

In the following, our control objective is the realization of
concrete quantum gates. We discuss gates that require control
fields in the x and y directions, as well as those that entail
only an x control field. Apart from spin-flip (NOT) gates, we
implement entangling two-qubit gates such as

CNOTNs
:= 1 ⊗ 1 ⊗ · · · ⊗ 1 ⊗ CNOT, (5)

which performs the controlled-NOT (CNOT) operation on the
last two qubits in the chain. Another example is square root of
SWAP (

√
SWAP). In operator control, the figure of merit in the

realization of these gates is the gate fidelity

F (t) = 1

d
|tr[U †(t)Utarget]|, (6)

where U (t) is the time-evolution operator of the system at time
t and Utarget stands for the desired quantum gate.

B. Time evolution for piecewise-constant control fields

For many classes of systems, the implementation of com-
plicated time-dependent potentials is rather difficult. In what
follows, we resort to simple piecewise-constant controls. Im-
portantly, we retain the full Hilbert space of the system, unlike
some previous studies that make use of the single-excitation
subspace [21]. This puts constraints on the system size.

Assume that we want to achieve an arbitrary target unitary
at a time t = tf . At t = 0 we apply an x control pulse to the
first spin of the chain with amplitude hx,1 which is constant
throughout the pulse duration T . That is, the system evolves
under the action of the Hamiltonian Hx,1 ≡ H0 + hx,1S1x .
Then we apply a y control pulse with amplitude hy,1 during
the second time interval of length T , whereby the system
is governed by the Hamiltonian Hy,1 ≡ H0 + hy,1S1y . This
sequence of alternate x and y control pulses is repeated until
Nt pulses have been completed at the time tf ≡ NtT . The full
time-evolution operator can be expressed as

U (tf ) = Uy,Nt /2Ux,Nt /2 · · · Uy,1Ux,1, (7)

where Ux,i ≡ e−iHx,iT and Uy,i ≡ e−iHy,iT are the respective
time-evolution operators corresponding to Hx,i and Hy,i . We
evaluate Ux,i and Uy,i using their spectral forms. If the desired
gate is achievable by control of the x field only, it is sufficient
to apply in each time interval an x field of variable amplitude.

III. THREE- AND FOUR-SPIN CHAINS

For the numerical maximization of the fidelity [Eq. (6)]
with respect to the Nt field amplitudes, we use a quasi-Newton
method developed by Broyden, Fletcher, Goldfarb, and Shanno
(BFGS algorithm) [22]. We first choose an initial guess for
the control-field amplitudes. The algorithm then generates
iteratively new sequences of field amplitudes such that at each
iteration point the fidelity is increased and terminates as soon
as the desired accuracy is reached. This procedure ensures
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the convergence to a local maximum but, of course, does not
guarantee the convergence to a globally optimal sequence of
control-field amplitudes.

We perform maximizations with varying number Nt and
durations T of pulses and, hence, different total evolution
times tf = NtT . It is important to stress that, instead of fixing
the pulse durations and maximizing over the field amplitudes,
we could as well keep the amplitudes constant and treat the
pulse durations as free control parameters [11,23]. Yet, we
choose to maximize over the field amplitudes as this approach
allows us to fix easily the total evolution time and estimate its
minimal value needed to implement the desired gate. Although
controllability implies the existence of a control that can enable
realization of a desired quantum gate, it does not provide any
information about the minimal time over which this realization
is possible.

We now give explicit examples of control sequences that
implement all of our chosen gates in chains of three and four
spins, among them entangling gates which are essential for
universal quantum computation. Two optimal sequences of
control pulses implementing the spin-flip gate XNs

for a three-
spin chain (Ns = 3) with x and y pulses are shown in Fig. 1
[the optimal field in Fig. 1(b) corresponds to the minimal
time needed]. For given total time longer than the minimal
time, we can generate piecewise-constant control fields with
fidelities arbitrarily close to unity by increasing the switching
rate. For instance, in the case of implementing the gate X3

by control of the x and y fields, for a total time of tf = 30
and Nt = 10,20,30,40,50,60,70, we respectively obtain F =
0.536,0.764,0.904,0.964,0.992,0.999,1 − 10−8.

We give here an estimate of the minimal time for the realiza-
tion of the gate XNs

(operating on three- and four-spin chains)

0 5 10 15 20 25 30
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0

5

10

hy J
hx J

0 5 10 15
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10

0
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time (units of 1/J)
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FIG. 1. (Color online) Examples of optimal control fields for
the X3 gate, corresponding to (a) Nt = 70 and T = 0.429, with the
resulting optimal fidelity of 1–10−8, and (b) Nt = 70 and T = 0.243
(minimal total time tf = 17), with the resulting optimal fidelity
of 1–10−6.

by controlling the x and y fields. The implementation of this
unitary is possible for Ns = 3 and Ns = 4 within the respective
times tf = 17 and tf = 70, which are lower bounds on the evo-
lution time needed. Unlike in Ref. [13], the size of the dynami-
cal Lie algrebra scales exponentially with the number of qubits.
We therefore expect that the minimal time grows rapidly with
the chain length, and this is a limiting factor for extending this
control procedure.

For each fixed chain length, the minimal times for realizing
the spin-flip and CNOT gates are similar. This result seems
somewhat related to the main conclusion of Ref. [24],
where the CNOT gate is implemented for two qubits coupled
through a variety of interactions (XY , Heisenberg, Ising)
and the total gate time does not depend significantly on
the choice of interaction as long as it is not of pure Ising
type.

Recalling that gates like XNs
require only an x control

field, it is interesting to compare the minimal times for their
implementation depending on the degree of control. We find
that with control of the x field only, the respective gates can
be achieved in approximately the same time as with control of
both the x and y fields.

IV. SENSITIVITY ANALYSIS

A. Preliminary considerations

In the following, we analyze the sensitivity of the fidelity
to random errors in the control fields. To this end, we add
random numbers from a uniform distribution of half-width
δ to the optimal control-field amplitudes. For given δ, we
generate a few hundred sequences of random numbers. In
this way we obtain a large sample of N ∼ 1000 control
fields affected by random noise, for which we recalculate the
fidelity.

In the following, we discuss the behavior of the average
fidelity F̄ = ∑N

i=1 Fi/N , where the Fi are fidelities calculated
for specific realizations of the random field. We note that
the standard deviation σF increases with δ: for δ = 0.01 it
is found to be of the order of 10−5, while for δ = 1.0 we
obtain σF ∼ 0.1. Figures 2 and 3 illustrate how the strength
of the randomness in the optimal field amplitudes affects the
average fidelity. While Fig. 2 shows the results for the gates
X3 and CNOT3 both realized by a sequence of alternate x and
y pulses, Fig. 3 refers to the implementation of X3 by control
of the x field only. We see that F̄ is less susceptible to random
noise for shorter pulse durations T . A physical understanding
of this phenomenon is provided in Sec. IV C.

Starting from optimal fields, the shape of the fidelity decay
with increasing δ is dependent on the number of control
pulses Nt and their length T but not on the pulse amplitudes.
The saturation regime of the average fidelity, indicating full
randomization, sets in for δ >∼ J . Importantly, the saturation of
the fidelity is an intrinsic property of our system. If the system
is completely controllable, the saturation value is universal,
i.e., independent of the concrete shape of the control field,
provided the evolution time tf and the number of pulses Nt

allow the generation of any unitary (illustrated in Fig. 2 for
tf = 30). In contrast, if the dynamical Lie algebra of the
system is a proper subalgebra of su(d), for different evolution
times tf the average fidelity may saturate at different values,
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FIG. 2. (Color online) Average fidelity versus half-width (δ) for
random noise affected optimal fields corresponding to (a) X3 gate,
and (b) CNOT3 gate, both implemented by alternate x and y controls
with a total evolution time tf = 30.

and the saturation may require much stronger random fields
in comparison to the completely controllable system (for
illustration, see Fig. 3).

FIG. 3. (Color online) Average fidelity versus half-width (δ)
for random noise affected optimal fields corresponding to the
implementation of the X3 gate by control of the x field only:
(a) fixed total evolution time (tf = 25) and (b) fixed number of pulses
(Nt = 70). The insets show the same curves for large values of the
parameter δ.

B. Fidelity saturation

To understand the value of the fidelity at saturation, we
invoke the notion of the average gate fidelity [25]. If ε is a trace-
preserving quantum operation pertaining to a quantum system
with d-dimensional Hilbert space and U a certain quantum
gate, the average gate fidelity

F̄ (ε,U ) =
∑d2

j=1 tr[UU
†
j U

†ε(Uj )] + d2

d2(d + 1)
, (8)

where {Uj } is an orthonormal unitary-operator basis of the
complex vector space Cd×d , quantifies how well ε approxi-
mates U . If ε implements the gate U perfectly, this mapping is
given by ε : ρ → ε(ρ) = UρU †, implying that F̄ (ε,U ) = 1;
otherwise, the implementation is noisy and, consequently,
F̄ (ε,U ) < 1. An equivalent form of Eq. (8), which involves
the traceless generators {Tj } of SU(d) (recall that tr(TjTk) =
δjk/2, see, e.g., Ref. [26]), reads [27]:

F̄ (ε,U ) = 1

d
+ 2

d(d + 1)

d2−1∑
j=1

tr[UTjU
†ε(Tj )]. (9)

Equations (8) and (9) are both derived by integrating over the
uniform Haar measure [25], hence requiring a uniform starting
distribution of states and/or operators. Since the quantum
control system governed by the Hamiltonian H (t) = H0 +
hx(t)S1x + hy(t)S1y allows to generate any element of SU(d),
Eq. (9), which is derived explicitly in terms of the SU(d)
group generators, provides a suitable expression for calculating
the average gate fidelity. Assuming that the condition of full
randomization is fulfilled, the action of the quantum operation
ε is given by

ε : ρ → ε(ρ) = 1

d
(10)

for every ρ, that is, an arbitrary (pure) state is mapped onto
a maximally mixed state. We recall that an arbitrary density
matrix can be written as

ρ = 1

d
+

d2−1∑
j=1

ajTj (aj ∈ R). (11)

Since ε(ρ) = 1/d for an arbitrary ρ, by assumption, it follows
by linearity and trace-preserving that ε(Tj ) = 0, for every
j = 1, . . . ,d2 − 1. Hence, the sum in Eq. (9) evaluates to 0,
implying that the average gate fidelity for the mapping in
Eq. (10) is given by

F̄ (ε,U ) = 1

d
. (12)

Note that Eq. (12) is applicable only if the randomness in the
control field amplitudes allows the uniform generation of any
unitary contained in SU(d). For example, in the three-spin
(d = 8) case we expect the average gate fidelity to saturate at
a value of 0.125. This seems to be numerically corroborated
by Fig. 2 and indicates that the system undergoes full
randomization. Also in a four-spin chain (d = 16), provided
that full randomization occurs, the found saturation value
fits well with 1/d = 0.0625 (not illustrated here). It should
be emphasized that this regime of full randomization is of
no relevance for practical realizations of control; however,
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it provides an important consistency check of our numerical
results.

We now address the observation that there exists no univer-
sal saturation value in the case of control by x pulses only; see
Fig. 3. This type of control does not allow universal quantum
computation, i.e., the reachable set of unitary operators is
reduced to a Lie subgroup of SU(d). Since Eq. (8) is only
valid if the reachable set equals the full SU(d), the reasoning
leading to Eq. (12) does not apply to such a subgroup. The
accessible part of the reachable set depends on the evolution
time tf . The control fields of Fig. 3(b) differ in tf which
may result in different accessible parts of the reachable sets
and, consequently, different saturation values. The fact that
in Fig. 3(a), where all fields have the same tf , the average
gate fidelity saturates to the same value corroborates this
explanation.

C. Physical interpretation

As illustrated in Figs. 2 and 3, the average fidelity is less
susceptible to random errors for shorter time intervals T .
This is a special case of a more general physical situation,
namely a competition between resonance- and relaxation-type
behavior [28]. A typical example is the phenomenon of
motional narrowing of the linewidth in NMR experiments [20].

This generic class of phenomena is discussed based on
models for a randomly interrupted deterministic motion [28]:
A system is subjected to a random event (e.g., switching
between magnetic fields B0 and −B0 in NMR) with the
switching rate λ, while in between two random events
it evolves deterministically. On the whole, the system is
then evolving piecewise-deterministically and its qualitative
behavior depends on the relative magnitude of the switching
rate λ and the average (absolute) external field amplitude
(B0 in the example above). Note that with units chosen
such that h̄ = 1 both quantities have the same physical
dimensions.

In our system, for smaller time intervals T the fidelity in
the presence of random errors is indeed closer to the intrinsic
optimal values. Interestingly, λ = T −1 ∼ J in the optimal
cases, while the average (absolute) control-field amplitudes
(that are independent of δ because of the symmetry of the
probability distribution) are of the same order of magnitude.
This explains the dependence of F̄ on δ: the fidelity varies
significantly with δ and saturates at a value around 0.125 in the
case of a completely controllable three-spin chain (0.0625 in
the four-spin chain). In contrast to that, for λ much bigger than
the average control-amplitudes, the fidelities would remain
close to 1 even for large δ.

V. SPECTRAL FILTERING

Our choice of piecewise-constant control fields is, at least
partly, a matter of mathematical convenience. In realistic
implementations of quantum control various constraints may
come into play, the most important ones pertaining to the
complexity of the frequency spectrum of permissible control
fields. In control experiments that make use of an external
magnetic field, for instance, such constraints are related to
bandwidth and slew-rate limitations of the magnetic coils and
drivers [29]. Therefore, it is necessary to subject the optimal

control fields to spectral filtering in order to make contact with
experimental realizations [30].

In what follows, we aim at finding control fields that are
smoother than the optimal piecewise-constant ones, at the same
time retaining high fidelities for our target quantum gates. To
this end, we put constraints on the frequency spectra of the
control fields hj (t) (j = x,y) by means of frequency filter
functions. After operating with a filter function f (ω) on the
Fourier transforms F[hj ] of the optimal fields, we switch back
to the time domain and calculate the filtered control fields h̃j (t)
via inverse Fourier transformation [31]:

h̃j (t) = F−1[f (ω)F[hj ](ω)](t) (j = x,y). (13)

The power spectrum of a typical optimal piecewise-constant
control field is depicted in Fig. 4.

Based on the obtained smoothened control fields, we
calculate the corresponding fidelities for different quantum
gates, using a product-formula approximation (for details, see
the Appendix).

We first consider an ideal low-pass filter which removes fre-
quencies outside the interval [−ω0,ω0]: f (ω) = θ (ω + ω0) −
θ (ω − ω0). Using the general prescription in Eq. (13), we
obtain

h̃x(t) = 1

π

Nt/2∑
n=1

hx,n[a2n−1(t) − a2n−2(t)],

(14)

h̃y(t) = 1

π

Nt/2∑
n=1

hy,n[a2n(t) − a2n−1(t)],

where am(t) ≡ Si[ω0(mT − t)] and Si(x) ≡ ∫ x

0 (sin t/t)dt .
Two examples of such smoothened pulses for the X3 and CNOT3

gates, corresponding to a fidelity of 0.9, are shown in Figs. 5
and 6.

0

5
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h x
ω

2

a

60 40 20 0 20 40 60
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ω J
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b

FIG. 4. (Color online) The power spectra corresponding to the
optimal x (a) and y (b) control fields shown in Fig. 1(a).
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FIG. 5. (Color online) Optimal piecewise-constant control field
which realizes the X3 gate by alternate x (a) and y (b) pulses
compared to the low-pass filtered counterpart (cut-off frequency
ω0/J = π/2) with a fidelity of 0.9. The optimal field corresponds to
Nt = 70 and T = 0.5.

FIG. 6. (Color online) Optimal piecewise-constant control field
which realizes the CNOT3 gate by alternate x (a) and y (b) pulses,
compared to the low-pass filtered counterpart (cut-off frequency
ω0/J = π/2) with a fidelity of 0.9. The optimal field corresponds to
Nt = 70 and T = 1.0.

We also consider Gaussian filters with center frequen-
cies ±ωc: f (ω) = exp[−γ (ω − ωc)2] + exp[−γ (ω + ωc)2],
where γ > 0 determines the Gaussian full width at half
maximum FWHM = 2

√
ln 2/γ . As the power spectra of the

optimal control fields (Fig. 4) show, the dominant frequencies
are located around ω = 0. Hence we choose ωc = 0 and vary
the Gaussian width. We determine the smoothened control
fields by making use of the identity [32]∫ ∞

0
e−p2x2 sin (ax)

x
dx = π

2
erf

(
a

2p

)
, (15)

where erf is the error function. We obtain

h̃x(t) = 1

2

Nt/2∑
n=1

hx,n[b2n−1(t) − b2n−2(t)],

(16)

h̃y(t) = 1

2

Nt/2∑
n=1

hy,n[b2n(t) − b2n−1(t)],

where bm(t) ≡ erf[(mT − t)/(2
√

γ )]. The results obtained
through Gaussian filtering resemble the ideal low-pass ones. In
Fig. 7 we show the optimal sequence of controls realizing the
X3 gate which is now smoothened by applying a Gaussian
filter, retaining, however, a fidelity of 0.9 (compare the
corresponding low-pass filtered pulse in Fig. 5).

The behavior of the fidelity versus the cutoff (low-pass)
or the width (Gaussian filtering) turns out to be dependent
on the strength and pulse shape of the optimal control fields.
Figure 8 illustrates this dependence for ideal low-pass filtered
optimal piecewise-constant fields which implement the X3

FIG. 7. (Color online) Optimal piecewise-constant control field
which realizes the X3 gate by alternate x (a) and y (b) pulses
compared to the Gaussian-filtered counterpart (FWHM = 4.3)
with a fidelity of 0.9. The optimal control field corresponds to
Nt = 70 and T = 0.5 as in the case of low-pass filtering shown in
Fig. 5.
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FIG. 8. (Color online) Fidelity (F ) versus cutoff frequency (ω0)
for different low-pass filtered optimal control fields, all of them
implementing the X3 gate with 70 pulses of durations 1.5 alternately
applied in the x and y directions. (a) The optimal control fields with
average amplitudes indicated and variances ranging between 1.1 and
1.3. (b) The optimal control fields with average amplitudes between
1.9 and 2.1, and variances specified in the legend.

gate. The curves in Fig. 8(a) reveal that the fidelity of
weaker optimal control fields is less affected by the low-pass
filtering. The average absolute field amplitude specified in
the legend has been calculated by averaging the absolute
values of the pulse amplitudes over the total control time
tf . In contrast, the optimal fields corresponding to the fi-
delity curves shown in Fig. 8(b) are characterized by a similar
average absolute amplitude but differ in the variance of the
single absolute pulse amplitudes defined with respect to the
average absolute amplitude. We see that the fidelity decays
faster if the variance is larger, i.e., if the pulse amplitudes of the
field are varying more rapidly. Analyzing in Fig. 8 the cutoffs
at which the fidelity decays, we estimate that frequencies of
up to at least twice the average absolute field amplitude are
required to retain fidelities of 0.9 or larger.

To improve the results from the filtering of optimal control
fields, we tried to iterate the procedure: The filtered fields
are discretized and used as initial guess for the optimization
algorithm. The optimal fields produced by iteration are then
filtered again. In so doing we intended to generate pulses with
high fidelity and even lower frequency than in the “ordinary
filtering” discussed before. However, this approach does not
yield significant improvements.

VI. SUMMARY AND CONCLUSIONS

Recent quantum-control studies have shown that an array
of qubits coupled by nearest-neighbor Heisenberg interactions
can be universally operator controlled by acting only on the
first qubit. Since these results only imply the existence of
a control sequence but do not provide a way to construct
them, we have investigated the feasibility of controlling a
spin chain with Heisenberg interaction by applying a time-
dependent magnetic field to the first spin in the chain. We
have explicitly determined piecewise-constant control fields
for several quantum gates for three- and four-spin chains. By
increasing the number of control pulses within a fixed total
time, fidelities arbitrarily close to 1 can be achieved.

We have also studied the sensitivity of the fidelity to
random errors in the control fields. Our analysis shows that
the average fidelity is less susceptible to random perturbations
if the durations of the single control pulses are reduced. This
behavior is related to a generic class of phenomena exemplified
by motional narrowing in NMR. We have also examined the
intrinsic saturation of the average fidelity, being universal for
complete controllability and occurring if the strength of the
acting random field is large enough. Finally, to make contact
with experimental realizations, we have used spectral filter-
ing to obtain smoothened control pulses retaining fidelities
of 0.9.

Our study can be extended to include more complicated
(e.g., continuously varying) control pulses. Such cases would
require the use of some advanced methods of the optimal
control theory, e.g., the Krotov algorithm, which was shown
to be capable of reaching the quantum speed limit [9].

The statement that universal control of a qubit array is
possible by acting on the first qubit is true in principle for
arbitrarily long arrays. However, the complexity of finding the
control sequence will make such a procedure impractical for
Heisenberg chains. We expect our results to be of practical
significance for relatively small systems of a few qubits,
like those realized experimentally right now. Having fewer
control lines will increase the coherence time of the qubits
that are indirectly controlled by their interaction with the
neighboring qubits. In the present article, we have studied
isotropic Heisenberg interactions, but the procedure also works
for XXZ-type interactions. We therefore expect that our work
will facilitate the control of quantum information devices with
relatively few qubits.
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APPENDIX: FIDELITY CALCULATION
FOR SMOOTHENED CONTROL FIELDS

In order to determine the fidelity corresponding to the
smoothened control fields, we have to calculate the time-
evolution operator Ũ (t) governed by the Hamiltonian H̃ (t) =
H0 + h̃x(t)S1x + h̃y(t)S1y . One possible approach to this
problem is solving the equation of motion for Ũ (t), which can
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be written as a system of d2 coupled first-order differential
equations

i
d

dt
Ũkl(t) =

d∑
j=1

H̃kj (t)Ũjl(t) (k,l = 1, . . . ,d), (A1)

with Ũkl(0) = δkl . While Runge-Kutta-type methods are com-
monly utilized for solving such systems, they are not so
convenient in the case at hand where it is essential to preserve
the unitarity of the time-evolution operator. We therefore de-
termine Ũ (tf ) using a product-formula approximation which
manifestly preserves unitarity and essentially amounts to a
discretization in time.

We divide each time interval of length T into mT steps of
length τ ≡ T/mT ; the total number of steps is denoted by
mf ≡ NtmT . The approximation hinges on the assumption
that during each time step the total Hamiltonian of the

system remains constant, i.e., time independent. In other
words

H̃ (t) = H (k) ≡ H0 + h̃x(kτ )S1x + h̃y(kτ )S1y (A2)

for kτ � t < (k + 1)τ , with k = 0, . . . ,mf − 1. Hence
the evolution of the system during the (k + 1)-th interval
is described by U (k)(τ ) ≡ e−iH (k)τ . Using the semigroup
property of time-evolution operators, Ũ (tf ) can be expressed
as the product

Ũ (tf ) = e−iH
(mf −1)

τ · · · e−iH (1)τ e−iH (0)τ , (A3)

where each of the operators e−iH (k)τ is found using the
spectral representation (recall Sec. II B). This approximation
becomes progressively more accurate with decreasing τ , so
the time-evolution operator can be computed to the required
accuracy. The unitarity of the time-evolution operator is
preserved by construction for an arbitrary number of time
steps, hence the method is unconditionally stable [33].
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