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From Sierpiński carpets to directed graphs

Martin Hülse

Computer Science Department, University of Wales, Aberystwyth,

Aberystwyth, Wales, SY23 3DB, UK

We introduce a simple method for a deterministic generation of di-
rected and connected graphs. The method is inspired by Sierpiński
carpets forming fractal sets. Despite the large size these graphs can
have, the distance between most of the nodes is short, i.e. it scales with
log. We will further show that important network properties, such as
degree distribution, can directly be determined by the initial structure
of this process. These findings lead us to the formulation of general con-
ditions providing a targeted generation of complex networks for initial
structures of arbitrary dimension. Under which circumstances these
graphs can show scale-free and small-world properties is discussed as
well. As a possible application of this method we will finally discuss
the generation of artificial neural networks.

1. Introduction

Artificial neural networks (ANN) represent a method of information
processing which is inspired and motivated by the neural structures
found in biological systems [15]. Therefore it is not surprising, that
ANN are frequently utilized as the basic building blocks for large-scale
models in order to explore the nature of complex information processing
exploited in animals and human beings.

The majority of such neural models are based on connectivity struc-
tures which match with the classical types of ANN, such as, Multi-
layered-perceptrons, Hopfield-networks or Elman-networks [5, 6]. But,
all these network types establish only fully connected networks. The
application of fully connected networks, however, might become cru-
cial with respect to plausibility if they are intended to model biological
systems. Fully connected ANN can hardly represent brain-like neural
structures, if, as only one example, approximately 1011 neurons in the
human brain are coordinated by “only” 1015 synapses.

An alternative, in particular for large-scale neural models, to over-
come fully connected neural networks is the creation of random graph
structures [3]. Nevertheless, random graph models do not well describe
some essential properties of real-world networks [13].

Therefore, we argue, while modeling large-scale neural networks one
must consider alternatives for the projections between neural assem-
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blies; alternatives which go beyond random graphs and fully connected
structures.

Furthermore, it becomes more and more common in the field of Neu-
ral Computation [1] that large-scale neural models are used for robot
control [7, 17]. This leads very often to implementations of ANN on
special hardware devices, like massively parallel processor array VLSI
circuits [2]. Such implementations on autonomous robots might be
motivated as a proof of concepts as well as for targeting specific issues
of embodiment [14]. However, autonomous robots have usually very
limited computational resources, especially memory, compared with
the performance provided by clusters or similar equipment in research
institutions. Hence, for performance reasons it becomes important to
utilize highly connected and robust networks established by as less
connections as possible.

The objective of this paper is to introduce a deterministic method
which enables us to create highly connected and structured neural
systems formed by a number of connection magnitudes smaller than
needed for fully connected networks. The generation process is inspired
by fractal sets. This makes the resulting networks very distinct com-
pared with random graphs and as we will see, they can cover, depending
on the initialization, a wide range between fully connected graphs and
connected graphs organized as rings. Due to the simplicity and deter-
ministic character of the generation process, this method seems to be
a promising alternative for the generation of graphs and opens a wide
filed for application in many areas of neural modeling.

Fractal sets, invented and promoted by Mandelbrot [10], are estab-
lished tools for describing and modeling complex structures and pro-
cesses, such as textures of surfaces or even the state space of chaotic
attractors. Sierpiński carpets are well known examples of mathematical
shapes forming fractals (see Figure 1). Inherent properties of fractals,
being self-similar and scale-free, can impressively be demonstrated with
these sets. Therefore, we have asked, what types of graphs or networks
can be expected to emerge, if the intermediate sets, resulting from a
generation process towards Sierpiński carpets, are interpreted as adja-
cency matrixes.

This work presents an investigation of the properties of graphs con-
structed in the same fashion as Sierpiński carpets. As we will show,
the result of this investigation is a simple method for a deterministic
generation of directed and connected graphs. The manifold of possi-
ble graphs provided by this method is systematically analyzed for a
low dimensional case. But as we will see, this analysis already leads
us to general conditions which guaranty robustness as well as specific
degree-distributions for arbitrary dimensions.

Based on these finding, we will introduce two strategies which al-
low an application of our graph generation method in the domain of
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Figure 1. An example for a Sierpiński carpet. Its mask and initial form

(left) as well as the first (middle) and second (right) iteration of the process

generating the Sierpiński carpet.

artificial neural networks. But before we will discuss these aspects
in detail, the next chapter introduces basic definitions and explains
the process of graph generation. This includes the formulation of one
sufficient condition maintaining connectedness in general. After this,
the next two chapters describe essential network properties (shortest
paths, degree distribution, clustering, robustness etc.) resulting from
a systematic analysis of a representative subset. This is followed by
a discussion summarizing our findings in a more general form leading
to the outline of possible applications for the generation of artificial
neural networks, as aforementioned.

2. The generation of graphs of fractal dimensions

A graph G is a set of vertices V (sometime also called nodes) and
connections E (edges) between them. An edge eji connects always
only two nodes vi and vj , where eji is the in-coming edge for vj and
the out-going for vi.

A graph is called directed if there exists at least one pair of nodes
vi and vj with eji ∈ E, but eij /∈ E for i 6= j. An undirected graph
can be represented by a directed graph having two edges between the
connected nodes, each in one direction.

We call the number of in-coming and out-going edges the degree k.
In an undirected graph the number of in-coming edges ki is equal to
the number of the out-going ko.

If there exists a path between each pair of nodes in the graph, we
call it connected. Notice, in a directed graph it might be the case that
node vj can be reached from vi, while there is no connection starting
in vj . In this case, the graph is not connected.

The structure of a graph G(V, E) can be represented by an adjacency
matrix M . Each matrix element mji of an adjacency matrix can either
be zero or one. The element mji is one, if and only if eji ∈ E. In
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consequence, the adjacency matrix is symmetric for undirected graphs.
As we will see in the following, adjacency matrixes build the bridge

between Sierpiński carpets and graphs as well as they give us a process
for the deterministic development of directed and connected graphs.

In Figure 1 an example for the construction of a Sierpiński carpet is
illustrated. The process starts with a basic form, a square. Each side
of this square is segmented into three equal sections defining an overall
partition into 9 identical squares. Some of this squares are labeled,
indicated by the grey coloring. We also call this basic form a mask.

As one can see in the figure, the Sierpiński carpet is easily generated
by applying the same partitioning, which is defined by the mask, for all
the labeled squares of the given form. But in contrast to the original
generation of Sierpiński carpet, now also unlabeled squares are subdi-
vided in the same way. The only difference is that resulting sub-squares
remains unmarked too.

The partitioning of labeled and unlabeled squares including new
labeling of the new set of squares is what we call an iteration.

Speaking precisely, a distinction has to be made between a mask and
the form which the mask is applied to. A mask can be applied to any
given form divided into arbitrary number of squares. In the following
we use always the mask also as initial form. All the resulting forms
therefore are determined by the mask and the number of iterations.

For infinity iterations we get the Sierpiński carpet, that is a set of
fractal dimension.

We utilize this type of fractal generating process in order to generate
directed and connected graphs simply by interpreting the resulting sets
after n iterations as an adjacency matrixes of a graph. Examples of
3-segmented forms transformed into graphs are given in Figure 2. The
labeled squares are interpreted as edges, i.e. gray colour represents
value 1 in the corresponding adjacency matrix, while unlabeled squares
indicate the zero entries.

Given this simple idea we now ask what kind of graphs can be gen-
erated by such a process. However, the resulting graphs are obviously
fully determined by the mask and the number of iterations. Therefore,
our focus for this investigation is directed to the masks. For the three
segmented case there exist 29 = 512 different masks. Higher segmenta-
tions S generate 2(S·S) different masks, since an adjacency matrix has
to have equal dimensions.

In order to cope with this exponentially increasing number of possi-
ble graphs, we begin our analysis for S = 3. This analysis will provide
us with insights about the interrelation between mask properties and
global structure of the resulting graphs and therefore, will guide us in
the huge increasing space of graphs spanned by the masks of higher
segmentations.

A first constraint for our investigation is that we only consider con-
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Figure 2. Examples of graphs derived from 3-segmented forms.

nected graphs. This reduces already the number of masks. We will
further see, that this set can even be more reduced by taking into ac-
count certain symmetries of the adjacency matrixes, which maintain
the connectedness of the corresponding graphs. In that way we get a
manageable number of remaining basic forms for segmentation 3.

2.1 Labeling and filtering of the masks

The first thing we start with is introducing a general numbering or
labeling of the masks. As an unique numbering we have chosen the
binary code directly derived from the structure of the mask (see Figure
3 (left)). One can see, that the labeled and unlabeled mask elements
are interpreted as 1 and 0 of a binary number respectively. However,
this numbering is only unique if the mask segmentation is taking into
account. Therefore, we use the symbol MS

n , where n is the number,
which binary representation corresponds to the mask of segmentation
S. An example is given in Figure 3 (right). One can see that the
number M3

511 refers to the 3-segmented mask in which all segments or
entries are labeled. In the 4-segmented case number 511 represents a
totally different mask structure.

As we already mentioned above we only consider connected graphs.
A necessary condition for a connected graph is that each node has at
least one out-going and one in-coming edge, ko/i > 0. These values can
directly derived from the corresponding adjacency matrix M . Value ko

of node vl is the sum over all entries in column l, while ki is the sum
over row l:

ko(vl) :=
∑

j

mj,l
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(a) (b)

Figure 3. Schema of the 3-dimensional and D-dimensional mask indicating the

value of each entry in order to derive the number of the binary code given

by the mask (a). Examples of number 511 which binary code represents

different mask depending on the dimension of the mask (b).

ki(vl) :=
∑

i

ml,i

Taking into account the generation process and assuming that the
applied mask is also the initial structure, one can see, that each mask
containing a node of degree zero generates a graph with at least one
node with degree zero. Hence, if a mask of segmentation S generates
connected graphs then this mask has at least S labeled entries. In other
words, a mask must contain at least as many labeled squares (edges)
as columns/rows (nodes).

If the number of edges and nodes are the same, only a ring can
create a connected graph. Due to the generation process of such “ring
masks” it follows that in the resulting graph the number of nodes is
again equal to the number of edges. Hence, the result must be a ring
again. Otherwise, the graph wouldn’t be connected anymore. But our
simulations for the 3-segmented cases have shown that the resulting
graphs are not connected anymore. They are forming separated rings
and therefore the graph is not connected.

In the following we give an explanation of this phenomenon, which
enable us to give a general criteria for the generation of connected
graphs.

2.2 Connectedness

Assume a mask M0 of segmentation S is given. M forms a ring. We fur-
ther apply a numbering of the nodes which corresponds to the column
number in the corresponding adjacency matrix. The ring structure of
the graph can be represented by the sequence of nodes while travel-
ling along the path formed by the ring. Without losing generality, we
assume this sequence is:

(1) → (2) → · · · → (S − 1) → (S) → (1) → . . .

After the first iteration, we get a new adjacency matrix M1 of dimen-
sion (S2, S2) representing S2 nodes connected by S2 edges.
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Figure 4. An example for the renumbering after a mask is applied to a graph.

At this point we apply a new numbering system for the nodes rep-
resented by M1. A node vi in M1 is symbolized by a pair (k′, l),
1 ≤ k, l ≤ S, with:

k′ = 1 + ((i − 1) ÷ S),

l = 1 + ((i − 1) mod S),

where i (1 ≤ i ≤ S2) is the column number of the adjacency matrix.
(See Figure 4.) Due to the construction process, we know, that the
resulting graph M1 only contains nodes with one in-coming and one
out-going connection. There is no node with a self-connection in M1.

Assume, we select a node and write down the sequence of nodes,
formed by the path staring in this node. Obviously we can expect to
get a sequence like:

(k′
1, l1) → (k′

2, l2) → · · · → (k′
n, ln) → (k′

1, l1)

If n = S2 we have a ring. But our observation tells us that n < S2. In
fact, we have different disjunctive sequences representing the separated
rings in M1. But, how can we derive the resulting sequences? To solve
this problem, one has to understand that k′ represents the “macro”-
connectivity structure of the graph, while l is representing “micro”-
connectivity structure. The latter is given by the mask, which turns
a given adjacency matrix into a new, larger adjacency matrix. The
first, the “macro”-structure, is given by the adjacency matrix, which
the mask is applied to. In our case macro- and micro-structure are the
same, (since we applied the mask to itself).

In consequence the sequence of l1, l2, . . . must follow the same se-
quence of the micro-structure, given by the mask. The same holds for
the sequence of the k′ determined by the macro-structure, the original
graph.
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Assume we start with node (3, 7) with respect to the macro-structure
we get the following sequence:

(3, 7) → (4, l2) → (5, l3) → . . .

· · · → (S − 1, lu) → (S, lu+1) → (1, lu+2) → . . .

· · · → (2, lw) → (3, lw+1) → (4, lw+2) → . . .

Developing this sequence further with respect to the micro-structure,
the second variable l is replaced in the same way. The resulting se-
quence is the same given in the original mask:

(3, 7) → (4, 8) → (5, 9) → . . .

· · · → (S − 1, ((S − 1 + 4) mod S) = 3)) → (S, 4) → (1, 5) → . . .

· · · → (2, 6) → (3, 7) → (4, 8) → . . .

After S steps we hit the node (3, 7) where we started from, since
macro- and micro-structure represent the same sequence. They are
only shifted.

All the separated rings can be derived by starting with node (3, X)
and X ∈ {1, 2, 3, . . .S}. Each staring node will be met again after
approaching S−1 other nodes. Hence, we get S disjunctive sequences,
that is, S separated rings, each of length S. This result matches with
the number of S2 edges in the resulting adjacency matrix.

With this understanding, we can derive the result if mask and graph
are representing rings of different size (m and n). If m is divisor of n or
vice versa then the result is a disconnected graph, otherwise the graph
is connected. That means, as long a mask is also initial structure the
result is always a unconnected graph.

However, if we want to create graphs beyond rings, we can guaranty
connectedness for masks forming a ring by adding at least one self-
connection. This can be explained by going back to the example given
above, where mask and original graph have the same segmentation and
forming a single ring. Further we assume, node 3 in the original mask
has now an additional self-connection. This has the effect that the
following sequence is present in the resulting graph too:

(3, 7) → (3, 8) → . . .

· · · → (3, S − 1) → (3, S) → (3, 1) → (3, 2) → . . .

· · · → (3, 6) → (3, 7) → (3, 8) → . . .

In the graph M1 (i.e. having no self-connection) each of the nodes
(3, X), 1 ≤ X ≤ S, is located on a different ring. Therefore, the
additional ring generated by the self-connection builds a “junction”
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Figure 5. General rotation and reflection symmetries of Sierpiński carpets.

Certain Sierpiński carpets remain the same applying a rotation (T ) as well

as under reflections along the middle horizontal or vertical line (RH and RV )

as well as along the two diagonals RMD and RAD.

connecting all former separated rings. In consequence, each node can
be reached from any other node. In other words the directed graph is
connected.

In conclusion, we can summarize the general criteria for our gener-
ation process of connected graphs as follows: each ring with an addi-

tional self-connection used as mask and initial graph generates a con-

nected graph.

2.3 Fractal dimensions of connected graphs

It is easy to see that a mask fully labeled generates only fully connected
graphs. Hence, the non-trivial cases of connected graphs are generated
by masks with n labeled entries, where S < n < S2 and S is the seg-
mentation of the mask. Interestingly enough, masks with this number
of labeled segments generate Sierpiński carpets of fractal dimensions
df between 1 and 2 [10], since:

df =
log(n)

log(S)
,

from which follows:
1 < df < 2.

Therefore, we define a graph G as a graph of fractal dimension if
G is connected and directed as well as the result of a mask of fractal
dimension df , where 1 < df < 2.
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|E0| df = |E|
S M3

n

∑

4 1.26 99, 102,106, 114 4
5 1.46 79, 94, 103, 107, 110, 115, 118, 122,

171, 173, 174, 186, 229, 355 14
6 1.63 95, 111, 119, 123, 126, 175, 187, 189,

190, 231, 238, 245, 335, 359, 363,
371, 427 17

7 1.77 127, 191, 239, 247, 254, 351, 367, 375,
379, 431, 443 11

8 1.89 255, 383, 447, 495 4
∑

= 50

Table 1. Numbers of unique masks generating connected graphs and their

fractal dimension.

2.4 Symmetrical masks

Sierpiński carpets can be symmetric. Figure 5 shows the five possible
transformations under which certain sets undergo no changes. The
Sierpiński carpet shown in Figure 1 remains obviously the same for
each of the five transformation.

If we apply these transformations to adjacency matrixes then only
reflections along the two diagonals as well as two successively applied
rotations (T 2) keep the graph connected. Under the consideration of
these three symmetries we get 50 distinct masks of segmentation 3
of fractal dimension generating connected graphs. All other masks
produce either no connected graph at all or can be transformed into
one of the 50 sets by a combination of the operations T 2, RMD and
/ or RAD. Table 1 summarizes this result. A 4-segmentation gives us
6692 unique masks out of 216 = 65536 possibilities.

3. Properties of graphs with fractal dimensions

In the following we investigate some properties of the connected graphs
constructed by the masks given in Table 1. For all masks we applied
five iterations and therefore the final graphs have 36 = 729 nodes.
We tested connectedness for all graphs explicitly, because it turns out
that the former formulated criterion does not cover all cases of mask
generating connected graphs. All mask and the resulting graphs are
connected.
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Figure 6. Diagrams showing the evolution over five iteration of the average

shortest path length with respect to the number of nodes (a) and the mean

of the in-degree ki (equal to ko) (b). Notice, overlapping curves appear as

one.

3.1 Shortest paths

The first important feature of a connected graph is the average of
the shortest paths and its evolution over the generation process. Self-
connections are not included in this calculation of the shortest paths.

As it is indicated by the left diagram in Figure 6 the average of the
shortest paths scales slower than log with respect to the number of
nodes.

3.2 Average degree

A solid judgment about the shortest paths has to include the corre-
sponding average degree. Figure 6 shows the evolution of the out-
degree over the iterations for all graphs. Surprisingly enough, for all
iterations the graphs have only one of five different average degrees.
This effect goes back to the ratio of edges and nodes in the mask and
can be explain as follows. The average degree k is actually determined
by the ratio of edges and nodes in a graph:

k = 2
|E|

|V |
.

For our graphs we know that:

|En| = En
0

and
|Vn| = Sn

where |En| and |Vn| is the number of edges and nodes after n > 0
iterations. Further on, E0 is the number of edges in the mask and S
is the segmentation of the applied mask, i.e. the number of nodes in
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the corresponding graph. Hence, after n iterations we get the following
average degree:

kn = 2 ·

(

E0

S

)n

.

The generation of connected graphs of fractal dimension means that
E0, a natural number, is between S and S2 and therefore, it is limited.
In consequence, we have a limited number of sets of graphs with equal
average degree. In the 3-segmented case we have obviously five different
average degrees. This number is determined by the possible values of
E0. For S = 3 we have five, since E0 ∈ {4, 5, 6, 7, 8}), which is clearly
indicated by the diagram in Figure 6(b).

A general properties of our fractal graphs is therefore, that the av-

erage degree is exponentially increasing with respect to the number of

nodes, since per definition E0

S > 1.

3.3 Clustering

The third characteristic of graph is the average clustering coefficient.
Here, we applied the definition given by [16]. The resulting values over
the iteration process for our graphs is plotted in Figure 7. One can
see that all coefficient tend to decrease with respect to the size of the
graph, i.e. |V |.

Clustering coefficients of graphs under investigations are often com-
pared with the clustering values of random graphs Gn,p. A random
graph belongs to the group Gn,p, if it is undirected and has n nodes,
where each pair of nodes is connected with probability p [13]. In [16]
the clustering coefficient of random graphs is given as:

crandom =
k

|V |
,

i.e. the ratio between average degree and the number of nodes in the
graph. We have applied this definition of crandom in order to compare
it with the clustering coefficients cf of our fractal graphs, where

r = cf ·
|V |

k
=

cf

2
·

(

S2

E0

)n

.

Considering p = |E|
2|V |2 as the connection probability between two nodes

in a random graph with equal number of nodes and edges, we get:

r =
cf

p
.

The value p can be used as measure for the number of edges in our
fractal graphs. In consequence, the less the fractal dimension the more
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Figure 7. Clustering coefficient after the definition given in [16]

the cluster coefficient tend to be considerably higher compared with a
random graph equal in the number of vertices and edges.

This is all we can say about the relation between clustering coef-
ficients, since we have observed that cf changes with respect to the
number of nodes and we have no formal description for these changes.
However, Figure 8 shows that the clustering of the fractal graphs can
be considerably larger than for random graphs. As well as they can be
much smaller. Again, it seems that the curves in 8 are establishing five
distinct branches, which might be related to the five different fractal
dimensions of the basic masks.

3.4 Degree distribution

The last property under investigation is the degree distribution. Sim-
ilar to the average degree, this distribution is fully determined by the
mask. Let:

di = ko(vi), 1 ≤ i ≤ S,

where S is the mask segmentation. Hence, di is the out-degree of node
i. In the following we will only consider out-degrees. But the same
argumentation can be applied for in-degree distribution.
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Figure 8. Relation between clustering coefficients of random graphs and our

fractal graphs having the same size, i.e. equal number of edges and nodes.

The degree number of each node in a graph after j iteration can be
derived by solving the equation:

(d1 + d2 + · · · + dS)j+1, j > 1,

in a symbolic manner. In that way we get a sum of Sj+1 elements. Each
summand represents the degree of a particular node and is a product
of (j + 1) factors. Each factor belongs to the set of degrees given in
the originak mask. Hence, the degree distribution is directly given by
the numerical values of these factors and the number of iterations.

As an example, assume we have:

di < dS , 1 ≤ i < S.

Thus after j iterations we have exactly one node, out of n = Sj+1

nodes, with the maximal out-degree dS
j+1. Furthermore, let:

d1,...,S−1 = 1

and
dS > 1.
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In such a case the number of nodes zr with degree dS
n−r is given by:

zr =

(

n

n − r

)

· (S − 1)r, 0 ≤ r < n,

where S is the segmentation of the mask and n = Sj+1 is the number
of nodes after j iterations. The term

(

n
n−r

)

can be substitute by:

(n − r)r ·

r
∏

l=1

(

1

l
+ 1

)

and with n as the total number nodes, we determine the probability

P (r) for selecting a node with degree d
(n−r)
S in the following way:

P (r) =
zr

n
=

(S − 1)r · (n − r)r

n
·

r
∏

l=1

(

1

l
+ 1

)

.

By applying the following the estimation:

1 <

r
∏

l=i

(

1

l
+ 1

)

≤ 2r

we get:

((S − 1)(n − r))r

n
< P (r) ≤ 2r ((S − 1)(n − r))r

n
, 0 ≤ r < n.

It follows, that for this specific case, the tail of the corresponding degree
distribution (r > n

2 ) is decreasing exponentially.
Obviously the degree distribution has no characteristic scale and

due to the construction process there will be always ”a few nodes”
with a degree magnitudes larger then the average, called hubs [12]. In
consequence we can say that graphs of fractal dimension can represent

scale-free networks.

On the other hand we see, that in-degree and out-degree are totally
independent. They are determined by the corresponding degrees given
in the mask. Hence, the average degree as well as the distribution
of the resulting graph is the sum of this quantities over the in- and
out-degrees.

3.5 Five examples representing the five possible fractal dimensions

Figure 9 summarizes our analysis showing the qualities under investiga-
tion for five examples: the average shortest path, clustering coefficient
and the ratio of this coefficient related to random graphs. Each mask
has different fractal dimension. The lower diagrams in the figure show
the degree distribution after 5 iterations.
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Figure 9. Characteristic qualities of five representative examples, incl. the

degree distribution.

4. Robustness

The robustness of graphs can be investigated with respect to many
specific properties. In the following we only consider the connectedness
and the average length of the shortest paths while nodes are removed.

No matter which properties we are interested in, for any type of
graph or network there are basically two kinds of robustness to con-
sider. On the one hand, one wants to estimate how essential properties
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of a network do change if a randomly chosen node is removed. On the
other hand, it is important to know whether or not a graph contains
single nodes which have radical impact on a global scale. Nodes of the
latter type make a network highly sensitive to targeted attacks, since
the failure of a single specific node causes a catastrophic failure of the
whole network.

Due to the deterministic nature of our generation process, once more
we can start to investigate these questions in a systematic manner.

4.1 Robustness under attack

Whether or not the connectedness of a given graphs is deteremined
by a particular is node is verified by removing this node and testing
connectedness explicitly While doing this for each node in the graph
we get the number of nodes destroying connectedness if deleted.

All graphs during the first four iterations were analyzed in this way
and Table 2 gives a summary of this experiment. One can see, that
apart from 16 graphs all others have at least one node, which destroys
the connectedness when removed. Interestingly enough, these cases
can be distinguished with respect to the evolution of this number over
the iterations. The number of this essential nodes is either exponetially
increasing or remains constant.

We cannot explain yet, how this number of essential nodes is related
to the underlying structure of the mask and the generation process.
However, it turned out, that the number of single nodes, which can
destroy connectedness is zero, if the mask has no node with in- and
out-degree less than two, formally written as:

∀i : ko(vi) > 1 ∧ ki(vi) > 1,

where vi is a node in the graph represented by the mask.
The test of connectedness after the deletion of two nodes gives the

same result (see Table 3). We only removed two nodes, if they alone
can not destroy the connectedness. Hence, nodes counted in Table 2
are not considered in Table 3. Again, connectedness of a graph does
not depend on only tow nodes, if the underlying mask contains no node
which in- or out-degree less than 2.

This simple relation was tested for the first two iterations of the 4-
segmented masks. It holds for these cases as well. Therefore, although
not formally proven, our experiments give evidence, that if a given

mask of segmentation S represents a connected graph and each node

in this mask has at least two out-going and two in-coming connections

then the connectedness of the resulting graphs can not be destroyed by

removing one or two nodes.
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E0 M3
n 1st 2nd 3rd 4th E0 M3

n 1st 2nd 3rd 4th

4 99 7 15 31 63 6 231 1 1 1 1
102 4 8 16 32 238 0 0 0 0
106 4 8 16 32 245 0 0 0 0
114 7 15 31 63 335 1 1 1 1

359 2 2 2 2
5 79 1 1 1 1 363 1 1 1 1

94 1 1 1 1 371 0 0 0 0
103 4 8 16 32 427 0 0 0 0
107 4 8 16 32
110 1 1 1 1 7 127 1 1 1 1
115 2 2 2 2 191 1 1 1 1
118 2 2 2 2 239 0 0 0 0
122 4 8 16 32 247 0 0 0 0
171 1 1 1 1 254 0 0 0 0
173 2 2 2 2 351 0 0 0 0
174 1 1 1 1 367 1 1 1 1
186 1 1 1 1 375 0 0 0 0
229 1 1 1 1 379 0 0 0 0
355 2 2 2 2 431 0 0 0 0

443 0 0 0 0
6 95 1 1 1 1

111 1 1 1 1 8 255 0 0 0 0
119 1 1 1 1 383 0 0 0 0
123 2 2 2 2 447 0 0 0 0
126 1 1 1 1 495 0 0 0 0
175 1 1 1 1
187 1 1 1 1
189 1 1 1 1
190 1 1 1 1

Table 2. Numbers of nodes which turn the graph into a non-connected one,

when deleted. This value is given for the first four iterations. Hence, the

largest graphs have 35 = 243 nodes.

4.2 Robustness under Failures

The experiments outlined in the previous paragraph indicate that the
number of crucial nodes (if present) either remains constant or increases
exponentially with respect to the iterations. Nevertheless, the node
number is exponentially increasing as well and we get for the worst
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E0 M3
n 1st 2nd 3rd E0| M3

n 1st 2nd 3rd

4 99 0 0 0 6 231 3 3 4
102 2 0 0 238 0 0 0
106 2 0 0 245 0 0 0
114 0 0 0 335 0 0 0

359 0 0 0
5 79 0 0 0 363 2 3 4

94 3 3 3 371 0 0 0
103 0 0 0 427 0 0 0
107 0 0 0
110 4 3 4 7 127 0 0 0
115 4 6 8 191 0 0 0
118 6 6 8 239 0 0 0
122 0 0 0 247 0 0 0
171 3 3 4 254 0 0 0
173 6 6 8 351 0 0 0
174 4 3 4 367 0 0 0
186 0 0 0 375 0 0 0
229 3 3 4 379 0 0 0
355 4 6 8 431 0 0 0

443 0 0 0
6 95 0 0 0

111 0 0 0 8 255 0 0 0
119 2 3 4 383 0 0 0
123 0 0 0 447 0 0 0
126 3 3 4 495 0 0 0
175 3 3 4
187 0 0 0
189 2 3 4
190 0 0 0

Table 3. Numbers of pairs of nodes which turn the graph into a non-connected

one, when deleted. A single node of these pairs does not destroy the con-

nectedness.

cases (i.e. M3
99 and M3

114) the following relation:

p(n) =
2(n+2) − 1

3n+1
,

where n stands for the n-th iteration. Hence, the probability of losing
the connectedness in a graph of fractal dimension by accidently remov-
ing a single node is either zero or drops exponentially with respect to
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the number of iterations.
Remains the question how other properties changes after a random

deletion of one or more nodes without destroying the connectedness.
We have investigated this question with respect to the average length
of the shortest paths in a graph.

In these tests, the maximal value of shortest paths in a given graph is
used for the normalization of the length of the shortest path. Hence, the
normalized values indicate their length relative to the longest shortest
path in a graph. Consequently, after removing one or more nodes the
mean of these relative lengths is larger or equal compared with those
of the original graph.

The three examples shown in Figure 10 are indicating the change
of the shortest path lengths after removing up to 30 nodes. All re-
moved nodes were selected in a way that the resulting graph was still
connected. Two of these curves represent the very few examples where
significant changes occur at all. Most of the graphs are represented by
the curve of M3

126, where values don’t undergo significant alterations
if nodes are deleted. This has several reasons. The first, of course, is
simply the fact that the larger the fractal dimension the less impact
has the deletion of nodes on a linear scale. On the other hand, nodes
were randomly selected, but only removed, if connectedness wasn’t de-
stroyed. Therefore, most of the graphs were only cut on the periphery,
where changes have minor impact on a global scale.

In summary we can say, as long as connectedness in our graphs is

not destroyed the deletion of a few nodes has no significant impact on

the average length of the shortest paths. As our experiments indicate,
after removing up to 30 nodes in the given graphs, which originally
consists of only 81 nodes, the length of the shortest path between most
of the nodes remains the same as in the originial graph.

5. Discussion

In the two previous chapters we have intensively analyzed graphs gen-
erated with 3-segmented masks. Nevertheless, it was also shown, that
many properties of the resulting complex structures can directly be
related to the properties of the underlying masks. These insights pro-
vide us for determining and estimating graph properties resulting from
higher segmentations. This section briefly summarizes these findings in
order to outline a more general picture of the directed graphs of fractal
dimension. Finally, an application for the generation of artificial neural
networks is given.

5.1 Connectedness

An important issue of the here introduced method is that each iteration
results in a connected graph. As we have shown above, as long as a
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Figure 10. Evolution of the relative shortest path length in graphs resulting

after 3 iterations applying mask M3

106, M3

173, and M3

126. Up to 30 nodes

were deleted in each graph. The relative length is related to the length of

the longest shortest path in the original graph, which has 81 nodes. Each

deletion process was repeated 50 times.

given mask is also applied as initial graph each iteration generates a
connected graph, if the mask represents a ring plus one self-connection.
We call these masks complete. Notice, this condition is sufficient for
all higher segmentations as well.

In conclusion, each mask generates connected graphs, if it has a
complete mask as sub-graph. Hence, it belongs to the set of complete
masks.

However, which conditions guarantee connectedness in general, if an
arbitrary mask M is applied to an arbitrary connected graph G? The
argumentation above holds, if M is a complete mask and G is either
a ring or the result of a complete mask. But for all other cases, this
question, whether or not the result will be again a connected graph,
remains open.

Nevertheless, as long as G and M are complete masks itself or are
results of complete masks connectedness remains. In consequence, one
can think about applications where different complete masks are used
during the generation process. But this is an issue for future research
or more concrete applications.

5.2 Parameterized scale-free graphs

As long the degrees in the mask have different values the resulting
graphs show scale-free properties. (As an example for non-scale-free
networks, one can think of masks where all nodes have the same in-
and out-degree.)

The resulting average degree and degree distribution can be easily



22 M. Hülse

derived from in- and out-degrees given in the mask and the number
of iterations. Robustness issues can also directly addressed under the
consideration of minimal in- and out-degree present in a given mask.
As we saw, as soon as each in- and out-degree in the mask is larger
one, the generated networks are robust against targeted attacks. This
property holds for higher segmentations without any exception.

Considering these issues, one is able to construct networks with frac-
tal dimension in a deterministic fashion which presents specific values
of important network characteristics, such as average degree, degree
distribution as well as robustness against failures and attacks.

5.3 Small-world properties

Small-world properties of networks are not uniformly defined in the
literature [12, 13]. In consequence, it somehow depends on the defini-
tion applied, whether or not a graph establishes a small-world network.
Furthermore, small-world properties are very often defined in relation
to random graphs. This class, however, does not well match the de-
terministic nature of our fractal graphs. It is therefore not surprising,
that graphs of fractal dimension are small-world networks as well as
they are not. It depends on the given definition or, in other words, on
the point of view.

A definition for small-world networks, given in [13], relates average
degree and shortest paths, since a graph is a small-world network if
the average length of the shortest paths scales log with respect to the
number of nodes, while the average degree k is fixed.

As we have argued above, the average degree of our graphs increases
exponentially and so this criterion is not fulfilled, since:

k =

(

S + m

S

)n

.

Again, S is the segmentation and n represents the iterations, while
S < (S +m) < S2. With respect to this relation, one can also see, that
the average degree does not significantly change, if n and m are kept in
certain ranges. For instance, set S = 10 and consider complete masks
with less then 15 edges. The average degree before the first iteration
is less 1.5. After 6 iterations we have a connected network of n = 106

nodes, while the average degree is still less than 5 and the mean of the
shortest paths scales with log(n). This example shows, that for specific
cases, one might argue to have small-world properties, since k does not
change significantly, while the number of nodes rises immensely.

Another characterization of small-world networks is based on the
clustering coefficient. In random graphs the clustering coefficient tends
to be O(n−1) for large n (number of nodes), while small-world graphs
are characterized by a O(1)-relation [13]. In other words, in small-world
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networks the coefficient remains at least constant, which is obviously
not the case for our graphs (see Figure 7). Again, the decrease of
the clustering coefficient scales with log. For specific application this
could mean, that the change is not significant. Does this mean, that
under certain circumstances our graphs can be considered as examples
of small-world networks?

A last characterization of small-world networks relates the cluster-
ing coefficient to random graphs. The clustering coefficient tends to
be considerably higher than for a random graph of the same size, (i.e.
equal number of nodes and edges) [16]. This relation is plotted in Fig-
ure 8 for S = 3. Again, there are graphs having clustering coefficients
magnitudes larger than those of the corresponding random graphs. We
also have argued above, that this relation correlates to the number of
connections, which means, the less the fractal dimension the larger the
coefficient in relation to random graphs. Furthermore, our diagrams
give evidence that in some graphs the ratio linearly increases with re-
spect to the number of nodes. In this sense, one could argue that
connected graphs of small fractal dimension have small-world proper-
ties, because their clustering coefficient is much larger than for random
graphs.

Unfortunately, the less the fractal dimension the less the absolute
value of the clustering coefficient (see Figure 9). The classical Watts-
Strogatz networks for generating small-world networks starts with a
clustering coefficient of 0.5 [12, 13, 16]. Whether or not this value has
to be considered as a threshold for networks with small-world properties
is out of the scope of this paper.

In summary, our fractal graphs do not belong to the class of small-
world networks in general. However, for specific parameter settings
such network properties might be expected to emerge.

5.4 From Carpets to neural networks

Basically, there are two strategies for the implementation of ANN based
on the introduced method (see Figure 11). First, the adjacency matrix
/ the graph can directly be interpreted as a neural network containing
recurrences of any kind. Second, the adjacency matrix can purely
be seen as the connections between two separated set of neurons of
the same size. In this sense, a feed-forward structure between two
neuron layers is created. Obviously, a chain of different feed-forward
connections can be built in that way.

The former, the recurrent, case might be interesting as method for
the generation of reservoirs of non-linear dynamics. Based on random
graphs, this has been done in the echo-state [8] or liquid-state-machine
[11] approach.

The latter case, might become an object of investigation within the
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Figure 11. Two ways of transforming a given mask / graph (left) into a arti-

ficial neural networks. First, the graph is directly interpreted as ANN with

recurrent neural connections (middle). Second, the adjacency matrix as a

description of a feed-forward network (right).

Neural Darwinism approach to the function of the brain introduced,
developed and promoted by Edelman [4]. According to this approach,
an essential element for the brain-function is the matching between
specific signal configurations and neural groups, which respond in a
specific manner. Obviously, this matching must be sufficient specific in
order to allow distinction among different signals, called recognition.
However, more important within the Neural Darwinism approach is
the argumentation, that such a matching must be degenerated. The
assumption is, that there is more than one way to recognize a signal,
that is, one signal configuration activates different neural groups as well
as one neural group can be activated by different signal configurations.
Two extremes of degeneration can be distinguished: a non-degenerated
(unique) matching on one side and the completely degenerated match-
ing on the other side. The Neural Darwinism approach claims that
the variability of brain functions occurs within neural organization
somehow located between these two extremes of non- and complete
degeneration.

It is interesting to see, that the introduced graphs of fractal dimen-
sions create networks between these to extremes. The examples shown
in Figure 12 are only a simple schemas. But it is not hard to imagine
that the fractal dimension and degree distribution of a graph determine
the grad of degeneration. Therefore, we argue, that within the Neu-
ral Darwinism approach the introduced graphs of fractal dimensions
might be a promising substrate for future research in order to model
brain-like mechanisms of adaptation.
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Figure 12. Three examples of feed-forward connections between two neural

layers of an ANN. The left shows a non-degenerated matching between input

and output signal. Each neuron in the left layer does only activate one neuron

in the right layer. Due to the introduced representation this can be described

as a ring. On the right a completely degenerated matching. Each neuron

on the left activates each neuron on the right. This is represented by a fully

connected graph. In between a degenerated matching formed by a graph of

fractal dimension.

6. Conclusion

A method for the deterministic generation of directed and connected
graphs was introduced. The average of the shortest paths in these
graphs scale log with respect to the number of nodes. The generation
process is inspired by fractal sets called Sierpiński carpets. We have
shown that carpets of fractal dimensions between 1 and 2 can represent
connected graphs. Therefore, we refer to them as connected graphs
with fractal dimension.

We have formulated a general rule giving us a sufficient criterion
supporting the evaluation whether or not a given mask produces con-
nected graphs. For better or for worse, this criterion does not covers all
possibilities of connected graph creating masks. At this point, we must
be content to leave this problem to future investigations. However, the
given criterion provides the construction of a huge number of masks
and graphs; because the criterion is based on ring structures and each
mask having such a structure as a sub-graph does generate connected
graphs as well.

Due to the deterministic nature of the generation process we have
shown that important properties of the resulting graphs can directly
be derived from the structure of the mask used in the process. These
properties are average degree and degree distribution. For specific de-
gree distributions in the mask scale-free graphs emerge. We also have
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discussed under which circumstances small-world networks be expected
to emerge.

Further on, we have outlined conditions for the robustness of such
networks against failures and attacks. These conditions are also valid
for any segmentation larger 3.

The simplicity of the deterministic process support an applications
of this method for many fields. As we have argued above, artificial
neural networks might be a promising domain for further developments
and future research.
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