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The Geometry of Sets of Orthogonal Frequency

Hypercubes

V. C. Mavron∗ T. P. McDonough∗ Gary L. Mullen†

10/01/2006; revised 04/09/2006

Abstract

We extend the notion of a framed net, introduced by D. Jungnickel, V.C.
Mavron, and T.P. McDonough in The geometry of frequency squares, J. Com-
binatorial Theory A, 96 (2001), 376–387, to that of a d-framed net of type `,
where d ≥ 2 and 1 ≤ ` ≤ d − 1, and we establish a correspondence between
d-framed nets of type ` and sets of mutually orthogonal frequency hypercubes
of dimension d. We provide a new proof of the maximal size of a set of mu-
tually orthogonal frequency hypercubes of type ` and dimension d, originally
established by C.F. Laywine, G.L. Mullen, and G. Whittle in D-dimensional
hypercubes and the Euler and MacNeish conjectures, Monatsh. Math. 119
(1995), 223–238, and we obtain a geometric characterization of the framed
net when this bound was satisfied as a PBIBD based on a d-class association
Hamming scheme H(d, n).

1 Introduction

In [7] the authors established a correspondence between sets of mutually orthogonal
frequency squares (MOFS) and nets satisfying an extra property, which they called
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framed nets. They provided a new proof for the maximal size of a set of MOFS
and obtained a geometric characterization of the framed net when this bound was
satisfied. In this paper we extend these ideas to sets of mutually orthogonal fre-
quency hypercubes of dimension d ≥ 2 and d-framed nets. Corresponding to sets
of mutually orthogonal frequency hypercubes of a given type ` we introduce the
concept of a d-framed net of type `. We provide a new proof of the maximal size of
a set of a set of mutually orthogonal frequency hypercubes of type ` and dimension
d, originally established in [9]. We obtain a geometric characterization of the framed
net when this bound was satisfied, and show that it is a PBIBD based on a d-class
association Hamming scheme H(d, n).

In Section 2 we recall the basic concepts relating to hypercubes and association
schemes. In Section 3 we introduce the concepts of a frame and a framed net, we set
up the correspondence between sets of mutually orthogonal frequency hypercubes
and framed nets, and we identify the framed nets in the extremal case, postponing
some of the detailed calculations to Section 5 where various polynomial identities
are established. In Section 4 we give an explicit construction of the framed nets
arising in the case of a particular family of parameters.

2 Basic definitions

Let d ≥ 2 be a fixed positive integer and let n = mµ. By an Fd(n;µ) frequency
hypercube H is meant an n×· · ·×n array [H(j1,...,jd)] of dimension d, size n, and order
m (i.e. each index ji belongs to an n-set Ni and the entries belong to an m-set S)
with the property that when any one of the d indices is fixed, each of the m distinct
symbols appears exactly nd−1/m times in that subarray. Two such hypercubes are
said to be orthogonal if when superimposed, each of the m2 possible ordered pairs
occurs exactly nd/m2 times. Moreover a set of r (≥ 2) Fd(n;µ) frequency hypercubes
is said to be orthogonal if its elements are pairwise orthogonal. More generally, we
say that a frequency hypercube Fd(n;µ) has type `, with 1 ≤ ` ≤ d − 1, if, when
any ` of the d coordinates are fixed, each of the m distinct symbols appears exactly
nd−`/m times in that subarray. If ` ≥ 2, a hypercube of type ` is clearly of type
` − 1 also. Hypercubes of the maximal type d − 1 are sometimes referred to as
permutation cubes; see, for example, [5, pp. 181-186].

Several examples illustrating this terminology and notation may be in order. An
F2(n; 1) hypercube is simply a latin square of order n, and an F2(n;µ) hypercube is
an F (n;µ) frequency square of size n based upon m distinct symbols; see for example
[6]. In both of these cases, the squares are of type ` = 1 since in both the study
of latin and frequency squares, one fixes a row or a column, and then counts the
number of times (once in the case of latin squares and µ ≥ 1 in the case of frequency
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squares) that each of the m symbols occurs in each row and in each column. For
d ≥ 2, an Fd(n; 1) frequency hypercube is a d-dimensional latin hypercube of order n
as discussed in [9]. We refer to [11] for constructions of sets of orthogonal frequency
hyperrectangles based upon a prime power number of symbols, and to [4] for some
related results by type. See also [9] for some results related to latin hypercubes.

In Section 3 we prove that the maximum number r of mutually orthogonal frequency
hypercubes of type ` and of the form Fd(n;µ) with n = mµ, is bounded above by

r ≤ 1

m− 1

d∑
k=`+1

(
d

k

)
(n− 1)k.

See [9] or [8] for alternative proofs of this inequality. Moreover, in the case when
n = qe where q is a prime power and e ≥ 1, we construct a complete set of orthogonal
Fd(qe; qe−1) hypercubes of type `.

An association scheme with d classes on a finite set X is a set of symmetric {0, 1}-
matrices A0, . . . , Ad with rows and columns indexed by X, such that

(i) A0 = I, where I denotes the identity matrix,

(ii)
∑d

i=0Ai = J , where J denotes the all-one matrix,
(iii) AiAj lies in the real span of A0, . . . , Ad.

Two elements x1, x2 ∈ X are i-th associates if the (x1, x2)-entry of Ai is 1. We refer
the reader to [2] for general properties of association schemes.

A Hamming scheme H(d, n) is an association scheme defined on a set X of size nd,
together with a bijection δ from X to the set of d-tuples Sd of an n-set S, where
two elements x1, x2 ∈ X are i-th associates if the n-tuples δ(x1) and δ(x2) differ in
exactly i places.

Let X be a v-set. A d-class partially balanced incomplete block design (d-class
PBIBD) is a design, on whose point set X is defined a d-class association scheme,
such that, for i = 0, . . . , d, the number of blocks on a pair of points which are i-th
associates depends only on i. We will denote this number by λi.

A d-class PBIBD with λ1 = · · · = λd = λ is a balanced incomplete block design
(BIBD), i.e. a 2 − (v, k, λ)-design. A design D is said to be resolvable if its blocks
can be partitioned into subsets called parallel classes, each of which partitions the
point set of the design. If the resolution of D is such that any two blocks from
different parallel classes meet in a constant number µ of points, then D is said to
be an affine design.

As defined in [3], an (m, r, µ)-net N is an affine 1 − (µm2, µm, r) design and con-
versely. As a result, the number of blocks in a parallel class of N is m, and any two
non-parallel blocks meet in µ points and there are r parallel classes. It is known
from Bose’s theorem (see [3]) that r ≤ (µm2 − 1)/(m − 1) for any (m, r;µ)-net N ,
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with equality if and only if N is a 2-design. In this case, N is a 2-(µm2, µm, λ)
design with λ = (µm− 1)/(m− 1) and is called a complete net.

3 Nets and mutually orthogonal hypercubes

In [7] the authors studied a particular kind of net, called a framed net, which turned
out to be equivalent to a set of orthogonal frequency squares. We generalize this
notion to higher dimensions.

A d-frame on an nd-set X is a d-tuple [X1 : X2 : . . . : Xd], where each Xi, 1 ≤ i ≤ d,
is a partition {Xi,1, . . . , Xi,n} of X into n subsets each of cardinality nd−1 such
that for any t ∈ {1, . . . , d}, any t-subset {i1, . . . , it} ⊆ {1, . . . , d}, and any t-tuple
(j1, . . . , jt) ∈ {1, . . . , n}d,

|Xi1,j1 ∩ · · · ∩Xit,jt | = nd−t. (1)

Note that a d-frame on X introduces a natural bijection {1, . . . , n}d → X in which
(j1, . . . , jd) maps to the unique element of X1,j1 ∩ · · · ∩ Xd,jd

. Using this bijection,
we may transfer the Hamming scheme to X and speak of two points of X being i-th
associates when the corresponding points of {1, . . . , n}d are i-th associates.

A d-framed (m, r;nd/m2)-net of type `, with 1 ≤ ` ≤ d−1, is an (m, r;nd/m2)-net D
whose point set X admits a d-frame [X1 : X2 : . . . : Xd], with Xi = {Xi,1, . . . , Xi,n}
for 1 ≤ i ≤ d, such that, for any t ∈ {1, . . . , `}, any t-set {i1, . . . , it} ⊆ {1, . . . , d},
any t-tuple (j1, . . . , jt) ∈ {1, . . . , n}t, and for any block B of D,

|B ∩Xi1,j1 ∩ · · · ∩Xit,jt | = nd−t/m. (2)

The framed (m, r;µ2)-net considered in [7] is a 2-framed (m, r;µ2)-net of type 1.

The next result generalizes Theorem 3.2 of [7].

Theorem 3.1 Let ` ≥ 1. There exists a set of r mutually orthogonal frequency

hypercubes of the form Fd(n;µ) and type ` if and only if there exists a d-framed

(m, r;nd/m2)-net of type `.

Proof: Let H(1), . . . , H(r) be mutually orthogonal frequency hypercubes of the form
Fd(n;µ) and type ` defined on the set S = {1, . . . ,m}. Construct a design D whose
point set X is the set of ordered d-tuples (j1, . . . , jd) with 1 ≤ j1, . . . , jd ≤ n, and
whose blocks are the point sets

B(u)
x = {(j1, . . . , jd) : H

(u)
(j1,...,jd) = x} (3)
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for 1 ≤ u ≤ r, x ∈ S.

Since H(u) is an Fd(n;µ) frequency hypercube, each element s ∈ S appears nd/m

times in H(u) so that B
(u)
x contains exactly nd/m points. The set {B(u)

x : s ∈ S}
partitions the point set of D for any u with 1 ≤ u ≤ r. Now let 1 ≤ u, v ≤ r and
x, y ∈ S. If u = v and x 6= y, B

(u)
x and B

(v)
y do not meet. If u 6= v, B

(u)
x and B

(v)
y

meet in nd/m2 points by orthogonality of the hypercubes H(u) and H(v). Hence, D
is an (m, r;nd/m2)-net.

For i ∈ {1, . . . , d} and k ∈ {1, . . . , n}, define Xi,k = {(j1, . . . , jd) ∈ X : ji = k}.
Then |Xi,k| = nd−1. Also, for i = 1, . . . , d, Xi = {Xi,1, . . . , Xi,n} is a partition of X.
It is trivial to verify that [X1 : . . . : Xd] is a d-frame on X.

Let 1 ≤ t ≤ `. Let {i1, . . . , it} be a t-set from {1, . . . , `} and let {j1, . . . , jt} ∈
{1, . . . , n}t. Since the hypercube H(u) is of type `, there are exactly nd−t/m d-tuples
in X with the entries in positions i1, . . . , it prescribed as j1, . . . , jt, respectively, and
for which the corresponding entry in H(u) is a given x ∈ S. In other words,∣∣B(u)

x ∩Xi1,j1 ∩ · · · ∩Xit,jt

∣∣ = nd−t/m. (4)

Hence D is a d-framed net of type `.

Conversely, assume D is a d-framed (m, r;nd/m2)-net of type `, with d-frame [X1 :
· · · : Xd], where Xi = {Xi,1, . . . , Xi,n}. Then each point of D is uniquely expressible
as the single element of an intersection X1,i1 ∩ · · · ∩ Xd,id . Let K = {K1, . . . , Km}
be a parallel class of D and define a hypercube H by H(i1,...,id) = x if and only if
X1,i1 ∩ · · · ∩Xd,id ⊆ Kx.

Since D has type `, for any t ∈ {1, . . . , `}, any t-set {i1, . . . , it} ⊆ {1, . . . , d}, any
t-tuple (j1, . . . , jt) ∈ {1, . . . , n}t, and for any block Kx of K,

|Kx ∩Xi1,j1 ∩ · · · ∩Xit,jt | = nd−t/m. (5)

That is, the number of entries in H which are equal to x with the t positions
i1, . . . , it prescribed as j1, . . . , jt, respectively, is exactly nd−t/m. So, H is an Fd(n;µ)
frequency hypercube of type `.

Now let H and H ′ be hypercubes corresponding to different parallel classes K and
K ′. Let (x, y) be a pair with 1 ≤ x, y ≤ m. The number of d-tuples (i1, . . . , id) with
H(i1,...,id) = x and H ′(i1,...,id) = y is |Kx ∩K ′y| = nd/m2, so the hypercubes H and H ′

are indeed orthogonal. �

The next Theorem generalizes Theorem 3.5 of [7]. First, we introduce the polyno-
mials

p(d,`)(x) =
d∑

k=`+1

(
d

k

)
xk and q

(d,`)
i (x) =

∑̀
k=0

(−1)`−1+k

(
i

k

)(
d− 1− i
`− k

)
xk (6)

for i, ` = 0, . . . , d− 1.
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Theorem 3.2 Let 1 ≤ ` ≤ d−1 and suppose that there is a d-framed (m, r;nd/m2)-

net of type `. Then r ≤ p(d,`)(n − 1)/(m − 1), with equality if, and only if, the net

is a PBIBD based on a d-class association Hamming scheme H(d, n). In this case,

for i = 1, . . . , d, the number of blocks on a pair of points which are i-th associates is

r
(

(m− 1)q
(d,`)
d−i (n− 1)/p(d,`)(n− 1) + 1

)
/m.

Proof: Consider the d-framed (m, r;nd/m2)-net ∆ of type ` with d-frame [X1 : · · · :
Xd], where Xi = {Xi1, . . . , Xin}. Any point of ∆ is uniquely expressible in the form
X1,j1 ∩ · · · ∩Xd,jd

. Let P be the point X1,1 ∩ · · · ∩Xd,1.

For any point Q 6= P , let λQ be the number of blocks on P and Q. Counting pairs
(Q,B), where Q is a point different from P and B is a block on both P and Q,
we obtain

∑
Q 6=P λQ = r(nd/m − 1). Counting ordered triples (Q,B,B′), where

B,B′ are distinct blocks on P and Q and Q 6= P , we obtain
∑

Q 6=P λQ(λQ − 1) =

r(r − 1)(nd/m2 − 1). Hence,
∑

Q6=P λ
2
Q = r(r − 1)(nd/m2 − 1) + r(nd/m− 1).

For any t with 0 ≤ t ≤ d, let Nt be the set of points X1,j1 ∩ · · · ∩ Xd,jd
for which

exactly t of the j1, . . . , jd are equal to 1. Clearly, |Nt| =
(

d
t

)
(n − 1)d−t. Note also

that Nd = {P}. For i = 1, . . . , d, define δi = (1/|Ni|)
∑

Q∈Ni
λQ.

Now suppose that 0 ≤ t ≤ `. For any t-subset U = {i1, . . . , it} of the set E =
{1, . . . , d}, let XU = Xi1,1 ∩ · · · ∩Xit,1. Then

∑
Q∈XU , Q6=P λQ is the number of pairs

(Q,B) with Q ∈ XU , Q 6= P and B a block on P and Q. Hence,
∑

Q∈XU , Q6=P λQ =

r
(
nd−t/m− 1

)
. So,

∑
U⊆E,|U |=t

∑
Q∈XU , Q6=P λQ = r

(
d
t

) (
nd−t/m− 1

)
. However,∑

U⊆D,|U |=t

∑
Q∈XU , Q6=P λQ =

∑d−1
i=t

∑
Q∈Ni

(
i
t

)
λQ =

∑d−1
i=t

(
i
t

)(
d
i

)
(n − 1)d−iδi

=
∑d−1

i=t

(
d
t

)(
d−t
i−t

)
(n− 1)d−iδi. Hence,

∑d−1
i=t

(
d−t
i−t

)
(n− 1)d−iδi = r

(
nd−t/m− 1

)
.

Moreover, 0 ≤
∑d−1

i=0

∑
Q∈Ni

(λQ − δi)2 =
∑

Q 6=P λ
2
Q −

∑d−1
i=0 |Ni|δ2

i . We will show in
Section 5 that the function

f(y0, . . . , yd−1) = r(r− 1)

(
nd

m2
− 1

)
+ r

(
nd

m
− 1

)
−

d−1∑
i=0

(
d

i

)
(n− 1)d−iy2

i (7)

achieves a maximum subject to the relations

d−1∑
i=t

(
d− t
i− t

)
(n− 1)d−iyi = r

(
nd−t/m− 1

)
, 0 ≤ t ≤ `, (8)

at the point given by

ȳi = r
(

(m− 1)q
(d,`)
i (n− 1)/p(d,`)(n− 1) + 1

)
/m, i = 0, . . . , d− 1. (9)

A straightforward calculation will show that this maximum value is(
p(d,`)(n− 1)− r(m− 1)

)
r(m− 1)nd/m2p(d,`)(n− 1). (10)
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Thus, r ≤ p(d,`)(n− 1)/(m− 1).

Moreover, r = p(d,`)(n − 1)/(m − 1) if, and only if, λQ = δi = ȳi whenever Q ∈ Ni;
that is, whenever P and Q are (d− i)-th associates in the Hamming scheme. In this
case, λi = ȳd−i for i = 1, . . . , d. �

4 The classical case

In this section, for any prime power q and any positive integer e ≥ 1, we provide
a construction for a complete set of Fd(qe; qe−1) frequency hypercubes of type `,
where 1 ≤ ` ≤ d− 1. We also illustrate how to construct directly the corresponding
d-framed net arising in Theorem 3.2. Let Fq denote the finite field of order q.

Our hypercube construction is an extension of the polynomial representation con-
struction provided in [10] for sets of orthogonal frequency squares. The construction
of the d-framed net uses affine geometries and extends that of [7]. In reality, the
two constructions are quite similar since linear polynomials over finite fields define
hyperplanes in affine geometries. We first consider the hypercube construction.

Consider the collection of all linear polynomials a1x1 + · · · + adexde over the field
Fq where none of the sets of coefficients (ake+1, . . . , a(k+1)e) = (0, . . . , 0) for k =
0, 1, . . . , d− 1, and where no two vectors of coefficients are constant Fq multiples of
each other. In this notation, when a coordinate is fixed, we are actually fixing e of
the coefficients, namely (ake+1, . . . , ak+1)e) for some k = 0, 1, . . . , d − 1. Each such
linear polynomial represents an Fd(qe; qe−1) frequency hypercube. Moreover, each
hypercube is of type d−1 since if we fix any d−1 of the d coordinates, we are fixing
(d−1)e of the coefficients, and so the resulting linear equation a1x1+· · ·+adexde = α
has exactly qde−(d−1)e−1 solutions in F de

q for any α ∈ Fq. (We also note that if `+ 1
of the sets of coefficients are nonzero, then the resulting hypercube will be of type
`.)

Moreover, since no two of the vectors of coefficients are Fq multiples of each other,
any two such linear polynomials over Fq will form a linear system of rank 2, and
hence they will have qde−2 solutions in F de

q for any pair (α, β) ∈ F 2
q . Thus the

resulting hypercubes are indeed orthogonal.

We now proceed to construct the d-framed net which is equivalent to the set of
orthogonal hypercubes, and which arises in Theorem 3.2. To this end, let V =
V (de, q) denote the de-dimensional vector space over the finite field Fq. Further let
AG(de, q) denote the affine geometry of dimension de over Fq.

Let P1, . . . , Pd be any d, e-dimensional subspaces of V which satisfy P1 ∩ · · · ∩ Pd =
{0}, and V = P1 + · · · + Pd. For example, one could choose a basis of V so that
for i = 0, 1, . . . , d− 1, Pi = {(0, . . . , 0, xie+1, . . . , xie+e, 0, . . . , 0)|xj ∈ Fq, ie+ 1 ≤ j ≤
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ie+ e}.
Let ∆ be the net whose points are those of AG(de, q) and whose blocks are the affine
hyperplanes U for which |Pi ∩ U | = qe−1. Then ∆ is a net since, if U is a block of
∆, then so is every block in the parallel class of U .

The number of de-dimensional subspaces containing an e-dimensional subspace S
is the number of (e − 1)-dimensional subspaces in the quotient space V/S which
is of course isomorphic to the space V (e, q); namely (qe − 1)d/(q − 1). Since V =
P1 + · · · + Pd, no hyperplane contains all of the Pi, i = 1, . . . , d. Hence the number
of parallel classes not containing any of the Pi is (qe − 1)d/(q − 1). Hence ∆ is
a (q, (qe − 1)d/(q − 1); qe−1)-net. Moreover, since for each i = 1, . . . , d, Pi has qe

cosets, the e-dimensional affine subspaces in AG(de, q) parallel to any of the Pi form
a d-frame for ∆. Further, two cosets say Pi +x and Pj +y meet in exactly one point
in AG(de, q) for any x,y ∈ V .

5 Polynomial identities

We complete the proof of Theorem 3.2 in this section by establishing Proposition
5.6, before which we prove some elementary results from combinatorial theory and
linear algebra. Throughout this section, n, d and ` are integers, with n > 1, d > 0
and 0 ≤ ` < d. The polynomials p(d,`)(x) and q

(d,`)
i (x), i = 0, . . . , d−1 are as defined

in (6).

Proposition 5.1 Let 0 ≤ t ≤ `. Then
d−1∑
i=t

(
d− t
i− t

)
xd−iq

(d,`)
i (x) = −p(d,`)(x).

Proof: The left hand side is
∑d−1

i=t

(
d−t
i−t

)
xd−i

∑`
k=0(−1)`−1+k

(
i
k

)(
d−1−i
`−k

)
xk, which upon

setting j = k+d−i, is equal to
∑d−1

i=t

∑d−i+`
j=d−i(−x)j(−1)i+`−d−1

(
d−t
i−t

)(
i

j+i−d

)(
d−1−i

`−j+d−i

)
.

Any term with j < max{d− i, `+ 1} or j > min{d, d− i+ `} is clearly 0, since one
of the binomial coefficients is 0. Hence, the sum may be rewritten as

d∑
j=`+1

(−x)j

d−1∑
i=t

(−1)i+`−d−1

(
d− t
i− t

)(
i

j + i− d

)(
d− 1− i

`− j + d− i

)
. (11)

Replacing i by d − i, the coefficient of (−x)j is
∑d−t

i=1(−1)i+`−1
(

d−t
i

)(
d−i
d−j

)(
i−1

j−`−1

)
.

Since
(

i−1
j−`−1

)
=
∑j−`−1

s=0 (−1)j−`−1−s
(

i
s

)
, we may rewrite this coefficient as

j−`−1∑
s=0

(−1)j−s

d−t∑
i=1

(−1)i

(
d− t
i

)(
d− i
d− j

)(
i

s

)
. (12)
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Now
∑d−t

i=0(−1)i
(

d−t
i

)(
d−i
d−j

)(
i
s

)
= 2F1(s − `, s + t − d; s − d; 1), where 2F1 is the hy-

pergeometric function; see, for example, [1]. In particular, we can apply the Chu-
Vandermonde theorem [1, corollary 2.2.3] to get 2F1(s − `, s + t − d; s − d; 1) =
(−t)`−s/(s− d)`−s, where (a)n = a(a+ 1) . . . (a+ n− 1) is the rising factorial. The
constraints on the parameters s, t, d and ` ensure that the numerator of this frac-
tion is zero and the denominator is non-zero. Thus,

∑d−t
i=0(−1)i

(
d−t

i

)(
d−i
d−j

)(
i
s

)
= 0.

So,
∑d−t

i=1(−1)i
(

d−t
i

)(
d−i
d−j

)(
i
s

)
= 0 or −

(
d
j

)
according as s > 0 or s = 0. Hence, the

coefficient of (−x)j in (11) is (−1)j−1
(

d
j

)
. So, the expression in (11) is −p(d,`)(x), as

required. �

We wish to acknowledge the help given by G. E. Andrews in simplifying the proof
of the preceding proposition by pointing to the connection with the hypergeometric
function. He also noted that the polynomial q

(d,`)
i (x) is also connected with the

hypergeometric function; in fact, q
(d,`)
i (x) = (−1)`−1

(
d−1−`

`

)
2F1(−i,−`; d−i−`;−x).

Corollary 5.2 Let 0 ≤ k < j ≤ `. Then
d−1∑
i=k

(
d− j
i− k

)
xd−iq

(d,`)
i (x) = 0.

Proof: We form the sum
∑j

t=k(−1)j−k
(

j−k
t−k

)∑d−1
i=t

(
d−t
i−t

)
xd−iq

(d,`)
i (x). Changing the

order of summation, we get
∑d−1

i=k

(∑j
t=k(−1)j−k

(
j−k
t−k

)(
d−t
d−i

))
xd−iq

(d,`)
i (x), which is∑d−1

i=k

(
d−j
i−k

)
xd−iq

(d,`)
i (x). However,

∑j
t=k(−1)j−k

(
j−k
t−k

)
(−p(d,`)(x)) = 0, clearly. �

Corollary 5.3 Let 0 ≤ k ≤ `. Then

d−1∑
i=k

(
d− k
i− k

)(
d− i− 1

`− k

)
xd−iq

(d,`)
i (x) = (−1)`−k+1p(d,`)(x).

Proof: We establish the result by induction on ` − k. If k = `, the left-hand
side is

∑d−1
i=`

(
d−`
i−`

)
xd−iq

(d,`)
i (x), which is −p(d,`)(x) by Proposition 5.1. Now sup-

pose that k < ` and that we have established
∑d−1

i=k+1

(
d−k−1
i−k−1

)(
d−i−1
`−k−1

)
xd−iq

(d,`)
i (x) =

(−1)`−kp(d,`)(x). By Corollary 5.2,
(

d−k−1
`−k

)∑d−1
i=k

(
d−`
i−k

)
xd−iq

(d,`)
i (x) = 0. Subtracting

the first equation from the second, we notice that the coefficient of xd−iq
(d,`)
i (x) on

the left-hand side, when i ≥ k, is
(

d−k−1
`−k

)(
d−`
i−k

)
−
(

d−k−1
i−k−1

)(
d−i−1
`−k−1

)
=
(

d−k
i−k

)(
d−i−1
`−k

)
. The

right-hand side is (−1)`−k+1p(d,`)(x). �

Corollary 5.4 Let 0 ≤ k ≤ `. Then

d−1∑
i=0

(
d

i

)
xd−iq

(d,`)
i (x)2 = (−1)`−k+1((x+ 1)d − p(d,`)(x))p(d,`)(x).

9



Proof: The left-hand side is

d−1∑
i=0

(
d

i

)
xd−i(−1)`−1

∑̀
k=0

(−1)k

(
i

k

)(
d− i− 1

`− k

)
xkq

(d,`)
i (x)

=
∑̀
k=0

(−1)k(−1)`−1xk

d−1∑
i=0

(
d

i

)(
i

k

)(
d− i− 1

`− k

)
xd−iq

(d,`)
i (x)

=
∑̀
k=0

(−1)k(−1)`−1xk

(
d

k

) d−1∑
i=0

(
d− i
d− k

)(
d− i− 1

`− k

)
xd−iq

(d,`)
i (x)

=
∑̀
k=0

(−1)kxk

(
d

k

)
p(d,`)(x)

by Corollary 5.3. Since
∑`

k=0 x
k
(

d
k

)
= (x+ 1)d − p(d,`)(x), the result follows. �

Proposition 5.5 Let r, s be positive integers with r ≤ s. Let A = [ai,`] be a real

positive definite symmetric s× s matrix. Let B = [bi,`] be a real r× s matrix of rank

r. Let c = (c1, . . . , cr) ∈ Rr. Then, in the (s − r)-flat U = {x : xBt = c}, where

x = (x1, . . . , xs), the quadratic form f(x1, . . . , xr) =
∑r

i,`=1 ai,`xix` has a unique

minimum point.

Proof: We find the critical points of f on U by the method of Lagrange multipliers.
Thus, we find the critical points (z,x) of the function xAxt − xBtzt + czt, where
z = (z1, . . . , zr). These are the points (z,x) satisfying

Bxt = ct and Btzt − Axt = 0. (13)

The matrix of coefficients

[
0 B
Bt −A

]
is a real symmetric matrix. Suppose that 0 is

one of its eigenvalues and (ut,vt) is a corresponding eigenvalue. Then Bvt = 0 and
Btut = Avt, so that vAvt = 0. As A is positive definite, v = 0. Hence, uB = 0.
Since B has maximal rank, u = 0. Hence, 0 cannot be an eigenvalue. So, equations
(13) have a unique solution, giving a unique critical point for f on U . Since A is
positive definite, it is clear that this critical point is a minimum point. �

Proposition 5.6 The function f(y0, . . . , yd−1), defined in (7), achieves a maximum

value, subject to the relations (8), at a unique point (ȳ0, . . . , ȳd−1) given by (9). This

maximum value is the expression given in (10).

10



Proof: The function f is clearly negative definite and the matrix of coefficients of
the relations is clearly of rank `+1. From Proposition 5.5, f has a unique maximum
point on the flat defined by these relations. We will exhibit the unique solution to
these relations and the auxiliary relations by the Lagrange multiplier method and
determine the value of the function at this point in a series of lemmas.

We first list explicitly the relations (13) in this case. They are

d−1∑
i=t

(
d− t
i− t

)
(n− 1)d−iyi = r

(
nd−t

m
− 1

)
(14)

for 0 ≤ t ≤ `, and

∑̀
t=0

(
d− t
i− t

)
zi = 2

(
d

i

)
yi (15)

for 0 ≤ i ≤ d− 1.

Next, we define

ȳi =
r

m

(
(m− 1)q

(d,`)
i (n− 1)

p(d,`)(n− 1)
+ 1

)
(16)

for 0 ≤ i ≤ d− 1, and

z̄t =
2r

m

(
(−1)`−1(m− 1)(−n)t

p(d,`)(n− 1)

(
d

t

)(
d− t− 1

`− t

)
+ δt,0

)
/m (17)

for 0 ≤ t ≤ `, where δt,0 = 1 or 0 according as t = 0 or t 6= 0.

Lemma 5.7 Let 0 ≤ t ≤ `. Then, equation (14) is satisfied by setting yi = ȳi for

0 ≤ i ≤ d− 1.

Proof: The left-hand side of equation (14), with yi = ȳi for 0 ≤ i ≤ d− 1, is
r(m−1)

mp(d,`)(n−1)

∑d−1
i=t

(
d−t
i−t

)
(n− 1)d−iq

(d,`)
i (n− 1) + r

m

∑d−1
i=t

(
d−t
i−t

)
(n− 1)d−i

= −r(m− 1)/m+ r(nd−t − 1)/m = r(nd−t/m− 1), using Proposition 5.1. �

Lemma 5.8 Let 0 ≤ i ≤ d − 1. Then, equation (15) is satisfied by setting yi = ȳi

and zt = z̄t for 0 ≤ t ≤ `.

Proof: The left-hand side of equation (15), with zt = z̄t for 0 ≤ t ≤ `, is

2r(m− 1)(−1)`−1

mp(d,`)(n− 1)

∑̀
t=0

(
d− t
i− t

)
(−n)t

(
d

t

)(
d− t− 1

`− t

)
+

2r

m

(
d

i

)
11



=
2r(m− 1)(−1)`−1

mp(d,`)(n− 1)

(
d

i

)∑̀
t=0

(−n)t

(
i

t

)(
d− t− 1

`− t

)
+

2r

m

(
d

i

)
(18)

Now,

∑̀
t=0

(−n)t

(
i

t

)(
d− t− 1

`− t

)
=
∑̀
t=0

t∑
s=0

(1− n)s(−1)t−s

(
t

s

)(
i

t

)(
d− t− 1

`− t

)

=
∑̀
t=0

t∑
s=0

(1− n)s(−1)t−s

(
i

s

)(
i− s
t− s

)(
d− t− 1

`− t

)

=
∑̀
s=0

(
i

s

)
(1− n)s

∑̀
t=0

(−1)t

(
i− s
t

)(
d− s− t− 1

d− `− 1

)
(19)

Let αs be the inner sum in (19). Then αs is the coefficient of x0 in the product∑`
t=0(−1)t

(
i−s
t

)
xt
∑`

t=0

(
d−s−t−1
d−`−1

)
x−t. The limits of summation of the first sum can

be changed to 0 and i− s and those of the second sum can be changed to −∞ and
`− s, without affecting the coefficient of x0. The resulting product is (1− x)i−s(1−
x)−(d−`)x−(`−s) = (1 − x)−(d−i−`+s)x−(`−s). Note that ` ≥ s and d > i. Hence, the
coefficient of x`−s in (1−x)−(d−i−`+s) is

(
d−i−1

`−s

)
whether d− i > `−s or not, since in

the latter case it is clearly 0. That is, αs =
(

d−i−1
`−s

)
. So, (19) is (−1)`−1q

(d,`)
i (n− 1).

Substituting this expression into (18), we get(
d

i

)
2r

m

(
(m− 1)q

(d,`)
i (n− 1)

p(d,`)(n− 1)
+ 1

)
,

which is the right-hand side of (15). �

Lemma 5.9

f(y0, . . . , yd−1) =

(
p(d,`)(n− 1)− r(m− 1)

)
r(m− 1)nd

m2p(d,`)(n− 1)

Proof:
m2

r2
f(ȳ0, . . . , ȳd−1)−

(
1

r
− m− 1

p(d,`)(n− 1)

)
(m− 1)nd

= −m2 + nd +
(m− 1)2nd

p(d,`)(n− 1)
− (m− 1)2

p(d,`)(n− 1)2

d−1∑
i=0

(
d

i

)
(n− 1)d−1q

(d,`)
i (n− 1)2

− 2(m− 1)

p(d,`)(n− 1)

d−1∑
i=0

(
d

i

)
(n− 1)d−1q

(d,`)
i (n− 1)−

d−1∑
i=0

(
d

i

)
(n− 1)d−1

12



By Proposition 5.1,
∑d−1

i=0

(
d
i

)
(n − 1)d−1q

(d,`)
i (n − 1) = −p(d,`)(n − 1). By Corollary

5.4,
∑d−1

i=0

(
d
i

)
(n − 1)d−1q

(d,`)
i (n − 1)2 = (nd − p(d,`)(n − 1))p(d,`)(n − 1). Clearly,∑d−1

i=0

(
d
i

)
(n− 1)d−1 = nd − 1. The result follows immediately. �
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