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Abstract

This paper presents a novel approach to evaluating the
detection of unusual or interesting events in videos involv-
ing certain types of human behaviour, such as pedestrian
scenes. The holy grail of computer vision for surveillance
can be thought of as an interesting or unusual event detec-
tor which when given an input video stream, outputs some
form of alarm whenever anything unusual happens inside
its field of view. This paper addresses the question of how
we would go about evaluating such a system, suggests one
possible evaluative schema, and presents an example of this
evaluative procedure in use on a prototype Interesting Event
Detector.

1 Introduction

When you monitor a pedestrian scene, a number of dif-
ferent behaviour patterns can be observed. People walk
along pathways and cars are driven along roads, and occa-
sionally people will take shortcuts or get into a car or stop
for a chat. Very occasionally, someone will do something
different or interesting – something that does not fit our
general understanding of what behaviour people exhibit in
that scene. Humans are very good at detecting such events,
but are not so good at articulating what exactly it is that
makes such events unusual or interesting. It is worth mak-
ing the distinction between events which are interesting and
events which are atypical - most Computer Vision systems
for surveillance attempt to detect the latter, whereas humans
are much more interested (by definition) in the former. It is
easy to imagine a system which would ring an alarm if a
pedestrian strayed from a path. But if the path was blocked,
this behaviour, although atypical, would not really be inter-
esting.

A number of systems have been constructed which can

be portrayed as attempts at identifying such events. Many
systems are actually designed to do something else, and
atypicality detection emerges as a “bonus” feature: by mod-
elling a particular feature of the environment (path usage,
patterns of pedestrian motion over time etc.) and deter-
mining which instances do not fit the model, some form of
interesting-event detector has magically been constructed.

One approach is exemplified in [4], in which the typ-
icality or otherwise of pedestrian trajectories is assessed
based upon learned models of absolute location and speed
over time. In [6], a model of the paths within a scene is
constructed based upon the behaviour of pedestrians, and
this path model can subsequently be used to detect unusual
trajectories. The relationships between objects can also
be used to judge typicality [7]. In [9] patterns of activity
are learned at a site, and unusual event detection is per-
formed by spotting events which do not fit the pattern or
co-occurrence data. In [3] “suspicious” behaviour is corre-
lated with the rapid head movements.

Determining the overall effectiveness of algorithms of
this type has historically been unsystematic. This is ac-
knowledged by the authors of [9], who state they are work-
ing on methods of evaluating the unusual event detection
aspect of their work.

Evaluative techniques at their simplest involve investi-
gating the problematic cases by hand - looking at the out-
liers - and saying “Yes, that’s unusual” [9, 4]. One model,
trained on pedestrians, had a major outlier which turned
out to be a cyclist. This is, of course, confirmation that
the model provides a reasonable basis for the detection of
strange pedestrian activity, however, the confirmation such
evidence provides is at best anecdotal. It is also completely
self-justifying - if we look at the examples which do not fit
the model, and find they are odd in some way, then of course
they are interesting to us - they fit our frame of reference (or
rather, they don’t fit our frame of reference) by definition.

Another means of evaluating such systems is through the



use of “actors” 1. These people are recorded behaving in an
unusual fashion, and the system in question is evaluated on
its ability to single out the sequences featuring the strangely
behaving actors [3, 7, 4]. Problems with this approach are
manifold, but all hinge upon the question of whose idea of
interesting or unusual we are dealing with. If the decision
as to what constitutes unusual behaviour is left up to the ac-
tors, questions about who the actors are, what their precon-
ceptions of the project are and most importantly, their links
to the software designers, become paramount. If the actors
are lab-mates of the paper author, do they know how the al-
gorithm in question works? The alternative case, where the
actors are instructed by the system designer on the nature
of unusual behaviour, could be even worse - it is easy to
imagine a scenario in which the instruction “We need some
footage of supicious behaviour, like walking from car to car
across the car park in a wavy line” is issued. This is not
exactly good science.

Computer Vision systems for surveillance are generally
model based. And things which do not fit the model can
only be classed as unusual or interesting with respect to that
model. We cannot really claim that events which fall outside
the model are interesting or unusual - all we can really say
about them is just that they don’t fit the model. Thus we re-
ally cannot claim any more or less for these interesting event
detectors until we have a more principled way of evaluating
their performance. This paper proposes a way out of this
model-based trap - by providing a form of “ground-truth”
for interestingness.

2 Am I interesting or not?

Within the surveillance domain, what we are interested
in are events which might be associated with criminal or
dangerous behaviour. A recent study [10] investigates
whether such events can be predicted from CCTV footage
- that is , whether it is possible to distinguish sequences
where a crime was about to occur from neutral sequences.
The authors conclude that not only is it possible, but that
naı̈ve observers perform as well as trained security guards.
This suggests that there is no learned or innate ability to
detect the type of events security guards detect.

Our central assumption is that benchmarking against a
number of humans is an improvement over relying on the
author, actors, or serendipity to provide some measure of
the interestingness or otherwise of the data set.

The evaluative schema we propose involves requiring a
number of volunteers (in this case, undergraduate and post-
graduate students with no knowledge of the project being
evaluated) to rank the behaviour of each agent in the scene

1These actors often look suspiciously like computer vision postgradu-
ates.

in question. To assist in this task, separate videos are pro-
duced for each agent containing only those frames of video
encompassing the agent’s trajectory. A highlight indicates
exactly the agent we are interested in - this makes the cog-
nitive task of those evaluating much easier in scenes with
multiple, occluded agents.

Volunteers are asked to rate the “interestingness” of these
videos on a scale of 1 to 5. The instructions given to the
volunteers were as follows:

“If you were a security guard, would you re-
gard the behaviour of the agent highlighted in this
video as interesting? Please indicate on the fol-
lowing questionnaire, with one being uninterest-
ing and five being interesting.”

Volunteers were also invited to note down any comments
they wished to make about any of the videos.

An average of the scores from the human rankers is then
assumed to provide a simple measure of “interestingness”:
we choose the median, as this is less sensitive to outliers.
We can then compare it directly to the output of any ma-
chine generated indication of typicality, and if we want
our system to output a binary decision (interesting, or not)
we can use ROC graphs to assist in the determination of a
threshold.

However, the median is just one statistic we can use: the
advantage of having the opinions of a number of people is
that there is a richness of information we can incorporate
into our evaluations. We can, for example, calculate the
correlation statistics - both within the human set (to deter-
mine consistency within the set of human rankers) and be-
tween the set of human rankings and the machine generated
statistic. The correlation statistic applicable to this data is
Spearman’s Rho [1], as the data is clearly non-parametric
and on different scales - that is to say that any computer
generated statistic is unlikely to map directly onto a 1-5 rat-
ing of interestingness. Nevertheless, if those videos rated
highly by the computer are those videos rated highly by the
human volunteers this is a positive result.

Spearman’s Rho is a similar calculation to the product-
moment correlation (sometimes called Pearson’s), except
Spearman’s operates on ranked data. Given ranked data,
Spearman’s can be calculated using the following formula:

rs � 1 � 6∑n
i � 1 d2

i
n � n2 � 1 �

Where n is the number of videos, and d is the difference
between the matched pairs of ranks. Spearman’s Rho can
be tested for significance: for small values of n, rs has a non
standard distribution and specific tables must be used. For
large (n � 10) values of n the following function of rs fol-
lows approximately the distribution of a t-test statistic with
n � 2 degrees of freedom:



ts �
�

n � 2
1 � r2

s

The resultant value ts can be compared against any stan-
dard statistical tables for significance testing.

As well as the possibility of performing a range of sta-
tistical tests we have a wealth of qualitative information in
the form of comments made by the subjects as they were
ranking the dataset. These can help in instances where dis-
agreement occurs - for example, in one outdoors scenario
an object was reported as being highly interesting by sev-
eral subjects, but the trajectory taken by that object was very
dull. Inspection of their forms revealed that it was interest-
ing because it was an ambulance.

3 The evaluative schema applied to the PETS
dataset

A subset of the PETS2004 dataset was used in this
study.2 This consists of pedestrian footage filmed in a foyer
situation, with actors performing various roles such as meet-
ing, walking, fighting and browsing. Included in the dataset
are various people we assume are bystanders. As we are
only interested in evaluating high level classifications of be-
haviour (and not tracking), we only consider those videos
for which ground truth has already been provided. We then
exclude those agents whose trajectories are only partially
covered by the video, and those agents who hover on the
periphery. In short, we only analyse the main actors in each
scene, and those bystanders whose trajectories are shown in
full. This leaves us with a total of 23 agents from 12 movies.
These are listed in detail, alongside an image showing the
path of the trajectory, in Appendix A at the end of this paper.

The 12 original videos are used to produce 23 (n � 23)
labelled videos. These were presented to 12 subjects (ns �
12), who rated each on the 1-5 scale as detailed in Section
2. Spearman’s Rho was calculated for each pair of human
raters, giving a correlation matrix with 66 entries ( n2

s 	 ns
2 ).

All of these correlations were positive, and 62 of the 66
were significantly positive at the 0.05 level. This means we
can safely assume that the group of humans are in broad
agreement about which clips are interesting.

It is interesting to take a closer look at the behaviour of
those agents where the human rankers were in disagreement
- where the standard deviation of the human scores is high.
Some of these were due to partial trajectories, and to the
inclusion of people such as ID1 from Walk3.mpg, who en-
tered the scene then immediately turned around and left (we
assume he was a passer-by, perhaps put off by the camera).

2This data comes from from the EC Funded CAVIAR project/IST 2001
37540

In particular, there are four cases in particular where the hu-
man rankings range from lowest (1) to highest (5) and it is
worth investigating these in a little more detail:


 ID 0 from Walk1.mpg: Standard Deviation = 1.07.
In this movie clip, the agent walks out and waves at
the camera, then leaves the scene by the same door
they came in from. The actor in this clip is presumably
signalling to the camera person that they are ready to
go, although this was not clear from context.


 ID 0 from Rest SlumpOnFloor.mpg: Standard Devi-
ation = 1.48. In this movie, the agent walks out of the
scene (the clip clearly starts before the actor is ready)
then re-enters, crosses to the object on the left, then sits
on the floor for a short while before leaving. Some of
the subjects think that sitting on the floor was uninter-
esting.


 ID 1 from Meet WalkSplit.mpg: Standard Deviation
= 1.62. This clip and the following feature agents en-
tering the scene from different doors, meeting in the
middle, and then leaving from different doors. Com-
ments by those subjects who rated these clips highly
indicate that they thought a package was passed be-
tween the two actors - which would be suspicious
given the instructions to subjects.


 ID 3 from Meet WalkSplit.mpg: Standard Deviation
= 1.56. See above.

That there was disgreement between the human subjects
on some of the clips should not be seen as a drawback to
this evaluative schema - indeed, one of the reasons for in-
cluding a number of subjects is to allow for such differences
and disagreements. These help provide a richer framework
against which to evaluate our software.

4 A prototype interesting event detector

The interesting event detector we will use as a demon-
stration is inspired Dennett’s large body of work on inten-
tional explanation (for example, [2]), which describes dif-
ferent ways of thinking about and explaining the behaviour
of agents. It is hoped that this system, when completed,
will provide a new way of thinking about the problem of
behaviour modelling in the surveillance domain. However,
it is still at the prototype stage and we will just sketch an
overview of its operation here.

Our system tries to work out where the agent might be
heading, and combines this hypothesis with a simple model
of the way in which people intentionally navigate towards
the geographical goals in a scene. In our original formula-
tion, the hypothesis about where the agent may be heading



(a) Exits (b) Obstacles

(c) Scene

Figure 1. The exit model, obstacle model and
scene.

is built up using information from a person tracker [5], an
obstacle model and an exit model, but in the current im-
plementation we simply use the ground truth information
provided (specifically, the position of the object centroid)
for the agent’s position (x). We apply a Kalman filter to this
and store the directional component to obtain an estimate of
direction of travel θ .

All calculations are carried out in the image plane, and
we make the simpifying assumption that the wide-angle
lense used to capture the PETS2004 datasets will not have
a significant effect on our calculations.

Central to our approach is the concept of a goal. We de-
fine goals as places where the agent can leave the scene -
doors and exits - or to borrow terminology from Ellis and
Xu [11] “Long-term Occlusions” or “Border Occlusions”.
In the types of pedestrian scene typically subject to surveil-
lance, these are the goals of the agents therein - in a car
park, the pedestrian goals are either their cars or the door;
in a general pedestrian scene like a shopping mall or the
foyer of a research institute, the goals are the exits of the
scene, and perhaps some other form of attraction such as an
information desk or an ATM machine. The goals for any
particular scene can be learned, if enough example footage
is present. In the current experiment the PETS2004 dataset
(which features a number of short videos) does not provide
the body of data required for learning to take place, and
so the exit model was hand crafted. This consists simply

of rectangular boxes representing each exit. The obstacle
model is similarly hand crafted, but for computational rea-
sons does not have to be regular and is simply stored as a
bitmap. Figure 1 shows these models and an image of the
scene.

Our central assumption is that people move consistently
towards their goal. If there is an obstacle between the agent
and their goal, virtual “sub-goals” are constructed in places
where the agent might be able to see more of the scene than
they currently can - thus, sub-goals are constructed on the
edge of obstacles, in places where the agent would be able
to see further around the obstacle. From each sub-goal, we
compute which goals would be visible if the agent were at
that point, and also any sub-sub-goals. And from each sub-
sub-goal, we compute which further goals would be visible.
Thus for each goal xg within the scene we can determine
whether that goal is directly visible, or whether it would be
visible by turning a corner, or whether it would be visible
by turning two corners (in the current implementation we
stop computation at two levels of sub-goal analysis). This
takes the form of a label - Label � xg � - which can have the
values V , for those goals which are directly visible; N, for
those goals which are not visible at all, and S1 or S2 for
those goals which are accessible via a sub-goal or two.

Indeed, there are four possible relationships between an
agent and each goal for each frame, which can be deter-
mined from the label of the pixel at the position of the goal
Label � xg � , and the angle φ , which is the angle subtended
by a line between the position of the goal xg, the position
of the agent x, and the agent’s current direction estimate θ .
These are:

1. A: The goal is directly visible: Label � xg � � V ; and the
agent is heading towards it 1 � φ ��� 1. g2 is in this
state in Figure 2.

2. D: The goal is directly visible to the agent:
Label � xg � � V ; but they are heading away from it:
φ � 1 or φ �� 1. g4 is in this state in Figure 2.

3. N: The goal is not visible to the agent: Label � xg � � N
(it is on the other side of an obstacle, and is not reach-
able by means of a sub-goal) . g3 is in this state in
Figure 2.

4. Sn: The goal is visible to the agent, but only via a sub-
goal (S1) or a sub-sub-goal (S2): Label � xg � � Sn. g1
is in state S1 in Figure 2.

Given these frame-by-frame classifications for each goal,
we can build an idea of how likely - or rather, unlikely - that
goal is as an explanation for the trajectory as a whole. This
is done by associating a cost with certain state transitions.
The diagram in Figure 3 shows costs associated with transi-
tions in the current model.



Obstacle (O)

Direct path headed away (V , later D)

Direct path headed towards (V , later A)

Reachable via sub-goal (S1)

Reachable via sub-sub-goal (S2)

Figure 2. An example of the sub-goal al-
gorithm in action in an outdoor pedestrian
scene. The agent is represented by a white
dot and a white arrow (corresponding to its
velocity vector); white dots with black cen-
tres are sub-goals; the obstacle model is
shown in black; areas which are not visi-
ble (either directly or via a sub-goal or two)
in white; areas shaded very light grey rep-
resent areas directly visible and headed to-
wards; darker shades of grey represent areas
of the scene accessible only via sub-goals or
sub-sub-goals; very dark grey represents ar-
eas directly visible but not within the angle
of vision; g1, g2, g3 and g4 are example goals
referred to in section 4.

Applying costs as laid out in Figure 3 provides us with
a cost for each goal within the scene, and that cost can be
thought of as representing the number of frames in which
the agent’s behaviour is inconsistent with travel towards that
particular goal. These costs are then divided by the total
length of the trajectory to provide a statistic which is com-
parable across agents. Finally, we need to simplify matters
and provide a single cost for each actor. If the system were
fully recursive and we were able to work out the final exit
for each agent, the cost associated with the final exit would
be an alternative measure. However, in the current dataset
there are some trajectories which finish whilst the agent is
still in view of the camera, making this statistic unreliable.
The highest cost or average cost would be inappropriate, as
it is possible for perfectly uninteresting trajectories to avoid
one or more exits completely; these would have very high

Figure 3. State transition diagram indicating
the cost of each transition. Those transi-
tions which are free (drawn with thick lines)
are those associated with progress towards
the particular goal; those with a cost are
those associated with movement away from
the goal

costs indeed - this would also affect any attempt to use the
average cost or some other aggregate score over all goals.
Therefore, in the current situation, the best choice for a sin-
gle cost is the lowest cost.

We can think of the Cost% statistic as representing the
percentage of frames in which the agents’ travel was incon-
sistent with motion towards their most likely goal. Cost%
scores for the PETS2004 dataset are set out in full in Ap-
pendix A. The next section of this paper discusses ways
in which our Cost% statistic can be compared with the
“ground truth” scores discussed in section 3. It is worth not-
ing that with simple scenes without obstacles, the algorithm
just described simplifies to straightest path and the sub-
goal mechanism does not make any difference to the out-
put. For several of the simpler trajectories in the PETS2004
dataset this was indeed the case, and the power of the ap-
proach would be better demonstrated in a more complicated
scene with multiple obstacles. That said, the results on the
PETS2004 dataset are still promising and worth discussion.

5 The prototype evaluated

The question we now have to address is how well our
prototype results agree with the results of the subjects de-
tailed in Section 3. Firstly, we can calculate Spearman’s
Rho - rs - the correlation coefficient, between the computer
generated Cost% statistic and the human subjects, and be-
tween the Cost% and the human mean and median (making
the assumption that it is appropriate to reify the averages in
this way). The correlation statistic rs and the t-statistic ts are



Correlation with rs ts
H1 0.639 3.807
H2 0.679 4.234
H3 0.408 2.05
H4 0.353 1.729
H5 0.507 2.692
H6 0.453 2.329
H7 0.277 1.319
H8 0.292 1.4
H9 0.386 1.917
H10 0.319 1.542
H11 0.47 2.439
H12 0.626 3.676
Median Human 0.607 3.499
Mean Human 0.639 3.810

Table 1. Correlation statistics for the Cost%
score against each individual subject and the
human averages. Those values which are
statistically significant at the 0.05 level are
highlighted in boldface, and those which are
significant at the 0.1 level but not the 0.05 in
italics.

set out in Table 1.
The significance levels for ts with n � 23 are 1.721 at

the 10% level and 2.080 at the 5% level. As is clear from
Table 1 the correlation with the average human is statisti-
cally significant. In Figure 4 we have drawn the graph of
Cost% and the median human score by video clip (sorting
the video clips by median) it is clear that those clips rated
highly by humans generally scored highly on the machine
generated statistic as well. This graph also enables us to see
the anomalous cases clearly.

The spike labelled A in Figure 4 corresponds to
Meet WalkTogether1.mpg id 2. In this clip, the agent en-
ters from one side, meets someone, changes direction and
heads towards an exit - he does not actually exit the scene,
but turns around and comes a short way back into the foyer
before the video cuts off. We assume that this is an arti-
fact of video editing - it is definitely strange behaviour if
not. Given that our system can be thought of as providing a
measure of behaviour consistency, it is acceptable for it to
pick up on such artifacts.

The spikes labelled B and C in Figure 4 correspond
to Meet WalkSplit.mpg. These trajectories are both quite
complicated, involving first moving towards the other agent
in the scene and then moving towards an exit (different ex-
its in each case). This is an aspect of our software that we
hope to address in future - specifically, making other tracked
agents within the scene legitimate goals in themselves. This
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Figure 4. A comparison of the Cost% statistic
and the median human rankings. Cost% has
been scaled, in order to place both outputs in
the same range (1-5). The x-axis values are
ordered by median.

is one of the clips highlighted for attention in Section 3 as
being a video with high variance amongst human rankers.

The trough labelled D in Figure 4 corresponds to id 6 in
Fight RunAway1.mpg. This agent enters the scene moving
quite rapidly, has a play-fight with another agent (lasting
just a few seconds), then runs across to the exit opposite.
His trajectory is essentially a straight line with a slight kink
in the middle, and as our software operates solely on indi-
vidual trajectories does not pick up on this behaviour. An
extension to our system which might cope with this would
be to take into account the relative positions of other agents
in the scene.

6 Conclusions

Evaluation in Computer Vision should be about more
than merely x � y � t. And even when evaluating something
as simple as x � y � t, it has been suggested [8] that reliance on
just one estimate is unwise. As we produce more compli-
cated systems, performing higher level cognitive tasks than
“simple” classification or location, we need more compli-
cated, higher level evaluative techniques. If a system is
presented as a general-purpose surveillance system, or an
“Interesting Event Detector”, then it should be evaluated as
such. Specifically, it should be evaluated in such a way that
the opinions and prejudices of the designers cannot affect
the evaluation. Evaluation by accident - simply noting that
the events detected seem to be odd - is not good enough.
Evaluation by actor - by engineering test cases which in-
volve people behaving strangely - is suspect, and evaluation
based upon the opinion of the system author is also unsatis-
factory. In this paper, we have presented a novel approach



which uses a group of naı̈ve subjects who together provide
a rich background against which the performance of an al-
gorithm can both be measured statistically and compared
qualitatively.

The software outlined in this paper is also novel, in that it
adopts a high level intentional analysis of what is essentially
quite simple behaviour. Previous work consists of analy-
ses of the resultant behaviour: the fact that people follow
similar trajectories across a scene [4] is because they have
similar goals; the fact that paths can be approximated by
trajectory analysis [6] is because paths join two goals. This
work attempts instead to analyse the cause of the behaviour
– the goals – directly. The initial results presented here are
promising, and show that in principle such an analysis could
be used in a practical situation to provide a filter on surveil-
lance data.
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A Table of agents and results

Filename Id Image Description Cost%
(Scaled)

Human
mean

Human
SD

Human
Median

Walk1.mpg 0
Walks in, waves at camera, goes
back through same door

37.8
(3.52) 3.33 1.07 3.5

Walk1.mpg 1 Walks slowly across scene
8.57
(1.57) 1.25 0.45 1

Walk3.mpg 1
Walks out, turns around, walks back
through same door

38.1
(3.54) 2.08 1.16 2

Walk3.mpg 2 Walks slowly across scene
16.4
(2.09) 1.58 0.67 1.5

Meet WalkTogether1.mpg 1
Enters, meets, shakes hands,
changes direction, exits

49.46
(4.3) 1.92 1.16 1.5

Meet WalkTogether1.mpg 2
Enters, meets, shakes hands,
changes direction, exits

43.82
(3.92) 1.92 1.16 1.5

Rest FallOnFloor.mpg 2
Enters in a wobbly fashion, falls
over, gets up and leaves

58.6
(4.91) 4.67 0.65 5

Rest SlumpOnFloor.mpg 0
Leaves scene, re-enters, slumps on
floor, leaves scene again

58.52
(4.9) 3 1.48 3

Meet WalkSplit.mpg 1
Walks towards person, shakes
hands, turns, leaves scene

58.13
(4.88) 2.5 1.62 2

Meet WalkSplit.mpg 3
Walks towards person, shakes
hands, turns, leaves scene

36.31
(3.42) 2.33 1.56 2

Meet Crowd.mpg 0 Walks in straight line across scene
8.33
(1.56) 1.33 0.78 1

Meet Crowd.mpg 1 Walks in straight line across scene
11.95
(1.8) 1.5 0.67 1

Meet Crowd.mpg 2
Walks in relatively straight line
across scene

27.86
(2.86) 1.5 1 1

Meet Crowd.mpg 3
Walks in relatively straight line
across scene

29.67
(2.98) 1.58 1.16 1

Fight RunAway1.mpg 6 Walks in, fights, runs out
18.5
(2.23) 4.75 0.62 5

Fight RunAway1.mpg 7
Hangs around, Walks in, fights,
runs out

56.44
(4.76) 4.67 0.65 5

Fight OneManDown.mpg 4
Walks in, fights, runs in circles,
runs out

50
(4.33) 4.75 0.62 5

Fight OneManDown.mpg 5
Enters, gets fought with and
knocked over, leaves

55.43
(4.7) 4.33 1.15 5

Browse WhileWaiting2.mpg 0 Wanders aimlessly
41.97
(3.8) 2.08 0.9 2

Browse4.mpg 1 Wanders aimlessly
33.62
(3.24) 1.92 0.9 2

Browse4.mpg 2 Walks directly across scene
0
(1) 1.17 0.39 1

Browse2.mpg 1 Walks in, waves at camera, leaves
37.66
(3.51) 2.75 0.97 3

Browse2.mpg 3
Wanders towards bookshelves,
browses, leaves

58.87
(4.92) 1.67 0.78 1.5


