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Conclusions
 Proposed computational tools can effectively search for (multiple) revision
suggestions for yeast metabolic models
 Semi-automated model refinement, supported with literature search and robot
scientist experiments, helps to improve the model in phenotype prediction
 Future work

Use of logic programming to integrate models with evidence from
experimental data and constraint-based analysis

Learning GPR associations and regulatory rules and automated suggestion
of experiments, either in-silico or in-vivo

Applications
Computational tool implementation
 Implemented in Python, using CPLEX, glpk, lpSolve as LP/MILP solvers
 Read/write models in SBML format

       Model stored in bipartiate graph and/or stoichiometry matrices
       Suitable for both FBA and logical model simulations

 Converting model network (bi-level) optimisation problem to
constraint-based optimisation problem: LP, MILP.

 Algorithms for gap filling, OMNI
 Search algorithms for graph traverse, and identification of minimal models

Model validation with experimental data
 Single deletion data under minimal medium
 Wildtype growing under different conditions: RobotScientist’s [3] automated

titration experiments on yeast utilising amino acids as sole C/N source
 Awareness of data quality issue

Gap filling procedure
 Constraint-based optimisation and literature searching
 Solutions for 14 of 16 false inviable single deletions under minimal medium
 Further curation needed to fill in the missing reaction esp. for alternative

pathways of ergosterol biosynthesis

OMNI procedure
 More than 1 solution for 12 out of 48 false viable cases subject to OMNI
 Solution evaluation: in-silico simulation using phenotype data in SGD
 Application of a minimal set of revisions, resulting in:

True inviables increased by 12, at the cost of 1 extra false inviable
 Suggested revisions:

 Constraining the reaction directionality
 Removing reactions:

e.g. alternative pathway for quinolinate synthesis absent in yeast
 Adding regulator rules to control reaction activation

e.g. GALT and GALE activated only after sensing glalatose
 Testing in vivo by robot: auxotrphy experiments
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     Introduction
Motivation
 Genome-scale metabolic network models are useful for analysing the

cellular behaviour of organisms
 Semi-automated procedure for model validation and refinement are

important for quality assurance in such models
 Computational tools for iterative model validation and optimisation

are necessary to assist hypothesis generation and evaluation

Genome scale metabolic models for S. cerevisiae
 A consensus reconstruction: Yeast1, community driven, rigorously

evidenced, well annotated [1]

 Further development: Yeast4, expanded from Yeast1, with improved
representation of metabolic transport, lipid metabolism, etc. [2]

 Yeast4: 1102 unique metabolite reactions, and 924 metabolites
located in 15 cellular compartments

     Methods
Framework of Flux Balance Analysis (FBA)
 Identification of flux distribution using stoichiometry model, assuming

steady states, with constraints on mass balance and thermodynamics
to maximise/minimise an objective function (e.g. to max growth rate)

 Utilisation of constraint-based optimisation, linear/nonlinear
programming (LP/NLP), mixed integer linear programming (MILP)

Gap filling
 Structural Gaps in metabolic networks

Reaction gaps, missing gene-protein-reaction associations, etc.
 Mechanisms to rescue reaction gaps

Reversibility; transport; biomass formation; metabolite exchange
Addition of missing reactions from reference model

 Identification of minimal set of reactions to add on, in order to restore
biomass formation or blocked reactions [4]

Optimal Metabolic Network Identification (OMNI)
 Models under-constrained:

Reactions absent in yeast, irreversible or unfavorable under certain
             conditions, suppressed due to regulatory, etc.
 Bi-level constrained optimsation:

   Minimisation of discrepancies between observations and predictions
   while maximising the growth rate [5]
   Converting to MILP by exploiting duality for LP
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Single 
deletant 

Non-producible 
biomass comp. Revision suggestions 

Revision 
field Reference 

IPT1, CSG2, 

PXA2, PXA1 MIP2C 
Remove MIP2C from biomass, not 
essential for cell growth.  

Biomass 
formation 

PIMD: 
9368028 

SLC1 

phosphatidylcholin
e triglyceride,… 

1-acyl-sn-gylcerol-3-phosphate 
acyltransferase: SLC1 => SLC1 | SLC4. GPR 

PIMD: 
17726007 

ILV6 

L-valine,  
L-isoleucine 

2-aceto-2-hydroxybutanoate synthase and 
acetolactate synthase: ILV6: ILV2 =>  
ILV6: ILV2 |ILV2.  

  
GPR 

PMID: 
10213630 

TGL2 triglyceride 
Adding 2 putative transport reactions 
between cytosol and lipid particle. 

Transport 
reaction 

Gap filling 
algorithm 
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