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FOR CLASSIFICATION OF MARS MCMURDO PANORAMA IMAGES
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Dept. of Computer Science, Aberystwyth University, UK
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ABSTRACT

This paper presents a novel application of support vector ma-

chine (SVM) based classifiers for Mars terrain image classification.

SVMs are applied in conjunction with information gain ranking

(IGR) that allows the induction of informative feature subsets from

sample descriptions of feature vectors of a higher dimensionality.

Such an integrated use of IGR and SVMs helps to enhance the effec-

tiveness and efficiency of the classifiers, minimizing redundant and

noisy features. This work is supported with comparative studies –

the resultant SVM-based classifiers generally outperform MLP and

KNN-based classifiers and those which use PCA-returned features.

Index Terms— Mars image classification, support vector ma-

chines, information gain ranking, feature selection.

1. INTRODUCTION

Automated detection and classification of objects within Mars

images, including different types of rocks and their surround-

ings, is of practical significance to the exploration of Martian

environment [2, 10]. However, Mars images vary consider-

ably in terms of intensity, scale and rotation, and are of large

scale and blurred with noise [8]. These factors make Mars

image classification a very challenging problem, demanding

both effective and efficient techniques.

One critical step to successfully classify Mars images is

to extract and use informative features only. To capture es-

sential image characteristics, many features may have to be

extracted without explicit prior knowledge of what properties

might best represent the original image. Yet, generating more

features increases computational complexity and in the mean

time, not all such features may be essential to perform clas-

sification. The use of extra features may even cause the re-

duction of the overall discrimination ability of the feature set

[4] and hence, that of the classification accuracy [5]. Thus, it

is desirable to employ feature selection methods that can find

the most significant features, based on sample measurements,

to simplify and improve the classification process.

This paper presents an integrated approach for perform-

ing large-scale Mars image classification, by exploiting the

potential of advanced classification and feature selection

techniques. In particular, support vector machines (SVMs)

[11] are employed for image classification. This is due to

the recognition of their high generalization performance in

complex data sets [1]. Information gain-based ranking (IGR)

is adopted for feature selection, due to its computation sim-

plicity and proven performance [9]. The resulting integrated

approach helps to improve the effectiveness and efficiency of

SVM-based image classifiers. This is because only those in-

formative features are required to be generated in performing

actual classification, minimizing both the feature measure-

ment noise and the computational complexity (of both feature

extraction and feature pattern-based classification). Such

a property is of great importance to on-board image clas-

sification in future Mars rover missions. This is because

flight projects demand least memory requirement and sim-

plest computation possible (in order to minimize loads and

increase software reliability).

The paper is organized as follows. Section 2 introduces

the Mars images under investigation. Sections 3, 4 and 5

outline the key techniques used, including feature extraction,

selection and classification. Section 6 shows the experimen-

tal results, supported by systematic comparative studies (with

MLP and KNN-based classifiers that use IGR-selected or

PCA-returned features). The paper is concluded in Section 7,

where prospects for further research are discussed.

2. IMAGE DATABASE

The McMurdo panorama image obtained by NASA’s Mars

Exploration Rover is shown in Fig. 1, sized 22348 × 5771.

This image, excluding the rover’s instrument and shadowed

areas, is used for the work here. Sixteen significant image

types (i.e. classes) are listed in Table 1 and illustrated in

Fig. 2. The ultimate task of this research is to detect and rec-

ognize image regions of such classes.

3. FEATURE EXTRACTION

In this work, local histograms and the first and second order

statistics of color and grey-level images are used to produce

feature vectors representing each pixel. Such features are ef-

fective in depicting the underlying image characteristics, effi-

cient in computation, robust to image translation and rotation

[1, 6], thereby suitable for classification of Mars images.
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Fig. 1. Mars McMurdo panorama image with the size of 22348 × 5771

Fig. 2. Image types (classes)

Class Label Class Label

textured dark rock C1 bedding rock C2

mud C3 gray smoothed rock C4

black smoothed rock/shadow C5 gravel-1 C6

gravel-2 C7 rover tracks-1 C8

sand C9 sand ripple C10

gravel-3 C11 gravel-4 C12

sky C13 rover tracks-2 C14

gravel-5 C15 gravel-6 C16

Table 1. Image classes and their labels

3.1. Color Statistics-Based Features
Color images in the RGB (Red, Green and Blue) space are

first transformed to those in the HAS (Hue, Saturation and

Value) color space [6]. Features are then generated per pixel,

by computing the mean (M ) and the standard deviation (SD)

with respect to each of the R, G, B, H, S and V color com-

ponents, from a neighborhood of the pixel. The 12 resulting

features are denoted by: RM , RSD, GM , GSD, BM , BSD,

HM , HSD, SM , SSD, VM , VSD.

3.2. Local Histogram-Based Features
For each pixel, a number of color histogram-based features

can be computed, with respect to each color component, given

a fixed bin size and neighborhood [1]. Similarly, another set

of local grey-level (GL) histogram features can be generated

by first transforming color images to GAL ones. In this work,

the bin size for computing color histogram features and that

for GL histogram features are set to 8 and 16. The resulting

color histogram-based features are denoted by HHi, SHi, and

VHi, i = 1, 2, ..., 8, regarding the H, S, and V components,

respectively. The GL features are denoted by GLHj , j =
1, 2, ..., 16. Two further GL statistic features, mean and STD,

which are denoted by GLM and GLSD, are also generated.

4. INFORMATION GAIN-BASED RANKING

Let DX be the value set of feature X and DC be the label set

of class variable C. The entropies of the class before and after

observing X are respectively defined by:

H(C) = −∑
c∈DC

p(c)log2p(c)

H(C|X) = −∑
x∈DX

p(x)
∑

c∈DC
p(c|x)log2p(c|x)

The amount by which the entropy of the class decreases

after observing a certain feature reflects the additional infor-

mation about the class that feature provides, and is called the

information gain: IG = H(C) − H(C|X). It measures

how well a given feature separates data points with respect to

their underlying class labels. Thus, all extracted features Xk,

k = 1, 2, ..., N , can be ranked with regard to the IG values

of observing themselves: IGk = H(C) − H(C|Xk). Such

ranking can be arranged in descending order, reflecting the

fact that the higher an IG value is, the more information the

corresponding feature has to offer regarding the class. A sub-

set of M most informative features, M ≤ N , can therefore

be selected by choosing the first M in the rank list.

5. SVM-BASED CLASSIFICATION

Support vector machines (SVMs) are used to perform im-

age classification. Such a classifier seeks to find the optimal

separating hyperplane among different classes by focusing

on those training points (named support vectors), which are

placed at the edge of the underlying feature vectors and whose

removal would change the solution to be found. Radial Basis

function (RBF) kernel is adopted in the SVMs. Here, the se-

quential minimal optimization algorithm of [7] is used to train

the SVMs. Detailed SVM learning mechanism is omitted, but

can be found in the literature (e.g. [11]).

In order to increase the efficacy of the SVM classifiers,

IGR is used to rank the extracted features and to select those

most informative during the training phase. This is of prac-

tical significance as for on-board application, classifiers are

expected to be built with mature technologies (rather than to-

tally new mechanisms that have limited experimental data).

SVMs are proven high-performance classifiers, but they rely

on quality input features. Adding SVMs with IGR-based fea-

ture selection helps to improve the quality of their input.

6. EXPERIMENTAL RESULTS

A set of 270 non-overlap images, of a size 512 × 512 each,

subdivided from the large image of Fig. 1 (excluding regions
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that represent instruments and shadows) are used in this ex-

perimental investigation. In developing each classifier, a col-

lection of 2870 pixel points are selected as training data, and

another set of 4070 points as testing data. Each point is la-

beled (by expert) with an identified class index, one of those

16 as given in Table 1, and is originally represented by a vec-

tor of 54 features (see Section 3). The size of a pixel’s neigh-

borhood used for generating feature vectors is set to 15 × 15.

The SVM penalty parameter is set to 100, with standard Gaus-

sian Radial Basis function (RBF) used. In the following com-

parative studies, the results of KNNs are first obtained with

K set to 1, 3, 5, 8, and 10, while for MLPs, only those of one

hidden layer are considered, with the number of hidden nodes

first set to 24, 28, 32, or 36. Then, those classifiers which

have the highest accuracy, with respect to a certain number of

K or hidden nodes, are taken to facilitate fair comparison.

6.1. Comparison with the Use of Unreduced Feature Sets
For the given training data, the IGR method ranks the original

54 features in the following descending order: BM , SSD,

GLM , GM , VM , RM , SM , BSD, GSD, GLSD, SH2, SH5,

VH2, SH4, SH7, RSD, VSD, SH6, HH7, HSD, GLH4, HH6,

GLH2, GLH10, VH3, GLH3, VH1, GLH11, HM , VH5, HH5,

GLH5, HH8, GLH9, VH4, GLH8, VH7, GLH12, GLH6,

VH6, GLH13, GLH15, HH7, GLH7, GLH14, GLH1, HH4,

VH8, SH3, HH6, SH1, GLH16, SH8, HH1. Fig. 3 shows the

classification accuracy over the testing set, in relation to how

many top-ranked features (by IGR) are used. The right-most

case is the result of using all of the 54 original features.
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Fig. 3. Accuracy vs. number of IGR-selected features

These results demonstrate that all three types of classifier

can have higher classification accuracy when IGR-selected

features are used, than using the full set of (54) original fea-

tures. This is generally true when the number of IGR-selected

features is greater than 18 for both SVMs and KNNs, and 11
for MLPs. In particular, the SVM that uses 24 IGR-selected

features performs the best with a classification rate of 93.3%
(as marked in Fig. 3). Comparatively, the best MLP and KNN

which use 20 and 29 top-ranked features respectively, just

reach a rate of 82.3% and 80.6%. Also, the classification rate

using full features is 88.9% for SVM, 79.3% for MLP, and

77.4% for KNN. The employment of IGR not only reduces

redundant feature measurements (thereby simplifying classi-

fication process), but also minimizes the noise associated with

such measurements (thereby improving the classification ac-

curacy) in SVM, MLP and KNN classifiers. The combined

use of SVM and IGR techniques offers the best performance.

Based on the above results, the SVM which employs those

24 IGR-selected features (trained by the use of 2870 feature

vectors) is taken to classify the entire Mars McMurdo image

of Fig. 1 (again, excluding equipment and shadows). As an il-

lustration, six classified and segmented image parts are shown

in Fig. 5, where 16 different colors represent those 16 im-

age types (see Fig 2). From these classified images, it can

be seen that all image types vary in terms of their size, ro-

tation, contrast, shape, and texture. For human eyes it can

be very difficult to identify boundaries between many of such

regions, such as those between types of sand gravel, between

sand and sky, between mud and track sign, and those between

rock classes. However, the classifier is able to perform under

such circumstances (with respect to the ground truth painstak-

ingly identified by domain experts).

6.2. Comparison with the Use of PCA-returned Features
As principal component analysis (PCA) [3] is arguably one

of the most popular dimensionality reduction methods (al-

though it was not initially designed to obtain discriminatory

features), it is adopted here as the benchmark for comparison.

Classifiers that are aided with IGR are systematically com-

pared to those supported by the use of PCA. The results are

summarized in Fig 4. In particular, of the same dimension-

ality per type of classifier (i.e. by the use of 24 features for

SVMs, 20 for MLPs, and 29 for KNNs), the optimal classi-

fiers which employ IGR-selected features have a substantially

higher classification accuracy than those using PCA-returned

features as listed in Table 2. Furthermore, the best performers

that use PCA-returned features only reach a classification rate

of 87.2%, 81.2% and 79%, whilst requiring the use of 49, 37

and 45 features, respectively.
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Fig. 4. IGR-selected vs. PCA-returned features

7. CONCLUSION

This paper has presented a study on Mars terrain image clas-

sification, using SVMs supported by information-gain based
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Method SVM MLP KNN

IGR 93.3% 82.3% 80.6%
PCA 84.6% 78.8% 77.4%

Table 2. Use of IGR-selected vs. PCA-returned features

feature selection. For the first time, these two techniques are

integrated to help addressing challenging problems in space

engineering where the real-world images are of many classes

and of large-scale. The resultant SVM-based classifiers gen-

erally outperform MLP and KNN-based classifiers and those

which use PCA-returned features. This is confirmed by sys-

tematic experimental investigations. The employment of IGR

not only simplifies classification process, but also improves

the classification accuracy. This work is, therefore, of signifi-

cant potential for classification and analysis of real images on

board in future Mars rover missions.

Interesting further research remains. This includes: com-

paring the present work with the use of alternative feature se-

lection methods (e.g. fuzzy-rough set-based [10]), determin-

ing how the number of optimal IGR-selected features may

vary with respect to different Martian terrain images, and in-

corporating IGR into the SVM formulation (instead of using

it as a preprocessing tool for SVM classifiers).
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Fig. 5. Classified and segmented image
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