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Abstract

Thanks to rapid advances in planetary robotics
and scientific instruments, data can now be gath-
ered on the surface of Mars far quicker than can
be successfully relayed to Earth. Pauses in ac-
tivity have to be introduced, so that this addi-
tional data can be transmitted back to Earth.
These pauses represent an inefficiency in the over-
all mission value, as value is calculated by divid-
ing the amount of useful scientific data returned
by the cost. Scientific data with little value rep-
resents a waste of valuable transmission time and
thus reduces the overall cost efficiency of the mis-
sion. Pauses in activity also have to be introduced
during periods when communication with Earth
is impossible. A great deal of research is cur-
rently being undertaken to try to limit this time
wastage through the utilization of an autonomous
sample selection and acquisition system. Such
a system could initially select high value science
targets and then continue its exploration while
only useful data is being relayed to Earth for fur-
ther study, thus increasing mission value. This
paper will present a review of the research cur-
rently being undertaken to aid in producing an
autonomous sample selection and acquisition sys-
tem for planetary exploration.

1. Introduction

The major success of the Mars Exploration Rovers
(MER) has added a huge impetus to research in plan-
etary exploration using unmanned rovers. By Novem-
ber 2006 the Spirit (MER) had survived 1000 Martian
days (sols) (Castano et al., 2007b), during this time it
has traveled more than 6850 meters (4.27 Miles). Al-
though the Spirit rover had not been there as long by
this time it had logged an astonishing 9406 meters (5.85
Miles). The MER Mission is still ongoing in the ex-
tended mission stage and promises to progress well into

the future (Figure 1).
This mission has still been constrained by downlink

bandwidth and although a huge area has been covered
by the rover, a large proportion of it has been covered
during long traverses between sites of interest. The prob-
lem with this is that it is very difficult to say from Earth
what is interesting so a long traverse could be initiated
to a distant sample site when a much more desirable
sample lies only one meter away.

In order to search for desirable targets during a tra-
verse, images would have to be gathered and analyzed.
If every one of these image was analyzed on Earth far to
much time would be wasted transferring data. If however
the data could be analyzed on Mars it would be possible
to examine all these images and select only the most ap-
propriate targets to be further analyzed on Earth. This
system could also be used to examine the rovers sur-
roundings during pauses in activity that are currently
introduced while data is transferred back to Earth or
while the rover is out of communication range. If a valu-
able target is identified, further analysis can begin with-
out immediate confirmation from Earth, thus utilizing
this previously wasted time.

This type of autonomous system is not a new idea,
in fact research began many years ago into plausi-
ble ways of giving robotic systems some form of self
driven control. Space however offers different challenges
(Muscettolay et al., 1998) and different rewards. In fact
a robotic agent designed for space exploration does in
itself become a scientific instrument. This raises ad-
ditional questions about how the robotic system is de-
signed, should well established robotic control paradigms
be used or should the system be designed with the sci-
ence that it will collect in mind.

2. Current Work

There is currently much work being done in this area
of research; during this next section a brief overview of
some of the work being done will be presented.



Figure 1: Map Showing the area covered by JPL Spirit Rover

(Image courtesy of JPL)

2.1 OASIS Project

The Onboard Autonomous Rover Science Investigation
System (OASIS) (Castano et al., 2007b) is designed to
operate onboard a rover identifying and reacting to
serendipitous science opportunities. These science op-
portunities can include detection of dust devils, clouds
and “novel rocks that the rover has not seen before”.
The OASIS system “analyzes data the rover gathers, and
then prioritizes the data” based on established criteria
(Castano et al., 2003a).

There are three main components within the OASIS
system, these include:

1. Feature extraction from gathered images: Concen-
trates on locating rocks based on shape, texture and
albedo.

2. Analyse and prioritise data: Uses the features ex-
tracted to determine scientific value of the planetary
scene.

3. Plan and schedule new command sequence: Dynam-
ically modifies the rovers current plan to accommo-
date new observations.

One of the main aspects of the system is the Rockster
algorithm which is responsible for the identification of
rocks. The algorithm initially separates the sky from
the ground and then uses edge detectors and background
flooding to identify potential targets.

OASIS has been built as a complete solution to the
autonomous sample selection problem, they have also
gone on to include a scheduling component that consid-
ers whether sufficient power and time is available to in-
corporate the new plan. In order to test the system on a
real robotic architecture the OASIS team have integrated

Figure 2: Example of possible structures of interest that may

be found on Mars. (Pullan, 2007)

there software with CLARAty (Coupled Layered Ar-
chitecture for Robotic Autonomy) (Volpe et al., 2001).
This system provides an interface between the OASIS
software modules and the rover test base allowing the
integrated OASIS system to be tested. The results of the
tests were impressive (Castano et al., 2005). 110 FIDO
(Tunstel et al., 2002) hazcam images were used and a
total of 2942 rocks were analyzed, the results were com-
pared to targets identified be human scientists. Two
scoring methods were used center matching and overlap
method and the results were 89% and 87% respectively.
More recent tests done in 2006 (Castano et al., 2007a)
show the OASIS system identifying 36 out of a possible
40 targets over 10 runs.

There are however a number of problems not ad-
dressed by the OASIS project. Colour is not used to
identify potential targets as the system uses grayscale
images. Colour could potentially be a great indicator of
science value and could also add some additional infor-
mation regarding the target’s chemistry. Also the type
of targets that are being searched for, here OASIS has
adhered to the classic approach of target selection that
is to look for “rocks” however it can be argued that the
majority of the rocks have been deposited on the surface
by volcanic activity or have fallen as asteroids. Therefore
samples taken from these rocks could give an unrealistic
insight into Martian geology, it is therefore proposed that
bedrock and exposed rock shelves should carry a much
higher science priority. A recent report produced by
a planetary geologist (Pullan, 2006) has indicated that
structure of these potential target sites could give strong
indication as to science value (See Fig 2). OASIS does
not appear to cater for this type of science target.

2.2 SCAIP Project

Closed Loop Control for Autonomous Approach and
Placement of Science Instruments by Planetary Rovers
or SCAIP (Huntsberger et al., 2005) is a project also led



Figure 3: Instrument placement results from 11 trial runs of

the prior algorithm [Huntsberger, et al., 2002, 2003], with

crosses at the positions where the instrument arm made con-

tact overlaid on the short range image used for arm trajectory

planning. Instrument arm contact positions for the SCAIP

effort will all lie within the 1cm radius red circle centered on

the designated target. (Huntsberger et al., 2005)

by JPL to create a closed loop system system to au-
tonomously place a scientific instrument on a foreign
planetary surface. The main aim of the project is to cut
down the length of time required to take a sample. This
is done by reducing the level of human interaction with
the rover thus reducing the amount of time required for
transmission of intermediate data and control instruc-
tions.

This system, although not a complete solution focuses
on the autonomy associated with the rovers command
sequence. It assumes that an Earth based scientist has
already specified a suitable target from downlinked im-
ages. The system will then proceed through a six stage
sequence; the stages are as follows:

1. Drive to stand-off position using intrest points.

2. Hand-off goal position from Navcams to Hazcams.

3. Plan final approach path.

4. Drive to final offset position and acquire Hazcam im-
age.

5. Arm path planning with collision checks.

6. Place instrument and acquire science data or deter-
mine a safe substitute placement goal.

The SCAIP control software gives primary importance
to mission safety; if rover safety cannot be guaranteed
the rover will simply stop and call Earth for help. The
system shows great promise; Figure 3 shows an image
overlayed with yellow crosses showing an earlier systems

Figure 4: Example rock face demonstrating lamination fea-

tures (Pullan, 2007)

placement attempts, the red circle illustrates the accu-
racy of the SCAIP system as all trials of the system
lie within this circle. This represents a significant step
forward in instrument placement technology which will
form an essential part of any autonomous scientific rover.

The SCAIP project itself only goes part of the way
towards producing a fully functional autonomous plane-
tary scientist. The focus on the autonomous instrument
placement has enabled them to produce a robust mission
ready system. Unfortunately as previously mentioned it
is only part of a full system and still relies heavily on
a human scientist selecting the target and producing an
activity plan. The system also loses some of its efficiency
if you are not able to see the exact sample point from
the initial image of the sample site. The rover may have
to be manually moved towards the site until the exact
sample location is identified. This manual interaction
although not always necessary will reduce the efficiency
of the system. In the case of rocks displaying lamination
or bedding features (such as those seen in Figure 4), the
exact target location may not be obvious until the macro
imaging stage has been reached. For example Figure 4
shows an image of an exposed rock face. if a sample
was needed from the brown vein long distance targeting
would be useless.

Of course not every target needs to be targeted with
such fine resolution most targets can be suitably targeted
from a stand off location thus utilizing the full benefits
of the SCAIP system. A great deal more work however
would be needed to make this system perform completely
independently but as it stands it does provide a half
way house and may well be a suitable intermediate step
towards the use of a fully autonomous system on another
planet.



2.3 Rock detection and classification

There are several projects underway focusing on this area
of expertise. Carnegie Melon University have produced
a paper entitled “Detection and classification of features
of geologic interest” (Thompson et al., 2005) This paper
presents a method that uses a probabilistic fusion of data
from multiple sensor sources for onboard segmentation,
detection and classification of geological properties. A
belief that performance and reliability can be increased
if science targets are specified in terms of examples rather
than properties is presented. The method can be broken
down into three steps;

1. Segmentation; potential targets are isolated from the
rovers sensory input.

2. Detection; belief network is used to distinguish be-
tween target and not target areas.

3. Geological classification; the features are classified
according to their physical attributes.

The segmentation step is not responsible for detect-
ing targets but merely suggests candidate structures for
further classification. The segmentation is done using
a region-merging/region-growing type approach, the im-
age is split into a grid of 5×5 pixel squares, these squares
are then iteratively joined back together to form regions
of uniform properties. Once all possible merges have
been done every region between 20 and 50 pixels is con-
sidered a potential rock. In order to further improve
the results produced by this process a simple Gaussian
blur operation is applied to the image prior to its being
processed.

The detection step identifies the science targets from
the segmented regions by extracting a real-valued at-
tribute vector from each candidate region and labeling
it with a Bayesian belief network. A belief network is
used as it solves the problem of missing data that can
occur when fusing multiple sensors with varying fields
of view. Several attributes of the segmented regions are
considered; these include relative colour, relative colour
variance, height above the ground plane, texture and in-
tensity gradient.

Finally the geological detection step evaluates the dis-
covered science targets and classifies them according to
predefined and synthesized categories. The predefined
categories are chosen at outset by an expert but the syn-
thesized categories however come from an unsupervised
clustering algorithm which runs whenever the rover col-
lects new data.

More work has been completed by JPL. They re-
leased a paper may 2003 entitled “Techniques for on-
board prioritization of science data for transmission”
(Castano et al., 2003b). During this project they con-
centrate their efforts on the search for rocks and other

Figure 5: Image showing Martian outcrop taken on sol 694

The outcrop Comanche. (Mosaic and coloured by Nirgal

(Bernhard Braun). Enhancement and sky rendering mars-

geo.com. Raw image courtesy of JPL)

science targets that are elevated above the ground plane.
Detection of these objects is accomplished through use
of a stereo image pair to create an elevation map of the
target area. From this elevation map the ground plane
can be distinguished and any protruding objects can be
easily identified. These potential rock targets are then
processed and properties including albedo, visual texture
and shape are extracted. These extracted values are then
concatenated to form a feature vector, representing the
quantified properties of each rock. These Vectors are
then fed into three distinct prioritization algorithms;

1. Target Signature; Target signatures are specified by
identifying nominal values for each of the relevant
features. An importance is then assigned to each of
the features. Rocks are prioritized as a function of
the weighted Euclidean distance of their extracted
feature vector from the specified feature vector.

2. Novelty Detection; They have developed three meth-
ods for detecting and prioritizing novel rocks, repre-
senting the three dominant flavors of machine learn-
ing approaches to novelty detection: a distance-based
method, a probability-based method, and a discrimi-
native method. These methods for novelty detection
are specifically designed with onboard constraints
and large candidate feature spaces in mind.

3. Representative Target; Data is prioritized to ensure
that representative rocks from each class are sampled.
For each class of rocks, the most representative rock
in the class are found, i.e., the single rock in any
image that is closest to the mean of the set. A high
priority is given to the image containing this rock.
The process is complementary to novelty detection
using K-means, where rocks that are farthest from
the cluster means are given the highest priority.

Research has become quite advanced in the area of
rock detection on a surface. However very little work



has been done into land form detection and outcrop iden-
tification. The majority of the research currently being
done is identifying rocks in a planar field, however as pre-
viously mentioned the majority of these rocks have been
deposited in their location through some means, and
therefore may not properly represent the region being
sampled (For example a meteorite may contain Carbon,
and may lead us to believe that Mars has Carbon). Many
other rocks have been deposited on the surface through
volcanic activity, these rocks also do not properly iden-
tify the region being sampled. Much better more repre-
sentative samples can be retrieved from outcrops (rock
formations which emerge from the ground as seen in Fig-
ure 5). These locations also provide access to rocks that
could have potentially been out of rover reach prior to
the event which exposed them. Their exposure may have
been caused by seismic activity or through meteorite im-
pact, however despite how they are formed they could
give clues into the geologic history of the planet Mars.

In order to utilize potentially rich targets such as these
an autonomous system would have to know how to iden-
tify, classify and determine which part of the outcrop
will be sampled. There may be several favorable sam-
ple sites on the one outcrop so the system will have to
know how to differentiate between these and what prior-
ity to give them. The safety of the rover would also be
of concern and the stability of the outcrop would have to
be assessed. However the detection of geologic features
such as outcrops and larger rock formations should be
considered of significant importance.

3. Work Being Undertaken

During this section a brief review of the work ongoing at
UWA will be presented.

3.1 Autonomous sample acquisition

Currently research is being undertaken to increase the
amount of science data that can be retrieved within a
mission by reducing the amount of time required to take
samples and reducing the amount of time wasted while
waiting for return communication with Earth. In order
to do this it is proposed that a fully autonomous system
is required.

The completed system will need to accomplish these
tasks;

1. Take image of surrounding terrain.

2. Identify features of interest within terrain.

3. Classify the science value of those features.

4. Create an activity plan.

5. Navigate to within 2 meters of target.

Figure 6: The UWA 3 DoF lightweight manipulator, with

arm simulation shown on screen behind.

Figure 7: The UWA 3 DoF lightweight manipulator, With

End point positioned on target rock

6. Create Three dimensional model of target.

7. Distinguish Best approach to target; Approach which
will best facilitate a successful sample acquisition.

8. Move to desired location and re-evaluate target; Cre-
ate another DEM now that a better viewing location
has been reached.

9. Determine best manipulator approach trajectory;
Checking that the approach will be of no risk to the
manipulator.

10. Take Sample.

During this process, if anything goes wrong or a sam-
ple is considered unreachable, the system will abort the
sampling process and continue its search for suitable sci-
ence targets.



There are several challenges to be overcome before
such a system could be realized;

• Encapsulation of a human expert’s knowledge.

• Identification of plausible science targets.

• Prioritization of recognized targets.

• Onboard DEM generation.

• Robotic arm Inverse kinematics and collision check-
ing.

Encapsulation of a human expert’s knowledge. A plan-
etary geologist Derek Pullan (Pullan, 2006) has created
an internal report for an ongoing scientific autonomy
project, it details what information a planetary geol-
ogist would be interested in if they were able to visit
Mars. The information is presented in the form of sev-
eral tables detailing the feature of interest along with a
science value score. This aspect of the system is as yet
un-implemented but it is proposed that this data will be
utilized in order to produce a rule set enabling an expert
system to identify science targets based on the criteria
set out by the human expert. Table 1 shows an example
of the information provided.

ID Feature SVS
T000 Signature: No Texture 0
T001 Signature: Textural 5
T002 Quality: Distinct signature 50
T003 Quality: Indistinct signature 5
T004 Fabric: Random 5
T005 Fabric: Orientated 50
T006 Fabric: Imbricated 100
T007 Surface: Dull 5
T008 Surface: Polished 50
T009 Surface: Rough 10
T010 Surface: Striated 50
T011 Surface: Concoidal 100
T012 Surface: Vesiculated 10
T013 Surface: Pitted 40
T014 Surface: Bumpy 50

Table 1: Table showing the an arbitrary science value score

(SVS) according to textural features (Pullan, 2006).

Identification of plausible science targets. In order to
identify plausible science targets from the images cap-
tured by the rover’s panoramic cameras, the features
within the image must first be identified. Several meth-
ods have been utilized in the past to accomplish this in-
cluding; height maps (Fox et al., 2002), identification of
shadows and a more direct feature extraction approach
where by the features are identified directly from the im-
age. The later approach has been adopted here. Image

Figure 8: The UWA Panoramic (PanCam) Camera equip-

ment

Figure 9: UWA Autonomous sample selection software,

Showing image taken using UWA PanCam by Dave Barnes

on field trip to Tenerife

processing techniques such as Watershed segmentation,
edge detection and region growing are all utilized in or-
der to identify regions of interest within a image. These
regions of interest can then be further examined for rock-
like properties.

Although in the future a great deal of benefit could
be derived from running this software autonomously on-
board a planetary rover, the present computational de-
mand of software of this nature dictates that it is run
on Earth. This being said an Earth based system can
demonstrate the possible advantages of such a system
while improving confidence that such a system is viable
and potentially very rewarding. It is to this end a “Mars
imaging tool” has been produced. This software (shown
in Figure 9) controls the rovers on-board cameras (On-
board camera setup is shown in Figure 8) once an image
is retrieved from the cameras the software is able to pro-
cess it looking for rocks and other geological features of
interest.

Several different feature extraction methods are uti-



Figure 10: Example of image segmented using watershed al-

gorithm (Farfan et al., )

lized during this stage. One that has been found
to be very promising is the Watershed algorithm
(Farfan et al., ). This algorithm is a region growing style
algorithm which is capable of producing some very im-
pressive results (Figure 10 shows the types of results pos-
sible through use of this algorithm).

Prioritization of recognized targets. Once potential
targets are identified they will need to be processed and
attributed a science score. This part of the system is
as yet un-implemented, but it is proposed that a fuzzy
logic approach be used to determine the science value of
targets based on the information provided by a human
expert (Pullan, 2006). A fuzzy approach will allow us to
deal with uncertainty as well at the hard facts.

Onboard DEM generation. DEM generation is
now a well established field and can be accom-
plished very accurately with a high level of resolution
(Scharstein and Szeliski, 2002). The problem however
is that computational power is very limited onboard a
planetary rover. This means that any DEM generation
algorithm used would have to be both efficient and re-
source friendly. As time progresses this problem will
be reduced as space qualified computer hardware will be
faster and more powerful. It is because of this that it has
been decided no new DEM generation technique would
be examined in relation to this project. It is thought
that by the time an onboard DEM generation ability is
necessary the computational power will be available.

Robotic arm Inverse kinematics and collision check-
ing. Robotic arms have become a constant feature of
past and future planetary exploration. With this in
mind a large amount of research has been done into the
autonomous deployment of such an arm. The SCAIP
(Huntsberger et al., 2005) project is one such project,
and has laid the way for further research to be under-
taken. Currently the integration of a similar system into
our autonomous sample identification system is being
proposed. Having these two systems integrated will pro-
vide a number of benefits, by enabling sample acquisi-
tion to begin while initial images are being downloaded
to Earth.

Protection of the robotic arm is also of high priority,
if taking a sample will put the robotic arm or any other

Figure 11: Photo. of the UWA Concept-E rover chassis.

part of the rover at risk the sample acquisition would
be aborted. The robotic arm has the ability to damage
itself if wrongly guided, checks will have to be made in
order to ensure that this will not happen. Initially a
simple bounding sphere collision checking method will
be implemented.

Current work has progressed to using the UWA’s three
degree of freedom lightweight manipulator (Figure 6) to
simulate a rover’s manipulator. This enables us to work
initially on the problem of merging coordinate systems so
that the rover can autonomously position its end effector
on the target location (Figure 7 Shows an example of how
this would be done).

It is thought that such a system could drastically re-
duce the amount of time currently needed to take a sam-
ple on Mars (Huntsberger et al., 2005).

4. Additional Future Work

Currently work is progressing on the system in the early
development stages. The rover chassis is operational (all
be it by tethered control), the Pancam is built and a
robotic arm is available for development purposes. Once
each individual module is completed it will be possible to
integrate these parts to produce a complete test bed. As
it is still quite early in the project it is difficult to know
what the main stumbling blocks will be, but currently it
is thought that they will include;

• Rock mass and outcrop identification.

• Production of a reliable fuzzy feature classifier.

• Production of a schedule planner.

• Minimal memory and computational cycle time DEM
generation (or suitable alternative).

• Light weight manipulator collision avoidance and
protection.



During the next year the project team here at UWA
plan to have overcome these problems. The next stage
will then be to integrate the system and test it with avail-
able equipment. This integrated test bed will then pro-
vide the facility for further research into the autonomous
planetary scientist to be undertaken.
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