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Abstract 

A major mission driver for unmanned space 

exploration is to maximise science data return whilst 

minimising ground-based human intervention and hence 

associated operations costs. Future robotic exploration 

such as the ESA ExoMars mission (launch 2018), and the 

subsequent Mars Sample Return (MSR) mission will 

require rovers to travel further and faster than has been 

achieved to date. However, despite recent advancements 

in technology there still exists a conservative attitude 

towards planetary exploration. This is primarily caused 

by the limited number of space missions and the 

substantial cost of these missions. For example, the five 

extended mission stages of the NASA/JPL MER Rovers 

cost over $120,000,000; this results in substantial 

rewards for success and severe penalties for failure. With 

this in mind it is currently unlikely that a fully functional 

artificially intelligent autonomous system will be 

deployed upon an extra terrestrial planetary surface in 

the near future. Despite this, the recent success of the 

NASA/JPL MER Rovers has provided an excellent 

opportunity to experiment with autonomous and 

automatic modules on Mars. The success of these 

modules coupled with advancements in long range 

communications is leading to an increased amount of 

data being returned to Earth for scientific assessment. 

KSTIS has been designed in order to alleviate this load 

and also provide help in attaining assessment 

consistency. 

1 Introduction 

KSTIS is fuzzy knowledge based expert system; it 

has been designed with the aid of a planetary geologist 

expert. The goal is to effectively categorize the scientific 

value of the visible features of potential scientific targets. 

This is no simple task as in the field geological features 

often appear complex and are influenced by a high 

number of variables [1]. When a human geologist 

assesses a site, all these variables are broken down and 

assessed in the context of the region. These field 

observations can then be augmented through effective 

use of a hammer and a hand lens. The primary clues as to 

the geological background of the rock would be its 

structure, its texture and its composition ([1], [2], [3]). 

These three represent the basic ingredients for 

interpretation. It is unlikely that an adequate scientific 

evaluation could be made using only one or two of these 

attributes but they can be assessed independently and 

then their values combined. Both the process of 

assigning value to the targets for each attribute and 

combining the attribute scores is non-trivial. Dr Pullan 

[1] a planetary geologist expert has produced a 

methodology for autonomous science. In this the expert 

has characterized how a human geologist assesses these 

three attributes, and identified key aspects that 

autonomous science assessment systems would have to 

be capable of accomplishing in order to generate useful 

scientific output. KSTIS has been designed to implement 

this methodology. It has been developed as an Earth 

bound counterpart to the APIC (Automatic Pointing and 

Image Capture) [6] system. The goal of APIC is to gather 

HRC (High Resolution Camera) images of identified 

science targets in a particular scene or WAC (Wide Angle 

Camera) image, and then send them to Earth along with 

the original WAC image. The HRC images provide 

additional richness of information for mission scientists. 

KSTIS has been designed to enable scientists to properly 

utilize that richness. The output of KSTIS is produced in 

the form of a rank order list of science targets. 

2 KSTIS Background 

Current notable research conducted in this field 

includes the NASA/JPL Onboard Autonomous Science 

Investigation System (OASIS) [4] project and the 

CREST Autonomous Robot Scientist project (ARSP) [2]. 

Both these include a target assessment stage. OASIS 

prioritizes targets based upon their likeness to a specified 

signature. This signature incorporates information 

relating to visual texture, albedo, shape and size. The 

ARS project acts in a different way. It utilizes a 

combination of image processing techniques to identify 

and score specific scientific features; in this way it is 

similar to the way a human scientist would assess a 

geological scene. The ARSP project like KSTIS is based 

upon the methodology produced by Pullan [5, 3]. ARSP 

is however primarily focused upon the identification of 

interesting features autonomously. As the study was 

constrained by time and resources it demonstrated a 

mechanism by which science assessment could be 



achieved in a variety of situations using basic parameters 

and a simple scoring system [2]. Further work is planned 

to expand this study with a more representative scoring 

system.  

KSTIS is a representative scoring system. It has 

been designed to emulate the way that a human geologist 

expert would assess a scene. In this regard similarities 

can be drawn between it and ARSP at a high level. 

However, ARSP uses a deterministic summation based 

method to combine science values, and is not capable of 

dealing with assessment uncertainty. The KSTIS system 

has been designed with that specific purpose in mind. 

The knowledge based system approach utilising fuzzy 

linguistic values provides an ideal way to model the 

uncertainty encountered during remote target assessment 

(i.e. assessment through use of images). 

 

 

Figure 1.  KSTIS Architecture 

3 KSTIS Overview 

Figure 1 shows an overview of the KSTIS system 

architecture. The knowledge based system was broken 

down into three subsystems, one for each of the basic 

ingredients for interpretation as identified by the domain 

expert [1]. A user interface feeds data into these 

subsystems independently. The results could be retrieved 

discreetly from the three subsystems, but at this point it 

is of little use as it is the composite of the three scores, 

along with the quality and bias factor, which gives a 

meaningful science value. The quality value is an 

indicator of the quality of the image; this could be 

adjusted if the image was out of focus or if a reflection 

on the lens deteriorated the quality of the image. The bias 

factor could be adjusted in order to increase the final 

scientific value or to decrease it dependant on the 

mission contextual model. For example if a target was 

processed and received a low scientific value, but 

according to the contextual model, this target could be a 

potentially valuable target, then the bias input could be 

used by an expert to increase the target‟s score. 

4 Target Identification  

The first step within KSTIS is to identify potential 

science targets. The rock detection software developed 

for APIC was employed to accomplish this [6]. This is a 

region growing algorithm which has been designed to be 

as efficient as possible but was not designed with target 

assessment in mind. As a result of this it is possible that 

sections of the target may be missed, resulting in the 

identified region not encompassing the entire target. 

However, as at this stage the KSTIS input is generated 

by a human user, the accuracy of the detected targets is 

of less importance as it can be augmented by a user‟s 

ability to define the target boundary. In this case the rock 

detection algorithm is used as a first pass to identify the 

targets to be assessed and labels them with an ID. The 

image output by this software can be seen in figure 2. 

This image is then shown to the user along with the HRC 

images of the target regions for the “target region fuzzy 

input parameter assignment” stage. 

 

Figure 2.  AU laboratory image of potential science 

targets identified and labelled by APIC 

5 Science assessment 

The implemented rules and membership functions 

have been developed through extensive collaboration 

with our domain expert. This has led to a group of 

membership functions which best model the way that the 

expert‟s interest in certain features develops. The four 



different typed of membership function used within 

KSTIS are (see figure 3): 

 
• Triangular functions. These are used when the 

expert‟s interest in a feature steadily rises, briefly peeks 

and then drops off steadily. For example, if bedding with 

a thickness of 10 mm is interesting, the expert‟s interest 

may steadily increase between 8-9.9 mm and then 

steadily decrease between 10.1-12 mm. 

 

• Trapezoidal functions. These were used when a 

range of inputs could be viewed as satisfying the 

membership criteria; for example thin lamination can 

range from 2 − 3 mm.  

 

• Gaussian functions. These model an input that has 

one „fully‟ satisfying value and outside of that value the 

degree of membership degrades slowly.  

 

• Bell functions. These are similar to Gaussian 

functions in the steady incline and decline but they were 

used when a larger range of values satisfied the criteria. 

For example when looking for the colour red (using 

HSL), a range of H values are perceived as red to the 

observer. This redness then fades as the colour changes. 
 

Rules were developed in a similar way, i.e. during 

collaboration a quantification of the SV of certain 

geological features was produced (based upon the ESA 

ExoMars science goals).  

 

Figure 3. The four types of membership function used 

during the design and implementation of KSTIS; Top 

left: Bell shaped, Top right: Gaussian, Bottom left: 

Trapezoidal, Bottom right: Triangular 

 

KSTIS utilises three rule bases to carry out a 

science assessment. The features used by KSTIS within 

these rule bases, represent a subset of the features 

identified by the domain expert [1]. During early 

consultation with the domain expert it was agreed that a 

subset of the identified features would be used to reduce 

the complexity of the system and act as a proof of 

concept. The selection process was undertaken with the 

help of the expert and based upon the relevance of the 

feature at the target scale (which was between 2-10 m 

from the camera), the complexity of identification, and 

its relevance to science value. 

5.1 Structure 

Three features have been selected for processing by 

the system as regards structure:  

 

 The presence of bedding: a true/false input 

which indicates if bedding was observed in the 

image being assessed.  

 

 Scale: a measure of the thickness of the bedding 

observed. The value was required in mm.  

 

 Type: an indication of the “curviness” of the 

observed bedding. This feature was assessed on 

a sliding scale from planar to curvy. 

5.2 Texture 

Three features have been selected for processing by 

the system as regards texture:  

 

 Surface lustre: This is a measure of surface 

glossiness of the observed target.  

 

 Relief: a measure of the roughness of the 

surface texture observed. This value ranges 

from rough to smooth. 

 

 Rock shape: an indication of the roundness of 

the observed rock. This value ranges from 

angular to very round through rounded. 

5.3 Composition 

Four features have been selected, for processing by 

the system as regards composition: 

 

 Hue: the colour of the target. Forms part of the 

HSV colour space.  

 

 Albedo: a measure of the reflectivity of the 

observed target. 

 

 

 Whiteness: a measure of the whiteness of the 

observed target.  

 

 Hue present: a Boolean input to indicate if the 

hue is indeterminable (meaning target is white, 

gray or black). 

5.4 Science value 

Each of the three subsystems utilise Mamdani‟s 

fuzzy inference method [7], a number of membership 

functions, and a collection of rules. The combined output 

is then de-fuzzified using Centre of Gravity (COG) 

de-fuzzification. This returns a crisp number which 

represents a rock‟s SV (Science Value). 



Figure 4. The KSTIS user interface. Top: User 

interface showing wide angled image providing target 

context. Bottom: User interface showing HRC 

image providing fine detail. 

6 User Interface 

The KSTIS user interface can be seen in figure 4. 

The interface is windows based and has been built with 

the .net framework. It can be broken down into five 

parts;  

1. The image and image control buttons: Top left of 

the user interface indicates the current image number in 

the sequence being processed, and the rock number in 

the image being assessed. The WAC image is displayed 

below this by default. Five control buttons relating to the 

image navigation are located just under the image. These 

allow the user to navigate back and forwards through the 

sequence of images and between rocks within the 

images. The central button “view larger image” display 

the APIC captured HRC image in place of the WAC 

image. 

 

2. Structure inputs: The bottom left of the interface 

contain the three structure inputs. A tick-box for the 

Boolean input relating to the presence or absence of 

observed bedding and two sliders, one for the scale of 

bedding and the other for the type of bedding. Both of 

these are set to zero and disabled if no bedding is 

observed. 

 

3. Texture inputs: Located in the top right corner of 

the interface. This contains three sliders relating to the 

lustre, relief and roundness inputs of the texture rule 

base. 

 

4. Composition inputs: The centre right side of the 

interface contained two sliders which represented the hue 

and albedo inputs of the composition rule base and a tick 

box which indicates whether the hue of the object was 

indeterminable.  

 

5. Session control buttons: located at the bottom 

right hand corner. “Submit” opens a file save dialogue 

and asked for a name and location to save the output file 

to. The “Begin new session” button zeroes all input 

values stored in the current session. “Save” writes the 

session data to a temporary file that will be loaded next 

time the application is opened. “Exit” saves the current 

session and then closes the application. 

7 Experimental Setup 

Had KSTIS been a full implementation of the 

expert‟s methodology for autonomous science, the 

logical experiment would have been to ask several 

experts to assess the rock scene both in person and then 

remotely and then compare their results to the ones 

generated by KSTIS. However, the KSTIS preliminary 

system does not fully implement the methodology put 

forward by the expert, only a subset of the features are 

being assessed. Thus a like for like comparison between 

the expert and KSTIS would be of limited use at this 

stage. Instead it was decided that the system would be 

tested in a mission like scenario. During each experiment 

an initial WAC image was presented to a subject with ten 

rock targets identified and labelled. Ten subjects then 

provided experimental input for each image. The inputs 

were processed by KSTIS and the resultant SV for each 

rock was generated. These targets were then ranked 

according to the KSTIS generated SV scores. In order to 

adequately test the KSTIS operations tool, six 

experiments have been undertaken. Each experiment 

involved fully exercising KSTIS in a “mission like” 

context. After all experimentation was completed and the 

rank orders produced, they were statistically analysed for 

correlation, to examine the level of agreement that 

existed between the expert and the 9 subjects. These 

experiments have been undertaken to prove that KSTIS 

is capable of producing scientifically consistent results 



and that the 9 subject‟s assessments show strong 

likenesses to the experts.  

The subjects were all computer literate adults 

between the age of 27 and 55. The experimentation was 

carried out through use of the KSTIS user interface (see 

figure 4). Aberystwyth's ExoMars PanCam emulator was 

used to capture the majority of the images used during 

the experimentation. The only exception to this was the 

Martian image used. This composite image was 

produced by combining a number of MER images.  

During the experiment, the subjects were provided 

with guidance notes in the form of two documents. These 

documents outlined the basic procedure of the 

experiment and provided the subjects with an 

explanation of the technical terms used. A selection of 

example classifications was also provided in an attempt 

to provide some reference values to unify the trials. 

Subjects were also instructed to view each image as an 

independent experiment. Therefore rocks viewed in 

multiple images were to be scored independently. The 

software was made available for subjects to run on their 

own computers. The interface required a “.net” enabled 

Microsoft Windows operating system. UNIX subjects 

were able to access the system through a virtual desktop 

environment. No attempt was made to unify display 

settings or to control the size and quality of the display 

that the assessment was made on. 

8 Experiments set 1 results and discussion  

Spearman‟s rank order assessment [15] was carried 

out on the rank orders produced by the users and the 

expert. This statistical analysis did not identify a strong 

correlation between all results. Given that the scores 

generated by the domain expert are being used as the 

“control” rank order, then a positive result would have 

been achieved if all subjects had a correlation coefficient 

greater then 0.5, and a one-sided significance of 0.05 or 

less. Only 22% of the subjects achieved this in 

experiment one, 11% in experiment two, 33% 

experiment three, 44% experiment four, 22% experiment 

five and 44% in experiment six. These disappointing 

results led to further analysis in an attempt to discover 

what was causing the divergent results, and what 

improvements might be necessary to achieve the desired 

results.  

From an examination of the obtained results, 

disagreements between the subjects were observed, and 

two problems were clearly identified. Firstly there was a 

lack of consistency during the use of the “colour 

indistinguishable” and secondly, the “no bedding 

observed” tick-box. These two inconsistencies have in 

some cases, significantly altered the generated SV. 

8.1 Problems caused by composition input 

The composition fuzzy rule base requires three 

inputs from the user, hue (colour), albedo and a flag 

indicating an indistinguishable colour. The fuzzy system 

processes four inputs. If the “colour indistinguishable” 

tick-box is ticked, a whiteness value is derived from the 

input albedo value. Humans are not well equipped to 

distinguish colours and reflectance properties in 

unknown domains. Substantial research has been 

conducted in the field of neuroscience regarding the way 

that humans interpret colours [8], texture [9] and 

brightness [10]. Whilst human visual perception is 

beyond the scope of this research, several methodologies 

put forward in the literature have provided clues as to 

how this problem could be alleviated or even overcome. 

Initially an image mask could be produced to allow the 

user to view the target in isolation from its surrounding 

objects, shapes and colours. This would alleviate some of 

the visual illusions introduced by problems such as the 

“Adelson‟s Checker shadow illusion” [9]. Unfortunately, 

the use of an image mask would not alleviate all 

problems introduced from human visual perception. 

Other problems such as the human perception of 

materials (and the assumptions that result from this 

classification) can have impact on how a target is scored 

and how it is assessed.  

However, computers are not affected by the (in the 

most part) beneficial affects introduced by human visual 

perception. It is also possible for a computer to identify 

the hue of a target when an excess or shortage of light 

makes the hue indistinguishable to a human. It would be 

desirable to aid the human user with computer generated 

cues, or even replace the KSTIS composition input by a 

computer generated measure of hue and brightness.  

8.2 Problems caused by structure inputs  

The structure rule base of the KSTIS system 

requires three inputs; scale, type of bedding and if 

bedding is in fact present. The difficulty has been 

identified as arising from the identification of the 

presence of bedding. In one case the expert identified 

planar bedding, with a scale of approximately 4mm when 

other subjects identified no bedding. This is challenging 

as not all of the lines visible on a target‟s surface 

represent sedimentary structure. The fuzzy system has 

been designed with the domain expert to allow for 

variations in user inputs due to experience or personal 

biases. This has been accomplished by ensuring that the 

science values transition slowly, from high to low. This 

provides scope for some input inaccuracies without 

diminishing the value of the expert system. This results 

in a smoothing of results and helps alleviate inaccuracies 

in observation causing substantial swings in value. 

However, this is not possible with the “bedding present” 

input. If the bedding present tick-box is ticked the target 

will achieve no score for structure. If this is an error, it 

will result in a significant reduction in the targets SV.  

Computational input could be used to aid in the 

measuring of bedding. If a user could identify two 



bedding lines the computer could calculate the distance 

between the two lines. In order to accomplish this, the 

distance to the object would need to be known. ARSP 

has begun to address the automatic identification of 

bedding [2]. It is a non-trivial problem and is yet to be 

fully solved. 

8.3 Computational input 

Computational input was identified as a method of 

reducing the errors introduced by the human perception 

of colour and brightness on the compositional rule base, 

thus reducing SV variations. Variations were exaggerated 

partially by the substantial value attributed to a target 

displaying a blue hue by the expert. MatLab functions 

were designed to pre-process marked areas and calculate 

the average greyscale and hue of the target. The 

greyscale value is being used as an estimation of 

reflectance and is directly mapped to albedo. The hue 

however presents a more challenging problem, as a target 

is made up of a combination of pixels each having their 

own value. An initial solution was developed, where the 

pixels in each target were split into three categories; Red, 

Green and Blue. The number of pixels in each category 

was counted, and the colour with the highest science 

value that contains a hundred or more pixels was chosen 

to represent the target. The average hue of the pixels 

within that group was then assigned as the hue of the 

target. This approach should not to be considered as a 

final solution.  

9 Experiments set 2 results and discussion  

Automatic computational input was included and a 

far higher correlation has been achieved during this 

round of experiments between all of the results. Again, 

the control results were generated by the domain expert. 

During the first set of experiments only 22% achieved a 

strong correlation in experiment one, 11% in experiment 

two, 33% experiment three, 44% experiment four, 22% 

experiment five and 44% in experiment six. These results 

have been greatly improved during the second set of 

experiments. During these experiments 100% achieved a 

strong correlation with the expert in experiment one, 

67% in experiment two, 22% in experiment three, 44% 

in experiment four, 67% in experiment five and 89% in 

experiment six. The results are still not ideal but 

represent a substantial improvement in correlation. They 

show substantial improvements, not only in the number 

achieving a correlation coefficient of 0.5 or above, but in 

the strength of the correlations achieved. In some cases 

these coefficients are now approaching one. 

 Clearly any user input inconsistency results in 

inconsistency in the generated SV. It is currently unclear 

how much of this inconsistency has been introduced by 

problems with the user interface (see figure 4). The 

current user interface utilises several sliders to capture 

user‟s assessments of target attributes. Sliders are not an 

accurate way of capturing information such as this, and 

may be the source of some erroneous entries. For 

example, subject five identified bedding with a thickness 

of 88 mm for rock number ten in experiment one, 

compared with the experts figure of 4 mm. This is not an 

isolated case and represents an additional slider 

movement of only a few mm.  

The domain expert‟s experience of identifying 

bedding and lamination in rock formations also has an 

impact. A number of examples have been observed 

where the expert has either identified subtle bedding 

when a number of subjects missed it, or dismissed 

possible bedding when a number of other subjects 

identified it. The only way to improve this situation is to 

provide additional training, practise and example images 

for novice users. The quality of the images provided to 

users is also a factor in the assessment of science value. 

The expert has gathered a great deal of experience in 

assessing science targets in a remote environment 

through use of images and contextual information [11, 1]. 

The other subjects who took part in the experimentation 

did not have this level of experienced perception or 

background knowledge. 

10 CONCLUSIONS AND FUTURE WORK 

KSTIS has been designed as a complementary 

system to APIC in that it aids in the processing of the 

increased number of scientific images down-linked by 

the APIC system. KSTIS is a ground-based science target 

assessment tool. Scientific assessment is achieved 

through the implementation of the methodology for 

autonomous science proposed by [1]. It has been enabled 

through use of a combination of three fuzzy rule bases, 

one representing each of the three components used in 

geological interpretation. The tool has been designed to 

provide an intuitive interface for users to assess the 

images returned by the APIC system. KSTIS generates a 

resultant scientific value based upon the assessment of 

APIC images by the user, and creates a rank order list of 

the targets according to their scientific value. This 

evaluation can then be used to aid in the final decision of 

which targets to investigate further. KSTIS 

experimentation has highlighted that it is not only 

necessary to faithfully emulate a human expert‟s 

knowledge but also their perception. A human geologist 

would spend years developing visual skills and honing 

their perception of the environment for use during field 

expeditions. The introduction of image processing 

routines capable of identifying geological features could 

make this possible. Input to the composition fuzzy logic 

rule base was identified as the primary cause for 

interpretation errors. Image processing subroutines were 

designed and included to replace these inconsistent 

inputs. The result was a strengthening in correlation of 



the output scores. This has added to the argument to fully 

automate the feature assignment stage. The automation 

of this stage would be necessary should APIC and the 

KSTIS systems be fully integrated to produce an 

autonomous science target selection system, which could 

be deployed on-board an autonomous rover platform. 

This has been designated as future work, and beyond the 

scope of this study. In summary, the combination of the 

on-board APIC system and the ground-based KSTIS 

system represents a novel move towards increasing the 

acceptability and technology readiness of a fully 

integrated autonomous rover, with the ability to make 

target selections based on geological assessment. 

 

10.1 Enhancements and recommendations 

for future research  

Image segmentation research being conducted by 

Shang [12] is currently being adapted to identify rocks in 

a Martian terrain. This research offers a potential 

replacement to the region growing algorithm currently 

employed. Improved rock identification results have 

been demonstrated using this implementation (see figure 

5). An interesting aspect of this research is its ability to 

distinguish between rock types and regions within rocks. 

This is beneficial and could be used to distinguish 

regions within a larger target [13]. 

 
Figure 5. This image is classified using the 

Fuzzy-Rough Feature Selection approach, being 

researched at Aberystwyth University [13]. 

10.1.1 Feature detection and classification 

During the experimentation of the KSTIS system, a 

need for image processing routines to identify input 

features was identified. These routines would need to 

emulate the perception of a human expert. Some work 

has been carried out towards this end during the ARS 

project ([2, 5, 14]). Further work is still necessary in 

order to fully automate the process of target science 

assessment.  

10.1.2 Enhanced KSTIS knowledge base 

The current KSTIS system has been produced to 

prove the concept of fuzzy knowledge based target 

classification. Initially, only a subset of the science 

features identified by the expert during the knowledge 

elicitation stage were implemented in order to reduce 

complexity and enhance system transparency. A natural 

progression would be to include more features in an 

enhanced knowledge base. 

10.1.3 Integration of other instruments into the 

KSTIS system 

 

KSTIS has currently been developed to work with 

images gathered by an HRC, similar to the one found on 

ExoMars. Future work would be to enable KSTIS 

assessments from other instruments such as the images 

captured by the CLUPI instrument. The change in input 

would require a new set of SV to be developed by the 

planetary geology expert and the knowledge engineer.  

10.1.4 Enhanced user interface 

 

During the KSTIS experimentation problems were 

identified with the current user interface. Primarily the 

use of tick-boxes and the fine scale on the sliders. A good 

example is the structure slider “scale”. Small movements 

were required to properly label targets. It is intended that 

the system will be re-implemented, and a web interface 

produced. 

10.1.5 Inclusion of multi-spectral camera information 

to KSTIS 

 

The WAC cameras on the ExoMars rover will be 

fitted with a number of multi-spectral filters. These 

filters can be used to recover spectra from targeted 

regions and in some cases this can be used to interpret 

the composition of the target. This information could 

provide much useful information during the science 

assessment stage. 
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