
Aberystwyth University

A Mixed Strategy for Evolutionary Programming Based on Local Fitness
Landscape
Liang, Shen; He, Jun

DOI:
10.1109/CEC.2010.5586414

Publication date:
2010

Citation for published version (APA):
Liang, S., & He, J. (2010). A Mixed Strategy for Evolutionary Programming Based on Local Fitness Landscape.
350. Paper presented at IEEE Congress on Evolutionary Computation (CEC), Barcelona, Spain.
https://doi.org/10.1109/CEC.2010.5586414

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 30. Aug. 2021

https://doi.org/10.1109/CEC.2010.5586414
https://pure.aber.ac.uk/portal/en/persons/jun-he(c1817832-a830-422c-95cf-9011366bac93).html
https://pure.aber.ac.uk/portal/en/publications/a-mixed-strategy-for-evolutionary-programming-based-on-local-fitness-landscape(77f1ebce-74a5-4f31-8fb1-9a961340b69a).html
https://doi.org/10.1109/CEC.2010.5586414

A Mixed Strategy for Evolutionary Programming
Based on Local Fitness Landscape

Liang Shen and Jun He

Abstract— The performance of Evolutionary Programming
(EP) is affected by many factors (e.g. mutation operators and
selection strategies). Although the conventional approach with
Gaussian mutation operator may be efficient, the initial scale
of the whole population can be very large. This may lead to
the conventional EP taking too long to reach convergence.
To combat this problem, EP has been modified in various
ways. In particular, modifications of the mutation operator
may significantly improve the performance of EP. However,
operators are only efficient within certain fitness landscapes.
The mixed strategies have therefore been proposed in order
to combine the advantages of different operators. The design
of a mixed strategy is currently based on the performance of
applying individual operators. Little is directly relevant to the
information of local fitness landscapes. This paper presents a
modified mixed strategy, which automatically adapts to local
fitness landscapes, and implements a training procedure to
choose an optimal mixed strategy for a given typical fitness
landscape. The proposed algorithm is tested on a suite of 23
benchmark functions, demonstrating the advantages of this
work in that it is less likely to be stuck in local optima and has
a faster and better convergence.

I. INTRODUCTION

Evolutionary programming (EP) is a branch, alongside
other notable research areas such as genetic algorithms and
evolution strategy, of evolutionary computation that stems
from natural biological evolution [1]. EP operates on the
basis of populations. The objective is not only to find
suitable adjustments to the current population and hence the
solution, but also to perform the process efficiently. However,
a parameter setting that was optimal at the beginning of
an EP-run may become unsuitable during the evolutionary
process. Thus, it is desirable to automatically modify the
control parameters during the run of an EP. Control param-
eters can be of various forms, ranging from mutation rates,
recombination probabilities, and population size to selection
operators. In light of this, self-adaptation techniques [2] have
been introduced to implement such parameter control. The
approach has a bias on the distribution towards appropriate
directions of the search space, thereby maintaining sufficient
diversity among individuals in order to enable further ability
of evolution.

As a key element in EP, mutation operators have attracted
significant attention in research. The original mutation oper-
ator is typically Gaussian, which usually lacks robustness
when applied to multi-modal functions. A substituent of
Gaussian mutation in fast evolutionary programming (FEP)

Liang Shen (email: lls08@aber.ac.uk) and Jun He (email: jqh@aber.ac.uk)
are with the Department of Computer Science, Aberystwyth University,
Wales, UK.

as reported in [3] entails better performance regarding many
multivariate functions. However, it is less efficient on some
unimodal functions. By generalizing FEP further using mu-
tation based on the Lévy probability distribution, further
improvement can be achieved [4].

Unfortunately, no single algorithm or operator is the best
on average for all problems [5], be they self-adaptation or
not. An approach for enhancing the conventional EP that
uses a single mutation operator is to apply different muta-
tion operators simultaneously and integrate their advantages
together. Such a strategy is called a mixed mutation strategy
(borrowing the concept from game theory [6]). The employ-
ment of a mixed strategy stems from the need to explore a
unified approach for maximizing the ability of various self-
adaptive strategies, while assuming no prior knowledge of
the problems at hand.

There are different ways to design a mixed strategy. For
example, an early implementation is a linear combination
of Gaussian and Cauchy distributions [7]. An alternative
approach is the improved fast EP (IFEP) [3], [4] which works
by: 1) each individual of a population implementing Cauchy
and Gaussian mutations simultaneously and generating two
offspring; and 2) the better one being chosen to construct
the next generation. These two approaches are simple in
implementation. Reinforcement learning theory may also be
used to learn individual mutation operators [8]. Progress has
recently been made in an effort to adjust mutation strategies
[6], [9], [10].

In previous studies [9], [11], the design of a mixed strategy
mainly utilizes the reward of each operator (i.e. a operator
which produces a higher fitness will receive a better reward).
Little existing work is directly relevant to the information of
local fitness landscapes. However, the performance of each
mutation operator is strongly linked to the fitness landscape,
so it is important to deal with the local fitness landscape
where an population is located. In this paper, a novel mixed
strategy is proposed in order for the strategy to adapt to the
given fitness landscape.

The rest of the paper is organized as follows. Section
II outlines the general procedure of conventional EP using
a single mutation operator. Section III-A focuses on LM-
SEP. It first introduces a measure about the local fitness
landscape on the multi-modality. Then it describes the new
mixed strategy with respect to this measure. After that, it
discusses the training procedures for learning local fitness
landscapes. Section IV reports the experimental results on the
benchmark problems. Section V concludes the paper, with
further research pointed out.

WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain CEC IEEE

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 350

II. BASIC OPERATIONS OF EVOLUTIONARY
PROGRAMMING

In this paper EP is used to find a minimum x⃗min of a
continuous function f(x⃗), that is,

f(x⃗min) ≤ f(x⃗), x⃗ ∈ D, (1)

where D is a hypercube in Rn, n is the dimension.
Conventional EP which uses a single mutation operator can
be described as follows [3]:

1) Initialization: Generate an initial population consisting
of µ individuals at random. Each individual is repre-
sented by a set of real vectors (x⃗i, σ⃗i), for , i = 1, · · · , µ

x⃗i = (xi(1), xi(2), · · · , xi(n)),
σ⃗i = (σi(1), σi(2), · · · , σi(n)).

2) Mutation: For each parent (x⃗(t)
i , σ⃗

(t)
i) (where t repre-

sents generation), create an offspring (x⃗′i, σ⃗
′
i) as follows:

for j = 1, · · · , n,

σ′i(j) = σ
(t)
i (j) exp{τN(0, 1) + τ ′Nj(0, 1)},

x′i(j) = x
(t)
i (j) + σ

(t+1)
i (j)Xj ,

(2)

where N(0, 1) stands for a Gaussian random variable
generated for a given i, Nj(0, 1) is a Gaussian random
variable generated for each j, and Xj is a random
variable generated for each j. Controlling parameters τ
and τ ′ are chosen as the same as in [3].

3) Fitness Evaluation: For µ parents and their µ offspring,
calculate their fitness values f1, f2, · · · , f2µ.

4) Selection: Define and initialize a winning function for
every individual in parent and offspring population as
wi = 0, i = 1, 2, · · · , 2µ. For each individual i, select
one fitness function, say fj and compare the two fitness
functions. If fi is less than fj , then let wi = wi + 1.
Perform this procedure q times for each individual.
Select µ individuals that have the largest winning values
to be the parents of the next generation.

5) Repeat steps 2-4, until the stopping criteria are satisfied.
To avoid the step size σ falling too low, a lower bound

σmin should be put on σ [12]. So a revised scheme of
updating σ is given by:

σ′i(j) = (σmin + σ
(t)
i (j)) exp{τN(0, 1) + τ ′Xj}.

where σmin > 0 is the minimum value of step size σ.

III. A NOVEL MIXED STRATEGY

This section describes a novel mixed strategy that is
developed in order to improve the conventional EP by two
major techniques:

1) A mixed mutation strategy, based on the observation
that local fitness landscapes form a key factor in the
determination of the behavior of mutations in EP.

2) A training procedure, where several typical learning
functions are introduced (as the training dataset) in order
to determine the preferable probability distribution of

mixed mutation operators with respect to different types
of local fitness landscape.

These two tasks will be addressed below, which are then
combined to deal with a set of target functions.

A. Mixed strategy adapting to local fitness landscape

In EP, a mutation operator is determined by the random
variable Xj given in Eq. (2), which satisfies the probability
distribution function Fs. A mutation operator is denoted by s.
Currently, the set of mutation operators consists of Cauchy,
Gaussian, Lévy and other probability distributions, and the
set is denoted by S = {s1, · · · , sL}.

With this notion in mind, a mixed strategy based on the
probability distribution can be developed. The mixed strategy
can be described as follows: at each generation, an individual
chooses one mutation operator s from its strategy set based
on a selection probability distribution ρ(s). A mixed strategy
distribution is determined by π = (ρ(s1), · · · , ρ(sL)).

The key problem in the mixed strategy is to find out
a good, if possible an optimal, probability distribution
(ρ(s1), · · · , ρ(sL)) for every individual. This distribution
is dynamic, which changes over generations. The prob-
lem can be formalized as follows: Given the t-th genera-
tion population, decide a probability distribution of π =
(ρ(s1), · · · , ρ(sL)) which maximizes the drift towards the
global optima, i.e.,

max
π

{d(x⃗(t), y⃗); y⃗ ∈ Smin)}, (3)

where Smin is the global optimal set, and d(x⃗, y⃗) is the
Euclidean distance.

In theory, such an optimal mixed strategy π always exists,
but in practice it is impossible to find out the optimal strategy
π since the optimal set Smin is unknown.

Instead, the mixed strategy is designed on the basis of
following assumption that the mixed strategy should adapt to
local fitness landscape. In this paper the following principle
is taken from previous experiments [6]: 1) If the local fitness
landscape looks like uni-modal landscape, Gaussian mutation
should be applied with a higher probability; 2) if the local
fitness landscape looks like a multi-modal fitness landscape,
then Cauchy mutation is applied with a higher probability.

There are two tasks in designing the above mixed strategy:
(1) given an individual x⃗ in the real space Rn, determine what
type of local fitness landscape it looks like; (2) based on the
characteristics of local fitness landscape, assign a probability
distribution for the mixed strategy.

Consider the first task. Given an individual x⃗, it is difficult
to give the precise characteristics of local fitness landscape
and the computation cost will be very heavy. Instead it will
be better to seek a simplified approach. Since each individual
is among a population, the population forms an observation
of the local fitness landscape. A simple feature of the local
fitness landscape then is drawn from the observation. Sorting
other individuals in the population based on their distances
from the best individual in the population, then check how
the fitness of each changes over the distance. If the fitness is

351

increasing with the distance, then the local fitness landscape
is like a uni-modal landscape; otherwise, it belongs to a
multi-modal landscape. A simple procedure to implement
this is given as follows. For a population (x1, · · · , xµ),

1) Find out the best individual among the population, mark
it with xbest. Then calculate the distance between each
individual xi(i = 1, · · · , µ) and xbest as follows:

di =
n∑

j=1

| xij − xbestj | . (4)

2) Sort the individuals based on the distance value, result-
ing in the following in ascending order: k1, · · · , kµ

3) Calculate the measure of the individual on the local
fitness landscape. Denote the measure value by χ.
Assume the value to be 0 initially, then the value will
be increased by 1 if fki+1 ≤ fki . Normalize the value
as:

φ =
χ

µ
. (5)

The second task is based on learning. Given several typical
fitness landscapes, calculate the performance of different
mixed strategy on these fitness landscapes and find the best
mixed strategy for each landscape feature φ. As local fitness
landscape is actual a fuzzy concept, the feature φ can be
regarded as the roughness of observed fitness landscape.

In this paper, only two mutation operators are used, i.e.,
Gaussian and Cauchy mutation, The performance of these
two mutation operators is well known [3], [6]; they behave
just in an exactly opposite way. Therefore, to determine the
mixed strategy π = (ρ(sCauchy), ρ(sGaussian)), a straight-
forward approach is used: The probability of using Cauchy
mutation can be treated to be numerically equal to the feature
φ. Likewise, the probability of Gaussian mutation equals
(1− φ). {

ρ(sCauchy) = φ

ρ(sGaussian) = 1− φ
φ ∈ [0, 1]. (6)

Hence, for mixed strategy including only Cauchy and Gaus-
sian mutation, the probability distribution is

π = (φ, (1− φ)), φ ∈ [0, 1]. (7)

This is reasonable because: if the value of φ = 0, then
local fitness landscape is more like a unimodal landscape,
thus it is better to use Gaussian mutation only; if the value
of φ = 1, then local fitness landscape is very rough, it may
be good for applying Cauchy mutation only. As the value
of φ increases, the probability of apply Cauchy mutations
should be increased.

B. Training mechanism for learning local fitness landscape

The above study shows the design of a novel mixed
mutation strategy based on local fitness landscapes. Its im-
plementations involves the fluctuation of the proportion for
each mutation operator to be applied in every generation. As

the performance of Cauchy and Gaussian mutation is well-
known (with them simply behaving in an opposite way), the
mixed strategy π can be determined by Eq. (6). However,
this implies that an existing mixed strategy corresponding to
a certain local fitness landscape has already been determined
via human intervention. It also makes the algorithm resistant
to the use of any novel mutation operator without sufficient
prior knowledge about the problems at hand. In view of
this, it is desirable if the mixed strategy Sx regarding to
the given local fitness landscape φx can be self-determined
and generalized to similar cases.

This can be accomplished by introducing a training proce-
dure prior to running the algorithm on target functions. The
task of finding the global minimum in numerical function op-
timization is herein implemented by learning rules based on
experience gained from prior performance [13]. In particular,
a suite of functions are considered as the training examples.
The set of training functions {f1, · · · , fγ} is chosen to be
the representatives of different local fitness landscapes, e.g.,
unimodal functions, multimodal functions with many local
minima, and multimodal functions with only a few local
minima.

Features of local fitness landscapes φ, as well as the
corresponding mixed strategy, are required to construct the
actual training data. They can be obtained by taking the
advantage of the algorithm presented in Section III-A. Note
that as the algorithm is used to test the entire process of
function optimization, it may be performed all along until
certain performance criteria are satisfied or the maximum
execution time is reached. Under normal circumstances, the
algorithm will terminate at a plateau state, suggesting it
could not find any better result. Also, prior to reaching this
state, it usually will have experienced an entire operation
region involving a large number of intermediate states. These
intermediate states may exhibit a variety of fitness landscapes
that may vary in terms of the lapse of time. Hence, if the
algorithm runs on a multimodal function, after running a
large number of generations, individuals in the population
may shrank to a limit region in the vicinity of the global
optimal, in favor of similar results. Since differences between
them will be considerably small, the underlying local fitness
landscape will look like a unimodal. In order to ensure that
all individuals are located uniformly and randomly in the
entire domain of training functions, the algorithm is slightly
modified. This is achieved by running a relative small number
tT of generations by which the results of each training
function are averaged.

According to Eq. (5), feature φ can be set to a different
value {φ1, · · · , φn}, based on a set of training functions
{f1, · · · , fn}. Thus, the probability distribution of the muta-
tion operator is needed. For a mixed strategy involving only
Cauchy and Gaussian mutation, it can be calculated using
Eq. (6). To be consistent with φ, the probability distribution
is also averaged by tT as follows:

352

ρ(sCauchy) =

tT∑
i=1

φi

tT

ρ(sGaussian) =
tT∑
i=1

1− φi

tT

φi ∈ [0, 1]. (8)

While φ, · · · , φk are every single value obtained from
every generation among tT ones.

As γ individual functions are chosen to form the training
examples, γ pairs of features and probability distribution
are calculated. The set of features {φ1, · · · , φγ} and prob-
ability distributions (ρ(s1), · · · , ρ(sL)) have a one-to-one
correspondence. It is reasonable to assume that a target
probability distribution, given a feature, can be learned from
the underlying correspondence by taking advantage of the
existing ones, {φ1, · · · , φγ}.

In order to implement the learning of the correspondence
between feature φx and the target, πx, a distance-based
approach is utilized to approximate the best πx. All training
data as well as πx are considered as points in a line in terms
of the values of feature φ. Two points with a relatively low
distance are regarded as neighbors. Given a target feature
φx whose value is in the interval [0, 1], one instance φa

among training data {φ1, · · · , φγ} can be found as its
nearest neighbor. Therefore, this approach has an intuitive
appealing, treating πa that is associated with φa as the
required approximation. The probabilities of each mutation
operator in the required πx are

ρx(s) = ρa(s). (9)

It is reasonable to adopt Eq. (9) when there is only one
point in the vicinity of target feature πx. However, it is
possible that the target feature is given in the location where
the distances

d(φx, φi) =| φx − φi | . (10)

from its two neighbors are nearly the same. Having taken
notice of this, the approximation above is modified so that
the two nearest neighbors of the target feature (one on each
side) are both taken into account. The contribution of each
neighbor is weighted according to its distance to the query
point φx in order to place a greater weight onto closer
neighbors. Denoting the neighbor with a smaller value as φa

and the other as φb, the relative placement factor is defined
by

λ =
φx − φa

φb − φa
, λ ∈ [0, 1]. (11)

The probability of each mutation operator of target πx is then
considered as the linear combination of its two neighbors:

ρx(s) = (1− λ)ρa(s) + λρb(s), λ ∈ [0, 1]. (12)

Note that if the target feature φ happens to take a value
close to 0 or 1, Eq. (9) can then be used. In this case, it is

obvious that Eq. (12) is not applicable because there is only
one existing neighbor.

In summary, the calculation of required π is carried out as
follows:
Distance Rule:

1) Given a target feature φx, identify its two nearest points
φa and φb among γ training features.

2) Examine the value of φa and that of φb relative to
φx. If they are both larger or less than φx, then
target distribution π is generated as stated in Eq. (9).
Otherwise, Eq. (12) is adopted.

C. Evolutionary Programming using a Mixed Strategy

With the aid of aforementioned training procedure, the
mixed strategy can be approximately generated automatically
in relation to previously unknown local fitness landscapes.
The details of this new mixed strategy-based evolutionary
programming algorithm are given as follows:

Training: Before applying the mixed strategy, γ functions
are employed as training examples so as to generate a
set of correspondence between feature φ and probability
distribution π of mixed strategy.
T1: Initialization: An initial population is generated con-

sisting of µ individuals at random, each of which is
represented by two real vectors x⃗

(0)
i and σ⃗

(0)
i (i ∈

1, 2, · · · , µ). Each x⃗
(0)
i is a random point in the search

space, and each σ⃗
(0)
i is a vector of the coordinate

deviations. Both vectors have n real-valued components:
for i = 1, · · · , µ.

x⃗
(0)
i = (x(0)

i (1), x(0)
i (2), · · · , x

(0)
i (n))

σ⃗
(0)
i = (σ(0)

i (1), σ(0)
i (2), · · · , σ

(0)
i (n))

For all individuals, their mixed strategy is taken to
be the same one, i.e. π = (ρ(0)(1), ρ(0)(2),), where
ρ(0)(1), ρ(0)(2) represent the probabilities of choosing
Gaussian and Cauchy mutation operators respectively.

T2: Feature Calculation: For each individual i in the
population, the feature of local fitness landscape can be
determined as follows: given a population (x1, · · · , xµ),
assume x1, without losing generality, is the best individ-
ual in the population. Calculate the feature value φ of
the local fitness landscape given in Eq. (5).

T3: Adjustment of Mixed Strategy: Adjust the probability
distribution πm based on the feature value φ according
to Eq. (6). Assign φ to the probability of using Cauchy
mutation, (1− φ) to Gaussian mutation.

T4: Mutation: Denote t to be the generation counter. Each
individual i chooses a mutation operator from its strat-
egy set according to its mixed strategy (ρ(t)(1), ρ(t)(2)),
and uses this strategy to generate a new offspring.
The operator set includes the following two mutation op-
erators. In each description individual parent i is written
in the form (x⃗(t)

i , σ⃗
(t)
i). The corresponding offspring i′

is written in the form (x⃗(t)
i′ , σ⃗

(t)
i′).

Gaussian mutation: Each parent i produces an off-
spring i′ as follows: for j = 1, 2, · · · , n

353

TABLE I
23 FUNCTIONS USED FOR EXPERIMENTS WHICH ARE CATEGORIZED INTO 3 GROUPS. 7 FUNCTIONS CHOSEN AS TRAINING FUNCTIONS ARE

HIGHLIGHTED WITH GREY BACKGROUND. n STANDS FOR THE DIMENSION OF THE FUNCTIONS AND S STANDS FOR THE RANGE OF THE FUNCTIONS.

Test functions n Domain fmin

f1 =
∑30

i=1 x2
i 30 [−100, 100]n 0

f2 =
∑30

i=1 | xi | +
∏30

i=1 | xi | 30 [−10, 10]n 0

f3 =
∑30

i=1

(∑i
j=1

)2

30 [−100, 100]n 0
f4 = max{| xi |, 1 ≤ i ≤ n} 30 [−100, 100]n 0
f5 =

∑29
i=1

[
100(xi+1 − x2

i)
2 + (xi − 1)2

]
30 [−30, 30]n 0

f6 =
∑30

i=1(⌊xi + 0.5⌋)2 30 [−100, 100]n 0
f7 =

∑30
i=1 ix4

i + random[0, 1) 30 [−1.28, 1.28]n 0

f8 = −∑30
i=1

(
xi sin(

√| xi |)
)

30 [−500, 500]n -12569.5

f9 =
∑30

i=1

[
x2

i − 10 cos(2πxi) + 10
]

30 [−5.12, 5.12]n 0

f10 = −20 exp
(
−0.2

√
1
30

∑30
i=1 x2

i

)
− exp

(
1
30

∑30
i=1 cos(2πxi)

)
+ 20 + e 30 [−32, 32]n 0

f11 = 1
4000

∑30
i=1 x2

i −
∏30

i=1 cos(xi√
i
) + 1 30 [−600, 600]n 0

f12 = π
30

{
10 sin2(πy1) +

∑29
i=1(yi − 1)2

[
1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}
30 [−50, 50]n 0

+
∑30

i=1 u(xi, 10, 100, 4), yi = 1 + 1
4 (xi + 1)

f13 = 0.1
{
10 sin2(π3xi) +

∑29
i=1(xi − 1)2

[
1 + sin2(3πxi+1)

]
30 [−50, 50]n 0

+(xn − 1)2
[
1 + sin2(2πx30)

]
+

∑30
i=1 u(xi, 5, 100, 4)

}
f14 =

[
1

500 +
∑25

j=1
1

j+
∑2

i=1(xi−aij)6

]−1

2 [−65.536, 65.536]n 0.998

f15 =
∑11

i=1

[
ai − xi(b

2
i +bix2)

b2i +bix3+x4

]2

4 [−5, 5]n 0.0003075
f16 = 4x2

1 − 2.1x4
1 + 1

3x6
1 + x1x2 − 4x2

2 + 4x4
2 2 [−5, 5]n -1.0316285

f17 = (x2 − 5.1
4π2 x2

1 + 5
π x1 − 6)2 + 10(1− 1

8π) cos x1 + 10 2 [−5, 10]× [0, 15] 0.398
f18 =

[
1 + (x1 + x2 + 1)2(10− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)

]
2 [−2, 2]n 3

× [
30 + (2x1 − 3x2)2 × (18− 32x1 + 2x2

1 + 48x2 = 36x1x2 + 27x2
2)

]
f19 = −∑3

i=1 ci exp
[
−∑4

j=1 aij(xj − pij)
]

3 [0, 1]n -3.86

f20 =
∑4

i=1 ci exp
[
−∑6

j=1 aij(xj − pij)
]

6 [0, 1]n -3.32

f21 = −∑5
i=1

(∑4
j=1(xj − aij)2 + ci

)−1

4 [0, 10]n -10.15

f22 = −∑7
i=1

(∑4
j=1(xj − aij)2 + ci

)−1

4 [0, 10]n -10.34

f23 = −∑10
i=1

(∑4
j=1(xj − aij)2 + ci

)−1

4 [0, 10]n -10.54

σ
(t)
i′ (j) = σ

(t)
i (j) exp{τaN(0, 1) + τbNj(0, 1)}

x
(t)
i′ (j) = x

(t)
i (j) + σ

(t)
i′ (j)Nj(0, 1)

where N(0, 1) stands for a standard Gaussian random
variable (fixed for a given i), and Nj(0, 1) stands for
an independent Gaussian random variable generated for
each component j. The control parameter values τa and
τb are chosen as follows:

τa = 1/
√

2µ and τb = 1/
√

2
√

µ.

Cauchy Mutation: Each parent i generates an offspring
i′ as follows: for j = 1, 2, · · · , n

σ
(t)
i′ (j) = σ

(t)
i (j) exp{τaN(0, 1) + τbNj(0, 1)},

x
(t)
i′ (j) = x

(t)
i (j) + σ

(t)
i′ (j)δj

where δj is a standard Cauchy random variable, which
is generated for each component j. The parameters τa

and τb are set to be the values used in the Gaussian
mutation.
After mutation, a total of µ new individuals are gener-
ated. The offspring population is denoted by I ′(t).

T5: Fitness Evaluation: Calculate the fitness of individuals
in both parent and offspring populations.

T6: q-Tournament Selection: For every individual i ∈
1, 2, · · · , 2µ in the parent and offspring populations,
a winning function wi is initialized to zero. For each

354

TABLE II
COMPARISON OF MEAN BEST FITNESS BETWEEN LMSEP AND MSEP, LEP, FEP, CEP

Generations LMSEP MSEP LEP FEP [3] CEP [3]

mean best mean best mean best mean best mean best

f1 1500 3.803e-5 6.209e-5 3.048e-2 5.72e-4 1.91e-4
f2 2000 1.556e-3 8.226e-2 1.232e-2 7.60e-2 2.29e-2
f4 5000 0.767 0.629 1.053e-3 0.3 2.0
f6 1500 0 43.8 0 0 577.76
f7 3000 3.514e-2 3.56e-2 9.197e-3 7.6e-3 1.8e-2

f9 5000 61.39 63.44 42.064 4.6e-2 89.0
f10 1500 1.956e-3 6.498 1.797e-1 1.76e-2 8.79
f11 2000 5.0e-2 7.768e-2 5.5e-2 2.49e-2 8.13e-2
f12 1500 1.282 9.36e-1 1.3e-2 9.2e-6 1.76

f15 4000 2.247e-4 3.077e-4 4.5e-4 1.8e-2 9.2
f16 100 -1.0316 -1.0316 -1.029 -1.03 -1.03
f18 100 3 3 3.19 3 3
f19 100 -3.863 -3.863 -3.863 -3.86 -3.86
f21 100 -8.744 -8.62 -7.84 -5.50 -6.43
f22 100 -9.585 -9.37 -9.68 -5.73 -7.62
f23 100 -9.483 -9.63 -9.70 -6.41 -8.86

individual i, select another individual j at random and
compare fitness f(i) with f(j). If fi < fj , then the
winning function for individual i is increased by one
(wi = wi + 1). This procedure is performed q times
for each individual. Based on the winning function, µ
individuals from parent and offspring population with
highest winning values are selected in the next genera-
tion.

T7: Establishment of Training Dataset: Steps T2-T6 are
repeated for γ times which is the stopping criterion of
training procedure. Then, φ and πm are averaged by fol-
lowing Eq. (8). Once this training dataset is established,
no such learning procedures are required to be repeated
in testing. This is because the testing procedures only
require the use of the mixed strategies resulted from this
training process. Therefore, the running cost of training
procedure is excluded when evaluating the total cost of
testing target functions.

Mixed Strategy for Testing: Upon the completion of
training, the EP with the proposed mixed strategy can be
run on various target functions, applying it to the established
dataset:
P1: The testing procedure involves a general procedure of

EP combined with Feature Calculation in preparation
for the use of the mixed strategy. Several steps are to be
performed in the way that are identical to what is done
during the Training Procedure. In particular, the first two
steps are identical to T1 and T2.

P2: Learning Mixed Strategy: With the knowledge of
feature φx, the mixed strategy related to it is then
determined as follows: Find two similar features in the
training dataset using the distance defined in Eq. (11);

Consider their relative positions to φx, the probability
distribution of the mixed strategy is then obtained ac-
cording to Distance Rule.

P3: After this, the steps are also the same to the correspond-
ing ones (T4-T6) of the training procedure.

P4: Steps P1-P2 are repeated until the stopping criterion is
satisfied.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

For the purpose of validating the effectiveness of proposed
mixed strategy based on local fitness landscape, 23 functions
which were used to test FEP in [3] are employed as the train-
ing examples. The description of these functions is provided
in Table I. They are divided into 3 classes: functions f1−f7

are unimodal functions, functions f8 − f13 are multimodal
functions with many local minima, and functions f14 − f23

are multimodal functions with only a few local minima. The
parameter setup in the mixed EP is taken to be the same
as those in [3]. Population size µ = 100, tournament size
q = 10, and initial standard deviation is taken as σ = 3.0.
The lower-bound used for them is σmin = 10−5 for all
functions except f8 and f11. Since f8 and f11 have larger
definition domains than the rest, σmin is taken to be a bigger
value 10−4.

To conduct the process of training, some of the functions
are chosen as training samples which should consist of all
the three types of functions. In this paper, functions f3, f5,
f8, f13, f14, f17 and f20 are chosen as representatives of
three classes. The generations tT of training functions are
limited to 5. These 7 training functions are colored in grey
background in Table I.

All the other functions are used as actual testing functions.

355

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 200 400 600 800 1000 1200 1400

Fi
tn

es
s

Generations

LMSEP
MSEP

 0.01

 0.1

 1

 10

 100

 1000

 0 500 1000 1500 2000

Fi
tn

es
s

Generations

LMSEP
MSEP

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0 10 20 30 40 50 60 70 80 90

Fi
tn

es
s

Generations

LMSEP
MSEP

Fig. 1. Comparison between LMSEP and MSEP.

The stopping criterion is: to stop running at 1500 generations
for functions f1, f6 f10 and f12, 2000 generations for f2 and
f11, 5000 generations for f4 and f9, 4000 generations for
f15. The rest will run 100 iterations. The lower-bound used
for them is σmin = 10−5 for all functions except f4. Results
for f1 − f15 are averaged over 50 independent runs, and for
f16 − f23 over 1000 independent trials.

The performance of EP using a mixed strategy mutation
is compared with that of MSEP, SPMEP, LEP, FEP and
CEP, whose results are presented in Table II and Table III.
For simplicity, the algorithm proposed in this work (which
is related to the local fitness landscape) is named LMSEP

hereafter. MSEP [9] is an EP with a mixed mutation strategy
in which different mutation operators are considered and
adaptively employed according to a dynamic probabilistic
distribution. CEP is an EP using a Gaussian mutation and
FEP stands for EP using a Cauchy mutation which then is
extended to LEP.

Table II lists the results of the mean best fitness generated
in benchmark functions, from which it is observed that
LMSEP produces a reasonable result at a similar level of
precision which reveals that the mixed strategy performs at
least as well as a pure strategy. However, it can be seen
that, with the use of LEP or FEP, a considerably improved
result for f4, f7, f9 and f12 can be obtained. By exploring
the mutation mechanism of LEP and FEP, the main reason
can be considered as the relative higher flexibility of LEP
and FEP than that of LMSEP. As the feature and mixed
strategy is one-to-one correspondence in LMSEP, the update
of mixed strategy would be stopped in certain generation
once there is no improvement to the feature of local fitness
landscape. As a result, the ability of producing large step
jump is reduced at the later stage of the search [3]. It would
be potentially favorable to assign a parameter, expressed as
percentage, to let the process have a limit flexibility which
is not in compliance with the one-to-one correspondence.

Fig. 1 provides a graphical comparison of average values
of population found by two mixed strategies, LMSEP and
MSEP, over 50 runs, where both algorithms employ two
types of mutation operator, namely Gaussian mutation and
Cauchy mutation. Two benchmark functions, f1, f11 and f22,
are tested here. It is clear that LMSEP can search further
on f1 and f22 while MSEP can not find relative improved
results. For f11, LMSEP displays a faster convergence rate
than MSEP. LMSEP quickly reaches approximately 1 in
around 1000 generations. After that, MSEP exhibits a sub-
stantial descent and overtakes LMSEP. However finally, both
algorithms reach approximatively same result around 1700
generations. Take all cases into account, the curves of process
suggest a more efficient progress is introduced by LMSEP.

The standard deviation of LMSEP whose evaluation is
given in Table III is also compared with those obtained using
other approaches. According to the results, LMSEP exhibits
similar performances on most functions except f4, f7, f9

and f12. This fact indicates that LMSEP has at least the
same stability with a single pure strategy. However, LMSEP
does not present a better performance on some function to
which LEP and FEP are nicely applied. It suggests that the
search of mixed strategy is sometimes not able to focus on
the position where the global minimum is situated. It means
the adjustment of the feature of local fitness landscape, the
implementation of φ in this paper, remains to be carefully
modified in future research so that a better result can be
expected.

V. CONCLUSIONS

This paper has presented a new EP, LMSEP, which is
characterized by the local fitness landscape using a mixture
of different mutation strategies. The approach addresses the

356

TABLE III
COMPARISON OF STANDARD DEVIATION BETWEEN LMESP AND MSEP, LEP, FEP, CEP

Generations LMSEP MSEP LEP FEP [3] CEP [3]

Std. dev Std. dev Std. dev Std. dev Std. dev

f1 1500 7.971e-5 1.607e-4 6.043e-3 1.3e-4 5.9e-4
f2 2000 9.37e-4 4.346e-1 3.136e-3 7.7e-4 1.7e-4
f4 5000 1.09 1 2.059e-4 0.3 0.5
f6 1500 0 126 0 0 1125.76
f7 3000 1.854e-2 1.744e-2 2.486e-3 2.6e-3 6.4e-3

f9 5000 13.18 13.8 15.127 4.6e-2 1.2e-2
f10 1500 1.762e-3 2.485 2.813e-2 2.1e-3 2.8
f11 2000 4.843e-2 11.198 1.114e-2 1.8e-2 9.2
f12 1500 2.065 2.46e-2 5.7e-5 3.6e-6 2.4

f15 4000 1.885e-4 1.090e-6 1.5e-4 1.8e-2 9.2
f16 100 4.817e-9 3.417e-8 3.247e-3 4.9e-7 4.9e-7
f18 100 4.431e-8 0 2.183e-1 0.11 0
f19 100 7.22e-8 4.568e-7 1.19e-4 1.4e-5 1.4e-2
f21 100 2.744 2.59 2.934 1.59 2.67
f22 100 2.136 2.32 1.959 2.12 2.95
f23 100 2.466 2.38 2.284 3.14 2.92

drawbacks of conventional EPs that employ a single mutation
operator. In addition, a training procedure has been given
to promote LMSEP in an efficient and intelligent way, by
introducing a self-learning algorithm.

The performance of LMSEP is firstly trained on 7 func-
tions and then tested on a suite of 16 benchmark functions, in
comparison with previously studied EPs. The experimental
evaluation indicates that the new approach has the ability to
produce relatively more acceptable results. The tests regard-
ing the standard deviation also demonstrate that LMSEP has
a more robust performance.

Although the training procedure leads to a fast perfor-
mance, it may occasionally miss certain regions that should
be checked for. To address this issue, a fine adjustment of
training procedure remains an active research. For instance,
a backward jump procedure may be potentially employed.
As a compatible satisfactory result can be obtained using
FEP and LEP, a better implementation of the φ parameter
may be useful. Additionally, more mutation operators can be
taken into account, (e.g. Lévy mutation). Finally, introducing
mixed strategies to other types of operator like crossover and
selection also forms an interesting piece of future work.

REFERENCES

[1] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence
Through Simulated Evolution. New York, NY, USA: John Wiley
& Sons, Inc., 1966.

[2] D. B. Fogel, Evolutionary computation: toward a new philosophy of
machine intelligence. Piscataway, NJ, USA: IEEE Press, 1995.

[3] X. Yao, Y. Liu, , and G. Lin, “Evolutionary programming made faster,”
IEEE Transactions on Evolutionary Computation, vol. 3, pp. 82–102,
1999.

[4] C.-Y. Lee and X. Yao, “Evolutionary programming using mutations
based on the lévy probability distribution,” IEEE Transactions on
Evolutionary Computation, vol. 8, no. 1, pp. 1–13, 2004.

[5] D. H. Wolpert and W. G. Macready, “No free lunch theorems for op-
timization,” IEEE Transactions on Evolutionary Computation, vol. 1,
no. 1, pp. 67–82, 1997.

[6] J. He and X. Yao, “A game-theoretic approach for designing mixed
mutation strategies,” in ICNC’05 (LNCS 3612). Springer-Verlag,
2005, pp. 279–288.

[7] K. Chellapilla, “Combining mutation operators in evolutionary pro-
gramming,” IEEE Transaction on Evolutionary Computation, vol. 2,
no. 3, pp. 91–96, 1998.

[8] H. Zhang and J. Lu, “Adaptive evolutionary programming based on
reinforcement learning,” Information Science, vol. 178, no. 4, pp. 971–
984, 2008.

[9] H. Dong, J. He, H. Huang, and W. Hou, “Evolutionary programming
using a mixed mutation strategy,” Information Sciences, vol. 177, no. 1,
pp. 312–327, 2007.

[10] L. Shen and J. He, “Evolutionary programming using a mixed strategy
adapting to local fitness landscape,” in Proceedings of the 2009 UK
Workshop on Computational Intelligence. University of Nottingham,
2009, pp. 92–97.

[11] Y. Liu, “Operator adaptation in evolutionary programming,” in ISICA,
2007, pp. 90–99.

[12] G. B. Fogel, G. B. Fogel, and K. Ohkura, “Multiple-vector self-
adaptation in evolutionary algorithms,” BioSystems, vol. 61, pp. 155–
162, 2001.

[13] T. M. Mitchell, Machine Learning. New York, NY, USA: McGraw-
Hill Science/Engineering/Math, March 1997.

357

