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Sedimentation of an elliptical object in a two-dimensional foam

I.T. Davies, S.J. Cox1

Institute of Mathematics and Physics, Aberystwyth University, Ceredigion SY23 3BZ, UK

Abstract

The sedimentation of an elliptical object in a dry two-dimensional, monodisperse foam is simulated. The

calculations are quasi-static, allowing the identification and separation of the elastic, plastic and viscous

response of the foam to the motion. In addition to its weight, the forces on the ellipse are due to the network

of soap films and the pressures in the bubbles. These give rise to non-zero torque, lift and drag forces,

causing the motion of the ellipse to deviate from a vertical path. Highly-stretched films are formed in the

wake of the ellipse and asymmetry in the flow field, with bubbles moving from the front to the back of the

ellipse along only one side, causes it to rotate from a metastable state with its major axis perpendicular to

gravity into a stable orientation with its major axis parallel to the direction of gravity. When the orientation

is intermediate between these two limits, there is a significant lift force which causes the ellipse to move

laterally. A larger, more eccentric, ellipse rotates more quickly.
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1. Introduction

Liquid and solid foams are familiar materials that are used in a variety of domestic products. They are

also important in many industrial processes such as mineral separation and enhanced oil recovery [1, 2, 3].

Aqueous foams are complex fluids, in the sense that their response to applied stress is highly non-linear:

they exhibit elastic, plastic and viscous characteristics. At low stresses, a foam behaves as an elastic solid.

Increasing the applied stress results in T1 topological changes, plastic events during which bubbles rearrange

and swap neighbours, giving rise to a yield stress. Increasing the applied stress above a foam’s yield stress

leads to viscous liquid-like behaviour [4].

Liquid foams provide a prototypical complex fluid with which it is possible to work at the scale of

constituent particles (bubbles) of the order of millimetres, instead of the usual microscopic scale. Here, the

complex nature of foams is studied by looking at the sedimentation of an elliptical object descending under

its own weight through a two-dimensional (2D) foam, a variation of the classical Stokes experiment [5].

It has been known since the 1960s [6, 7] that the fluidized region surrounding a long object falling in

a yield stress fluid is highly dependent on its orientation. Brunn [8] showed that only two orientations are

stable: with the long (or major) axis parallel or perpendicular to the direction of gravity. Rod-like particles

descending through viscoelastic fluids [9] and other long objects in fluids with high elasticity [10, 11] turn so

that their long axis is parallel to gravity, in contrast to the case of purely viscous Newtonian fluids [12], as

a result of compressive normal forces.

Joseph and Liu [13] propose that the tilt angle of a long body falling in a viscoelastic liquid is determined

by the competition between viscous, viscoelastic and inertial effects. Their 3D experiments on the settling of

a cylindrical rod in a viscoelastic fluid showed that for light particles the viscoelasticity of the fluid dominates

and turns the long body such that its major axis is parallel to gravity. In contrast, when a heavy particle

was allowed to settle minimal rotation of the object was seen.

Probing the response of a foam by looking at its flow past circular or spherical objects is becoming a

standard tool [see e.g. 14], but the use of asymmetric objects such as an ellipse is unusual, despite the

possibility of further exploring a foams’ complex response. A notable exception is the work of Dollet et al.

[15], who studied the 2D flow of foam past a freely rotating ellipse (and later an aerofoil [16]) with a fixed

centrepoint. Their experiment consisted of a monolayer of equal-area bubbles bounded between a glass plate

and a water sub-phase moving at constant velocity. Attaching the ellipse’s centre to a thin elastic fibre

enabled the measurement of the drag and lift forces as well as the torque exerted on the object. The torque

caused the ellipse to rotate so that its major axis became parallel to the direction of foam flow, and the

angular velocity of the ellipse was greatest when the angle between its major axis and the direction of the
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flow was between 15◦ and 40◦.

Our simulations, described below, are inviscid, and therefore allow us to distinguish the effects of viscosity

from the elasticity of the foam during sedimentation. Previously we showed, using a similar method, that

the stable configuration for two discs falling through a dry 2D foam was such that they were one above the

other, provided they started within a critical distance of each other of the order of a few bubble diameters.

That work lacks experimental confirmation. Here, we simulate the rotation of a single fixed elliptical object

in a foam flow, validate this against experiment [15], and then use the simulations to probe the response

of a dry 2D foam to the sedimentation of an elliptical object. We systematically vary control parameters

including the area and eccentricity of the ellipse and separate the contributions of bubble pressures and the

film network.

2. Method

We use a quasi-static model, implemented in the Surface Evolver [17], in which the motion of the object

in the foam is assumed to be so slow that viscous effects do not change the structure of the foam.

The initial foam structure is created from a Voronoi construction [18] based upon randomly distributed

seed points. We use the Surface Evolver in a “circular arc” mode, in which each soap film is represented by

a circular arc, providing high accuracy and computational efficiency. We set all bubble areas Ab to be equal

(monodisperse foam): the drag forces depend weakly upon the area disorder [19], and we expect the same

to be true of the torque.

In a real foam, a T1 event occurs whenever a film shrinks to zero length; the effect of liquid is to cause

the vertices to swell and the films between them to shrink. To mimic this effect in our dry foam model, we

allow T1s when the films have a finite length representing (twice) the size of the real vertices [20]. That

is, we introduce a finite cut-off film length lc which increases with effective liquid fraction and below which

a T1 is triggered. This cut-off length is kept constant and small here, representing a dry foam: we choose

lc = 3.6×10−3, appropriate to a liquid fraction of φl = 4×10−3. The structure is equilibrated by minimizing

the total film length (the film tension, equal to twice the interface tension γ, is set equal to one throughout)

subject to the area constraints, allowing T1s when required.

The foam is embedded in a channel, and the top and bottom of the channel are connected by a periodic

boundary condition [21]. The channel has length L = 1 and width W = 0.47 and contains 600 bubbles

so that the walls are roughly 15 bubbles apart. Vertices that touch the ellipse are free to slip. We then

convert one bubble into an elliptical object with centre (x0, y0), eccentricity ec and area Ae, ensuring that
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the bubble’s vertices satisfy the constraint:

1

e2
c

[(y − y0) cosφ − (x − x0) sin φ]
2

+ e2
c [(y − y0) sin φ + (x − x0) cosφ]

2
= Ae/π, (1)

where φ denotes the angle at which its major axis is oriented relative to the horizontal x-axis. See figure 1.

[Figure 1 here]

We perform two types of simulations. Firstly, we cause the foam in the channel to flow in the positive y

direction by incrementing the position of a line of films using the method described in [22], employing a slip

boundary condition on the channel walls. The centre of the ellipse is fixed in the centre of the foam channel,

x0 = 0.235, y0 = 0.5. We measure the forces on the ellipse, as described below, and allow it to rotate a

small amount in response to the torque before finding a new local equilibrium of the foam. Secondly, we

allow the ellipse to sediment by placing it at the top of the centre of the foam channel, far enough from the

channel walls that attraction/repulsion from the wall can be neglected [14, 19]. In this case the vertices at

which films meet the walls of the channel are fixed after the first equilibration, so that a no-slip boundary

condition is maintained there. We measure the forces on the ellipse, now including its weight, increment its

position and orientation in proportion to those forces, and find a new local equilibrium of the foam.

2.1. Forces on an ellipse

The ellipse is acted upon by three forces: (i) its weight mg, chosen sufficiently large that it will not come

to rest during sedimentation; (ii) the resultant tension force ~Fn due to the network of films pulling it; (iii)

the resultant pressure force ~F p due to the pressure of the bubbles in contact with it. The films that are

in contact with the ellipse are not uniformly distributed around its circumference – they bunch up at the

trailing edge asymmetrically, see figure 1 – so that the resultant forces are usually non-zero. The network

and pressure forces exerted on the ellipse both contribute towards the drag (upward) and lift (lateral) force

it experiences, as well as the torque (rotation).

Each film i that meets the ellipse boundary does so at an angle of π/2 and contributes a force equal to

the film tension 2γ on the object. We denote the position of the vertex at which the film meets the boundary

by (xi, yi) and write ri =
√

(xi − x0)2 + (yi − y0)2 and tan θi = (xi − x0)/(yi − y0). The force due to film i

is directed at an angle αi to the positive y direction, with

tan αi =

(

1 − e4
c

)

cosφ sin φ (yi − y0) −
(

e4
c cos2 φ + sin2 φ

)

(xi − x0)

(1 − e4
c) cosφ sin φ (xi − x0) −

(

cos2 φ + e4
c sin2 φ

)

(yi − y0)
. (2)

The resultant network force is

~Fn = 2γ
∑

i

(sinαi, cosαi) . (3)
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Since the vector describing the pull of each film does not go through the centre of the ellipse, the network

force contributes to a torque that rotates the object. This network torque is dependent on the difference

between the angles αi and θi and is given by

τn = 2γ
∑

ri sin (αi − θi), (4)

with positive torque in the clockwise direction.

The pressure force exerted by the bubbles in contact with the ellipse is calculated in a similar way: a

bubble k with pressure pk that contacts the ellipse over a length lk will exert a force in the inward normal

direction, measured at the centrepoint of lk, denoted (xk, yk). The length lk is the arc length between the

two vertices (xi, yi) and (xi+1, yi+1) at which the bubble meets the ellipse. The resultant pressure force is

~F p =
∑

k

pklk (sin βk, cosβk) (5)

where

tan βk = −
yi+1 − yi

xi+1 − xi
. (6)

In addition, a non-zero pressure torque is exerted. As in the network force case, the amount of torque exerted

depends on the difference between the angles βk and θk. Thus, the torque exerted on the ellipse due to the

pressure of the contacting bubbles is

τp =
∑

pklkrk sin (θk − βk) (7)

where rk =
√

(xk − x0)2 + (yk − y0)2.

2.2. Fixed ellipse

We assume over-damped dynamics, with a time-scale set by either the drag on the bounding plates of

the 2D experiment or by the frictional drag from the soap films that move around the perimeter of the

ellipse; in both cases we assume that the torque is proportional to the angular velocity of the ellipse. Thus,

a simulation iteration consists of moving the foam downstream by a small amount, taken as 2.1× 10−3, and

changing the angle φ at which it is oriented by an amount:

∆φ = ǫ0(τ
n + τp). (8)

The constant ǫ0 sets the effective time-scale for the rotational motion of the ellipse: as a result of the small

magnitude of torque exerted on the ellipse we set ǫ0 = 0.1.
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2.3. Sedimenting ellipse

The network and pressure contributions to the force exerted on an ellipse that has position ~x at a time

t within the foam channel resist the gravity-driven motion. We again assume over-damped dynamics, so

that the drag is proportional to the translational velocity of the ellipse. Thus, a simulation iteration consists

of moving the ellipse centre point (x0, y0) by an amount (∆x, ∆y) and changing the angle φ at which it is

oriented by an amount ∆φ:

∆x = ǫ1(F
n
x + F p

x )

∆y = ǫ1(F
n
y + F p

y + mg) (9)

∆φ = ǫ2(τ
n + τp).

To avoid numerical problems ǫ1 must be smaller than the critical length lc. We choose ǫ1 = 3.6 × 10−4,

ensuring that the linear motion of the disc is slow enough that the assumptions of the quasistatic model are

satisfied. We set ǫ2 = 500ǫ1 to avoid having to use unfeasibly long foam channels in order to observe the

ellipse rotation. Thus in our simulations the ellipse is overly responsive to the torque applied on it during

its sedimentation, but this work still provides qualitative evidence concerning the motion of the ellipse and

the response of the foam.

3. Results

3.1. Fixed ellipse

3.1.1. Reference simulation

First we consider a reference simulation: the flow past a fixed ellipse of area ratio ar = Ae/Ab = 4 and

eccentricity ec = 0.8, initially oriented with its major axis perpendicular to gravity, i.e. φ = 0.

[Figure 2 here]

Figure 2(a) shows how the ellipse rotates into a stable orientation, φ = π/2, that is, with its major axis

parallel to the direction of gravity. The increase in the angle of orientation φ is initially very slow, suggesting

that the orientation φ = 0 is metastable and that the rotational motion is triggered by the disorder of the

foam structure. Once the rotation of the ellipse has begun, there is a period of more rapid rotation until the

major axis becomes parallel to the direction of gravity and only slight fluctuations in the orientation occur,

indicating stability. We fit the orientation to the form

φ(t) =
π

4
(1 + tanh (s(t − t0))) , (10)
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where t represents iteration number, with fitting parameters t0 and

s =
4

π

dφ

dt

∣

∣

∣

∣

φ=π/4

.

This assumes, as certainly seems appropriate in figure 2(a), that the rotation, and therefore the torque, is

symmetric about φ = π/4. The parameter s therefore allows us to estimate the maximum rotation rate of

the ellipse.

The network and pressure contributions to the drag, lift and torque exerted on the ellipse are shown

in figure 2 as a function of φ. There is an initial transient (not shown) lasting for about 50 iterations

and the values show large fluctuations typical of very dry foams. The network contribution to the drag is

significantly larger than the pressure contribution; both decrease towards the end of the motion, confirming

the observation [15] that the drag force is dependent on the spanwise width of the ellipse and indicating

that the drag is minimized when the ellipse is oriented such that its major axis is parallel to gravity. Both

contributions to the lift are much smaller than the drag throughout but are maximized when the ellipse is

oriented so that its major axis is far from being parallel or perpendicular to gravity. In this case the torque

is negative, so that the ellipse rotates anticlockwise. Both the network and pressure forces contribute to the

torque in the same sense; they are small when the ellipse is in either the metastable or stable orientations

and the network contribution is greatest, as for the linear forces.

The rotation of the ellipse occurs due to the position of the films and the deformation of bubbles along

its boundary. The films bunch up at the lowest point of the ellipse as the foam moves past it (figure 1). A

slight fluctuation in the forces on the ellipse when it is oriented close to the metastable orientation results in

films bunching up at an off-centre position on the ellipse boundary and therefore a non-zero network torque.

Rotation of the ellipse continues until its highest point becomes its tip. Once the major axis of the ellipse

is parallel to the y-direction the network torque applied by the films is minimized. The distribution and

shape of the bubbles that surround the ellipse become less deformed when the ellipse is in this orientation.

When the ellipse is oriented so that its major axis is perpendicular to gravity, bubbles in its wake are highly

elongated and the bubbles at the leading edge are squeezed. However, when the ellipse is in its stable

orientation, the deformation it causes to the foam is reduced.

The direction in which the ellipse rotates (clockwise or anticlockwise) is determined by the local structure

of the foam. However, if the ellipse is placed close to one of the walls (data not shown) then the nearest wall

determines the direction of rotation: more bubbles move from the front to the back of the ellipse on the side

furthest from the wall, then films bunch close to the end of the ellipse closest to the wall and the network

force causes it rotate. That is, it rotates anticlockwise close to the left-hand wall at x = 0 and clockwise

close to the right-hand wall at x = W .
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3.1.2. Validation

We attempt here to compare qualitatively our results with those of [15], who studied experimentally the

slow flow of a monolayer of bubbles past an ellipse of area ratio 70 and eccentricity ec = 0.78. The size of this

ellipse is much higher than is possible in our simulations, but the eccentricity is similar. We show in figure 3

the drag, lift and torque on ellipses with ec = 0.8 and 4 ≤ ar ≤ 10. All three increase in magnitude with the

area of the ellipse. The drag shows the greatest dependence on area, and a linear decrease with orientation as

in the experiment. The lift depends weakly on area, but again shows a response that is qualitatively similar

to the experiment. The simulations correctly capture the shift towards higher φ in the torque, although it

increases more smoothly with φ than in the experiment.

[Figure 3 here]

We consider the close correlation between our simulations for a fixed ellipse and the experiments to

validate these simulations. We now turn to the sedimentation of an ellipse through a foam.

3.2. Sedimenting ellipse

3.2.1. Reference simulation

We again first consider a reference simulation: the sedimentation of the same reference ellipse as before

(ar = 4, ec = 0.8) with weight mg = 8. Note that the weight is given a dimensionless value which is

effectively the Bond number,

Bo =
mg

2γar
. (11)

The ellipse starts at a central position at the top of the foam and is initially oriented with its major axis

perpendicular to gravity, i.e. φ = 0.

[Figure 4 here]

The orientation φ increases in much the same way as for a fixed ellipse (figure 2(a)) during the descent,

and the network and pressure contributions to the drag, lift and torque exerted on the ellipse are much as

before (data not shown). The major axis again rotates until it becomes parallel to the direction of gravity.

However, the ellipse also drifts laterally as it descends through the foam, as shown in figure 4(a), due to the

non-zero component in the lift force when φ is far from both 0 and π/2.

[Figure 5 here]

To explain the foam’s response to the sedimentation of an elliptical object, we show the fields of bubble

displacement and pressure in figure 5. Instead of a symmetric bubble displacement field, bubbles move from

the front to the back of the ellipse on only one side. The displacements are confined to within only a few

bubble diameters of the ellipse (figure 6), indicating the screening [23] that the discrete nature of the foam

causes. As the ellipse rotates, bubbles are squeezed in front and elongated at the back. Thus, a region of
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high pressure exists in front of the object and on the side toward which it is rotating, while the wake consists

of elongated bubbles of low pressure.

[Figure 6 here]

3.3. Varying ellipse area and eccentricity

The ellipse’s eccentricity and area are varied independently, keeping all other parameters constant (in-

cluding the weight, mg = 8). There is no clear trend in the time taken for the ellipse to leave the metastable

orientation, since it depends upon the local disorder of the foam, but it is clear that each ellipse does rotate

into the stable orientation. The variations in the magnitude of the ellipse orientation with iteration number

are fitted to the form of eq. (10).

The results in figures 4(b) and 7 show that larger ellipses rotate more quickly, whether they are fixed

or sedimenting. For example, the ellipse with ar = 10, ec = 0.8 has reached the stable orientation high

up in the foam (figure 4(b)), and shows the greatest rotation rate (figure 7). This is due to a combination

of factors: larger ellipses experience greater torque (figure 3(b)) because of the larger number of films that

touch them, but in the case of sedimentation they descend more slowly because they are less dense (since

the weight is fixed), giving more time for the rotation to occur.

[Figure 7 here]

Long, thin objects are expected to rotate at a greater rate than rounded objects, since films can bunch up

at a position that is far from the object’s centre of mass, resulting in a greater network torque being exerted

by the foam. The deformation of the bubbles is also greater around a longer object. Note that in the absence

of any viscous drag, as here, a circular disc experiences zero torque and would not rotate. The sedimentation

of ellipses with eccentricities 0.70, 0.75, 0.80, 0.85, and 0.90, area 4Ab and weight 8, initially oriented with

φ = 0, is shown in figure 4(b). As expected, more eccentric ellipses rotate more quickly, summarized in figure

7.

4. Discussion

The sedimentation of an elliptical object in a dry 2D foam is a probe of foam rheology. An ellipse rotates

to a stable orientation with its major axis parallel to the direction of gravity, independently of its initial

orientation. A larger, more eccentric, ellipse rotates more quickly. The rotation is a result of the elasticity of

the foam, modulated by its plasticity: it is driven by the bunching up of highly-stretched films in the wake

of the ellipse at an off-centre position relative to the centre of mass of the ellipse, but when films become

too close, T1 events occur and the driving force is lessened. The contribution of bubble pressures is less, but

tends to act in the same sense as the network forces.
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A further factor to be considered is the weight of the object, which we have chosen to be sufficient to

allow downward motion without it becoming trapped (as would be the case for the reference case with an

ellipse of half the weight). Heavier obstacles would descend more quickly, and the effect of the torque would

be harder to observe, requiring much longer channels. Similarly, we expect that increasing the liquid fraction

of the foam from the very small value used here would result in slower rotation, since the number of films

that congregate at the highest point of the ellipse would be less. Incorporating viscous drag between the

foam films and the sedimenting object would lead to greater network torques. Thus the required channel

length would be reduced, making the calculations faster; however, introducing such a drag might increase

the computational expense.
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Figure Captions

Figure 1: The films and bubbles in contact with the ellipse exert a network and pressure force on it.

These contribute towards the drag, lift and torque exerted by the foam, and since they are distributed

asymmetrically (the ellipse is sedimenting in the case shown, so that the films bunch up above it), the total

contribution is usually non-zero.

Figure 2: (a) The orientation of a fixed ellipse of area 4Ab and eccentricity 0.8 changes so that the major

axis is parallel to the direction of flow. The small variations about φ = π/2 emphasises the stability of this

orientation. Also shown is a fit to eq. (10). The network and pressure contributions to the (b) drag force,

(c) lift force and (d) torque exerted on the same ellipse.

Figure 3: The (a) total drag and lift and (b) total torque on a fixed ellipse, for various areas. We choose

to show lift and torque as negative, independent of the actual direction of rotation, to allow qualitative

comparison with the experimental results of Dollet et al. [15] (in arbitrary units). Both drag and lift show

the same shape: a linear decrease in drag and a quadratic dependence of lift on orientation. The torque is

skewed towards larger orientations in both simulation and experiment, but the simulation does not show the

sudden change in torque around φ = π/4.

Figure 4: Tracking the ellipses as they descend through the foam shows that they drift laterally in the

channel as they rotate towards a stable orientation. (a) An ellipse of area 4Ab, eccentricity 0.8 and weight

8 sediments freely from an initial orientation in which its major axis is perpendicular to gravity (φinit = 0).

The angle of orientation increases until the ellipse is oriented such that its major axis is parallel to gravity,

which proves to be stable. Images of the ellipse are shown every 100 iterations. (b) The paths of ellipses

of different sizes and eccentricities are shown with an outline of the ellipse either when it reaches the stable

orientation (more eccentric, on the left, or larger, on the right) or when it reaches the bottom of the channel.

Figure 5: Measured fields for the reference simulation of figure 4(a). (a) Bubble displacement between

the 250th and the 280th iteration. (b) Bubble pressures for the 250th iteration. Dark gray denotes high

pressure, light gray denotes low pressure.

Figure 6: The discrete nature of the foam causes the motion of the ellipse to be screened. The average

displacement of each bubble is plotted as a function of the radial distance from the ellipse centre for the

data of figure 5(a), each scaled by the bubble diameter. There is a clear drop in displacement beyond 4-5

bubble diameters from the ellipse.

Figure 7: The maximum rate of rotation calculated from the slope of the fit to eq. (10) for a range of

ellipse eccentricities (lines of negative slope, lower axis) and areas (lines of positive slope, upper axis). Data

for fixed and sedimenting ellipses are very similar. The rotation rate increases as the ellipse becomes larger
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and/or more eccentric.
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Figure 1: The films and bubbles in contact with the ellipse exert a network and pressure force on it. These contribute towards

the drag, lift and torque exerted by the foam, and since they are distributed asymmetrically (the ellipse is sedimenting in the

case shown, so that the films bunch up above it), the total contribution is usually non-zero.
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Figure 2: (a) The orientation of a fixed ellipse of area 4Ab and eccentricity 0.8 changes so that the major axis is parallel to the

direction of flow. The small variations about φ = π/2 emphasises the stability of this orientation. Also shown is a fit to eq.

(10). The network and pressure contributions to the (b) drag force, (c) lift force and (d) torque exerted on the same ellipse.
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Figure 3: The (a) total drag and lift and (b) total torque on a fixed ellipse, for various areas. We choose to show lift and torque

as negative, independent of the actual direction of rotation, to allow qualitative comparison with the experimental results of

Dollet et al. [15] (in arbitrary units). Both drag and lift show the same shape: a linear decrease in drag and a quadratic

dependence of lift on orientation. The torque is skewed towards larger orientations in both simulation and experiment, but the

simulation does not show the sudden change in torque around φ = π/4.
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Figure 4: Tracking the ellipses as they descend through the foam shows that they drift laterally in the channel as they rotate

towards a stable orientation. (a) An ellipse of area 4Ab, eccentricity 0.8 and weight 8 sediments freely from an initial orientation

in which its major axis is perpendicular to gravity (φinit = 0). The angle of orientation increases until the ellipse is oriented

such that its major axis is parallel to gravity, which proves to be stable. Images of the ellipse are shown every 100 iterations.

(b) The paths of ellipses of different sizes and eccentricities are shown with an outline of the ellipse either when it reaches the

stable orientation (more eccentric, on the left, or larger, on the right) or when it reaches the bottom of the channel.
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(a) (b)

Figure 5: Measured fields for the reference simulation of figure 4(a). (a) Bubble displacement between the 250th and the 280th

iteration. (b) Bubble pressures for the 250th iteration. Dark gray denotes high pressure, light gray denotes low pressure.
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Figure 6: The discrete nature of the foam causes the motion of the ellipse to be screened. The average displacement of each

bubble is plotted as a function of the radial distance from the ellipse centre for the data of figure 5(a), each scaled by the bubble

diameter. There is a clear drop in displacement beyond 4-5 bubble diameters from the ellipse.
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Figure 7: The maximum rate of rotation calculated from the slope of the fit to eq. (10) for a range of ellipse eccentricities (lines

of negative slope, lower axis) and areas (lines of positive slope, upper axis). Data for fixed and sedimenting ellipses are very

similar. The rotation rate increases as the ellipse becomes larger and/or more eccentric.
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