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BeelP: Bee-Inspired Protocol for Routing in
Mobile Ad-Hoc Networks

Alexandros Giagkos and Myra S. Wilson

Dept. of Computer Science, Aberystwyth University, Penglais, SY23 3BD, Wales, UK
{aag07,mxw}@aber.ac.uk

Abstract. We introduce a new bee-inspired routing protocol for mobile
ad hoc networks. Emphasis is given to the ability of bees to evaluate
paths by considering several quality factors. In order to achieve similar
behaviour in the networking environment, BeelP is using cross-layering.
Fetching parameters from the lower PHY and MAC layers to the core
of the protocol, offers the artificial bees the ability to make predictions
about the link’s future performance. Our approach is compared with
two well-known routing protocols in the area, the destination sequenced
distance-vector protocol (DSDV), and the adaptive on-demand distance
vector protocol (AODV). The outcome shows that BeelP achieves higher
data delivery rates and less control overhead than DSDV, and slightly
better results compared to AODV, initializing less route discovery pro-
cesses.
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1 Introduction

Nodes in a mobile ad hoc environment face two major challenges, the mobility of
the network participants and their resource constraints. Firstly, the movement of
the nodes lead to network topology changes and frequent path breaks. Secondly,
as nodes act as both transmission endpoints and routers, they generate their
own traffic as well as route the traffic generated by others. This requires more
energy being spent, and also, increases the complexity of routing. [1]

The routing algorithms for mobile ad hoc networks (MANETS) can be broadly
categorized as proactive, reactive or hybrid. Protocols that use proactive algo-
rithms periodically send control packets to collect information about the network
state and update their routing tables accordingly. Such examples are the des-
tination sequenced distance-vector protocol (DSDV) [2] and the optimized link
state routing protocol (OLSR) [3].

Contrarily, reactive algorithms find routes on-demand. They do not maintain
routes between all the nodes in the topology. Rather, routes are established
only when needed through a route discovery process, in which a route request is
broadcast. Examples of reactive protocols are the dynamic source routing (DSR)
[4] and the adaptive on-demand distance vector (AODV) [5].



The third category, hybrid, contains ideas borrowed from both proactive and
reactive paradigms. Generally, hybrid protocols separate the network topology
into zones. Routing is determined proactively within each zone, and reactively
outside it. The advantage of such a combination is the increased overall scala-
bility and optimization within the zones. One well-known hybrid example is the
zone routing protocol (ZRP) [6].

All these approaches point out the need for adaptation in routing. Protocols
have to be able to adapt to topological changes and provide optimal results.
Examples of such adaptive behaviour come from the study of Nature and in
particular natural networks (e.g. insects). The first algorithm which presented
a detailed scheme for network routing based on ant colony principles is ARA
[7]. This routing algorithm is inspired by the pheromone laying behaviour of ant
colonies.

In this paper we present a new routing protocol for MANETS, called BeelP,
which is designed to provide routing solutions inspired by the foraging principles
of bees. Cross-layering is used in order to utilize parameters of lower layers and
be able to calculate the performance of the links between the sources and the
destinations [8].

2 Related Work

In 2004, H.F. Wedde, M. Farooq, and Y. Zhang were the first to present BeeHive
[9], a novel routing algorithm for wireless networks inspired by the communica-
tive and evaluative methods and procedures of bees.

More specifically, BeeHive is built around two types of agents, the short
distance and the long distance agents which are proactively generated at the
nodes and are designed after the way bee foragers respond to bee dances. The
responsibility of both types of agents is to explore the network and to evaluate
the quality of paths that they traverse, in order to update node routing tables.
Short distance agents are allowed to move only up to a restricted number of hops
in the network, whereas long distance agents have to collect and disseminate
routing information in the complete topology.

Moreover, BeeHive has been extensively tested and evaluated. Its results
conclude that while it achieves similar or better performance compared to state-
of-the-art routing algorithms, bee agents occupy smaller bandwidth and require
significantly less processing time compared to the agents of existing algorithms.

BeeHive has been an inspiration to further research and enhancements. In
2005, H.F. Wedde et al have proposed BeeAdHoc [10], a routing algorithm for
energy efficient routing in MANETSs. By utilizing two types of agents, scouts
and foragers, BeeAdHoc is able to reactively search for routing solutions, con-
suming less energy compared to existing state-of-the-art approaches. The major
difference of our approach and BeeAdHoc is on how the quality of the links is
calculated, and the way of evaluating their performance. Due to the early stage
of this work, we were not able to present a comparison between our approach
and BeeAdHoc, however, this is part of our future plan.



The rest of this paper is organized as follows. In Section 3 we give an overview
of the key points of biological bee behaviour in respect to both scouting and
foraging. In Section 4 we present our design model. Section 5 includes the first
simulation experiments and results. Section 6 contains our conclusion and plan
for future work.

3 Biological background

In Nature, a bee explores the surroundings of the hive in order to detect possible
sources of food. Once a source is found, the scout returns back to the hive to
report her findings and to recruit other hive members to start foraging. Both
reporting and recruiting are done by performing a special dance.

In his book [11] von Frisch presented the understanding of the dependence
of the bee dances on the profitability of foraging activity. He has shown that
although the pattern of bees’ dance is determined fundamentally by the distance
of and direction to a source of food, whether dancing will take place depends
on many factors that may significantly change the bees’ behaviour. Examples
of such factors are the sweetness of the sugar solution in the food, the ease of
obtaining and carrying it back to the hive, the distance of the food source to the
hive, and the amount of energy required during the particular foraging process.

It is also crucial to mention that the special dance is not performed only by
scout bees. Each time a successful forager returns back to the hive she can also
perform the foraging dance (serving as a scout at the same time), and report
any improvement or deterioration of the currently working path. Furthermore, if
the path’s reliability is becoming very poor, the forager can also refuse to dance
and, hence, stop recruiting new members.

4 Design model

BeelP is a routing protocol which models the collaborative behaviour of simple
artificial bee agents to build enough knowledge in order to establish communi-
cation links between two nodes, and allow data to be transferred across them.

The base of any assumptions made in our design is that every time there
is a need for a link to be established, the sender node will behave as being the
hive, the destination node will behave as being the source of food, and all the
intermediate nodes will consistite the path that a bee forager needs to traverse
while flying from one endpoint to the other.

4.1 Agents

The model uses three types of agents in the form of data packets. The scout, the
ack_scout, and the forager.



Scout: They are sent when a scouting process is initialized in order to discover
new paths towards a given destination. This happens each time there is a new
request from the upper layer and previous routing knowledge is unsatisfactory.
A scout is transmitted using broadcast to all neighbouring nodes. This technique
benefits not only the propagation of the initial request, but also the introduction
of the transmitting node to its neighbourhood.

Apart from the details of the scouting process, scouts also carry important
information about their sender’s state. A node’s state is a group of attributes
that describe the situation in which the node is at the time of broadcasting the
scout packet. Cross-layering between PHY, MAC and network layers allows the
routing protocol to know the current energy and speed levels of the node, as well
as the size of the interface queue.

Furthermore, upon receiving a scout, neighbouring nodes are able to discover
evidence about the link’s quality between them and the scout’s sender. This
evidence is the one-way transmission delay of the link, and the scout packet’s
signal power. The latter is an indication of the distance and the clearance of
the intermediate area. The information above is stored internally and is used to
calculate the local reliability level of the pair, i.e. the sender and the receiver of
the scout packet. The local reliability level plays a very important role to the
overall path quality and the decision making of the foragers.

Following that, the receiving node can either propagate the scout packet
further if it is not the scout’s destination, or create an ack_scout to send back.
Loops are avoided by tagging each scout packet with a unique scouting ID.

Ack_scout: Once the scout reaches its destination the scouting is considered
successful and an ack_scout packet is created. Ack_scouts use a source routing
fashion to travel back to the source, using unicast transmission. Therefore, the
route that was followed towards the destination is used in reverse. On their way
back, ack_scouts acknowledge the success of the scouting to both the intermediate
nodes and the source node.

Forager: When BeelP is unable to transmit a data packet, it stores it into a
local queue and starts a new scouting process for its destination. This decreases
the packet loss due to incomplete routing information. Once an ack_scout returns
back and acknowledges the existence of a path, all packets for the corresponding
destination in the queue are being transmitted.

The way they do this, is by using the most important agent type of BeelP,
the forager. Foragers are specially crafted packets that have three important
roles. Firstly, they carry (in form of payload) the data packets from the source
to the destination. Secondly, they are used to update neighbouring nodes’ states
and links’ information, just like scouts did in the first place. Thirdly, foragers
are constantly monitoring the path they traverse for any improvements. Techni-
cally speaking, foragers collect the differences between the local reliability levels,
calculated by using the current forager, and the local reliability levels calculated
by the previous forager’s visit, and report the summation back to the hive. In a



TCP connection, this is done when carrying TCP ACK packets. The summation
represents the total reliability level of the path, hence, the global reliability level.

4.2 Local reliability level

The local reliability level describes the one-way performance between a pair of
nodes in the topology. It is the BeelP’s way of measuring how good or bad a
transmission can be, by using this particular pair. The direction of the measure-
ment is towards the source of the transmission and it is a combination of the
neighbour’s state and the network link between the endpoints.

Fig. 1. A simple scouting.

Figure 1 illustrates a simple example. Node A is the source (hive), node E is
the destination (flower), and nodes B, C' and D consistute the intermediate path
from A to E. A forager that returns back to A has to follow the path through the
nodes D, C, B, and A, pick up each pair’s reliability improvement, and submit
the result to A. Furthermore, the reliability level of pair (E,D) is a combination
of E’s state, and the path £ — D.

In total, there are five parameters that can be extracted from a node’s state
and a path such as the above. (i) E’s speed level, (ii) E’s energy level, (iii) the
path’s transmission delay based on the forager packet, (iv) the forager packet’s
transmission power, and (v) the queuing delay of the path, based on E’s reported
queue size.

Each one of the above parameter plays a significant role in the local quality of
the pair. The speed of a node affects their transmissions and can lead to a weak or
even broken link. Similarly, the energy level of the node dominates its ability to
transmit clear signals to full transmission range. The signal power of the orager
packet is used to give an idea for both the distance and the area between the
nodes. Finally, both queueing and transmission delays alter the quality of the
link. On one hand, the transmission delay describes the difficulties experienced
because of the bandwidth of the link. On the other hand, the queueing delay
describes the difficulties caused by traffic loads. Note that the propagation and
processing delays are factored out, since they are insignificantly small.

Although the parameters’ similarity is that they all affect the reliability level
of the pair, their values are of different scales. Table 1 shows the minimum and
maximum accepted values for each parameter during the simulation experiments.
In order to use them properly, all values need to be normalized to the same scale:
min 0, max 20. BeeIP achieves scale normalization of values by performing linear
transformation. If aq, (7 and asg, B the minimum and maximum numbers of
the first and second scale respectively, and x is the number to be normalized to
1 then,



az + (x — 1) * (B2 — an)

v= (B1 — 1)

(1)

Notice that speed, and both queueing and transmission delays are adversely
affecting the performance. For instance, a node’s speed equal to 0 does not affect
the transmission, as it does not alter the distance between the transmission
endpoints. In order to tackle this issue, these three parameters are normalized
in reverse.

H Signal Pow! ‘ Speed ‘ Energy ‘Q—Delaqu‘Tx—Delay3
min|[1.258925e-10 W (-69 dBm)| 0 m/s | 0 W*h 0s 0.0006 s
max||7.943282e-10 W (-61 dBm)|10 m/s{10 W*h| 0.075s | 0.0120 s

Table 1. Local reliability parameters and scales.

Once all values are put on the same scale, the local reliability level is calcu-
lated using a simple weighting system. This is required because not all of the
parameters have the same influence on the performance. Obviously, a very weak
signal strength can be an indication of either a long distance between two nodes
or the appearance of an obstacle. In both cases, it requires immediate action.
This does not happen with the queueing delay. The latter may affect the per-
formance, however, it does not necessarily involve a link break. The weighting
system is shown at Table 2.

Parameter:||Signal Pow|Speed|Energy|Q-Delay| Tx-Delay
Weight (w):[| 040 [0.20] 0.20 | 0.15 | 0.05

Table 2. Weighting system and factors.

Then, the local reliability level of the pair is finally defined by the formula:

! / ’ / /
reliocal = POW’ * Wpow + speed’ * Wpeed + €nergy’ * Wenergy + qd’ * weq + ted' * wigpq (2)

where pow’ is the normalized value of the signal’s power, etc.

Every time a forager visits a new node during its flight back to the hive,
the knowledge it brings with it as well as its own transmission are used to
calculate the new local reliability level of the corresponding pair. Once calculated,
the number is compared with the previous available local reliability level. The
difference of the two is then reported back to the forager which continues its
journey to the next hop in the path.

The difference of the two local reliability levels, previous and new, describes
the improvement of the pair since the last use. In addition, the new local relia-
bility level is stored internally to be used for future calculations.

! Proxim. ORINOCO 11b Client PC Card Specification for open range environment.
2 Maximum queue size is set to 50 packets.
3 11Mbit bandwidth. Minimum 76 bytes and maximum 1500 bytes packet size.



4.3 Global reliability level

A bee forager that finally arrives at its hive, carries the summation of all the
local reliability differences collected on its way back. This number is called the
global reliability level and is an indication of the link’s quality as experienced
during the last forager’s flight. In BeelP it is defined as follows:

m

relgiobal = E (r6lloca,l—w,ewNn+l_,Nn — reliocal—prevy
n=1

1N (3)
where m is the total number of nodes in an numerically ordered path, and
Np+1 — N, the pair of nodes with direction towards the source node (N7).
Likewise in local, the global reliability level is compared to the one obtained
from the previous flight. The difference of the two represents the improvement
or the deterioration of the quality of the path. However, the number by itself
can only give a dim idea since it is a result of one transmission only, which,
depending on the environmental and network conditions may lead to negative
assumptions. In order to utilize these numbers correctly and be able to make
predictions about the quality of the link and its status in future, we use a 10x2
matrix of the last 10 instances of incoming foragers and apply regression analysis
to the values. Time is used for the first column, and the difference of the new
and previous global reliability levels for the second column. The output matrix

has the form of:
2.823042 0.32
(2.825661 1.46 )
2.854530 —0.25

Using Pearson’s correlation coefficient [12], we are allowed to make predic-
tions based on the strength of the linear dependence between the two. The
correlation coefficient 7 is defined by the formula:

Sh (- ut)(relgiovar; — 1relgiobal)

\/Zr’ic=1 (ti - ,ut)2 \/Z?:l (Telglobali - Hrelglobal )2

T

(4

where ¢; the time of receiving relgiopa,, pt the mean of the time column values,
and k the matrix row number (10 by default).

The correlation coefficient result ranges from -1 to 1. A value of 1 implies
that a linear equation describes the relationship between t’s and global reliability
differences perfectly, i.e. when ¢ increases, the improvement increases too. On the
contrary, a value of -1 implies that the improvement decreases as t increases, i.e.
the path becomes weak. Values near 0 imply that there is no linear correlation
between the two, and we are not able to make any serious predictions.

Similarly to Nature, where bee foragers may dance vigorously if the quality
of the path is becoming better or even stop dancing when the path is very poor,
artificial foragers are able to judge whether to recruit other members or initialize
a new scouting process. At this early stage of this work, BeelP is able to detect
weak links by comparing r to a threshold (-0.8) and re-send new scouts if it finds
it necessary.



5 Simulation experiments and results

In order to evaluate the performance of BeelP, we have used ns-2 network sim-
ulator. We have performed experiments with static scenarios of 20, 40, 60, 80
and 100 nodes in 300x300 m?2, 500x00 m?, .., and 1100x1100 m? areas. Each
node carries a single wireless card, the configuration of which is set to match
ORiINOCO11b Wireless Card, 11Mbps, 802.11b for 160m in open range environ-
ment.

The nodes are moving in random directions with randomly selected speeds
between 1m/s (walking speed) and maximum 10m/s. Two nodes, fairly far from
each other, are picked up to serve as the source (bee hive) and the destination
(flower) of an TCP/FTP connection in each scenario. The initial energy level is
set to 36000 Joules (or 10 watt-hours).! The simulation time is set to 600 seconds.
Our results are compared to those of AODV and DSDV protocols, under the
same topological conditions. In order to factor out any implementation related
errors to our comparisons, we use the implementations which are distributed
with ns-2 simulator.

In figure 2, we study the successful packet delivery ratio of the three protocols.
Unsurprisingly, the reactive nature of BeelP has a clear advantage over DSDV
which becomes weaker as the number of nodes is increased. This is due to the
large number of required control packets, in order to collect enough information
and build DSDV routing tables. Compared to AODV, BeelP has a slightly better
performance. The reason behind that, is that although they both apply reactive
schemes, BeelP is able to detect when a link is about to break faster, and then
switches to another one.

Packet Delivery Ratio
100 50%

100.00%

99.50%

OBeelP
WAODV
09 00% mosov

Packet delivery ratio (%)

08.50%

98.00%
20 40 60 80 loo
Number of nodes

Fig. 2. Packet delivery ratio vs. number of nodes.

Furthermore, we have measured the packet loss of the three approaches (fig-
ure 3). For a number of nodes lower than 40, BeeIP scores less packet loss than
AODV. Between 40 and 60 nodes, BeelP performs quite steadily and better than
AODV. However, we notice a big increase after 60 nodes, which although is still
better than AODV’s, it triggers our interest for future improvements. Finally,
both BeelP and AODV packet losses are significantly lower than DSDV’s.

! Almost */25 of the battery capacity of a fully charged Pioneer P3-AT all-terrain
robot (http://www.activrobots.com/ROBOTS /specs.html).



Packet Loss
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1000 -

Data packets

20 40 60 80
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Fig. 3. Packet loss vs. number of nodes.

The control overhead of the three protocols is shown in figure 4. Although
things get worse for higher number of nodes, under the same circumstances,

BeelP sends less control packets during the static simulation scenario, than
AODV and DSDV protocols.

Contral Overhead
50000

45000 v
40000
35000
30000 v
25000 i

20000

Control packets

15000
o000
5000

Mumber of nodes

Fig. 4. Control overhead vs. number of nodes.

In a reactive point of view, BeeIP and AODV are compared based on the
successful route discoveries and the successful data packet deliveries. All experi-
ments have shown that BeelP managed to deliver more data packets successfully
using less route discoveries. Table 3 summarizes these results. For example, BeelP
was able to send 369399 data packets by using 14 links during the simulation,
whereas AODYV sent 310912 using 15 links.

20 40 60 80 100

BeelP:

14 (369399)

27 (333449)

146 (381166)

184 (355629)

271 (163024)

AODV:

15 (310912)

39 (330284)

196 (374010)

220 (354899)

343 (157042)

Table 3. Successfully established links during simulation (packets sent).

6 Conclusion

In this paper we have introduced BeelP, a new bee-inspired routing protocol
for mobile ad hoc networks. We have also compared the first simulation results



of our approach with two state-of-the-art protocols, AODV and DSDV. The
simulation experiments have shown that BeelP performs better than DSDV
and slightly better than AODV in terms of packet delivery ratio and packet
loss. Furthermore, BeelP was able to deliver more data packets successfully,
initializing less route discovery processes than AODV under the same network
conditions.

Our future work includes the improvement of our design, in order to sup-
port multiple paths for each transmission which will be selected based on their
quality via artificial bee dancing. This will increase the life of the network and
the delivery ratio of the protocol. Finally, we need to add support for stateless
transport protocols such as UDP. The results of these improvements as well as
new features, will be compared to AODV, DSDV and the biologically inspired
AntHocNet and BeeAdHoc, something that we did not include in this paper due
to the early stage of the work.
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