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Extending Propositional Satisfiability to Determine Minimal
Fuzzy-Rough Reducts

Richard Jensen, Andrew Tuson and Qiang Shen

Abstract— This paper describes a novel, principled approach
to real-valued dataset reduction based on fuzzy and rough set
theory. The approach is based on the formulation of fuzzy-
rough discernibility matrices, that can be transformed into a
satisfiability problem; an extension of rough set approaches
that only apply to discrete datasets. The fuzzy-rough hybrid
reduction method is then realised algorithmically by a modified
version of a traditional satisifability approach. This produces
an efficient and provably optimal approach to data reduction
that works well on a number of machine learning benchmarks
in terms of both time and classification accuracy.

I. INTRODUCTION

There is interest in developing methodologies which are
capable of dealing with imprecision and uncertainty: research
currently being carried out in fuzzy and rough sets is
representative of this. Many deep relationships have been
established and recent studies have concluded at the com-
plementary nature of the two methodologies. Therefore, it is
desirable to extend and hybridize the underlying concepts to
deal with additional aspects of data imperfection; so to offer
flexibility and provide robust solutions and advanced tools
for data analysis. Rough set-based feature selection is one
such tool that has been shown to be highly useful at reducing
data dimensionality; however, it is only directly applicable
to discrete datasets. Progress has been made in terms of
effective data reduction methods: work in [7] demonstrates
the application of propositional satisfiability techniques to
the discovery of optimal data reductions from rough set
discernibility functions.

The issue of real-valued data is important and is central
to real-world applications. This paper proposes a fuzzy
extension to crisp discernibility matrices that is utilized for
the purpose of fuzzy-rough feature selection. Additionally,
the concepts in propositional satisfiability are fuzzified for
use in a DPLL-like search (FRFS-SAT) to find the globally
optimal subset of features. Computational results on common
machine learning benchmark problems indicate that FRFS-
SAT produces no reduction in classification performance
compared against the original and heuristically reduced
datasets. In addition, the computational requirements are not
excessive, given the ability of the algorithm to guarantee
optimal data reductions.

The remainder of this paper is structured as follows: in
Section II, the necessary theoretical background is provided
concerning the required rough set concepts. Section III
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introduces fuzzy discernibility matrices and how dataset
reductions may be achieved in this framework. In Section
IV, FRFS-SAT is detailed with corresponding algorithms and
a simple walkthrough example. Experimental results that
demonstrate the potential of the approach are presented in
Section V. Finally, Section VI concludes the paper.

II. THEORETICAL BACKGROUND

Rough Set Attribute Reduction (RSAR) [3] provides a
filter-based tool by which knowledge may be extracted from
a domain in a concise way; retaining the information content
whilst reducing the amount of knowledge involved.

A. Rough Set Feature Selection

Central to RSAR is the concept of indiscernibility. Let
I = (U,A) be an information system, where U is a non-
empty set of finite objects (the universe of discourse) and A
is a non-empty finite set of attributes such that a : U → Va
for every a ∈ A. Va is the set of values that attribute a may
take. With any P ⊆ A there is an associated equivalence
relation IND(P ):

IND(P ) = {(x, y) ∈ U2|∀a ∈ P, a(x) = a(y)} (1)

The partition of U, generated by IND(P) is denoted
U/IND(P) (or U/P for simplicity) and can be calculated
as: U/IND(P ) = ⊗{U/IND({a})|a ∈ P}, where ⊗ is
specifically defined as follows for sets A and B: A ⊗ B =
{X ∩ Y |X ∈ A, Y ∈ B,X ∩ Y 6= ∅}. If (x, y) ∈ IND(P ),
then x and y are indiscernible by attributes from P . The
equivalence classes of the P -indiscernibility relation are
denoted [x]P .

A decision system (U,C∪D) is an information system in
which D is a designated attribute or set of attributes called
decision. Decision systems are often used in the context of
classification. Let X ⊆ U. X can be approximated using
only the information contained within P by constructing the
P -lower and P -upper approximations of X:

PX = {x ∈ U | [x]P ⊆ X} (2)

PX = {x ∈ U | [x]P ∩X 6= ∅} (3)

The tuple 〈PX,PX〉 is called a rough set. Let P
and Q be sets of attributes inducing equivalence rela-
tions over U, then the positive region can be defined as:
POSP (Q) =

⋃
X∈U/Q PX . This region contains all

objects of U that can be classified to classes of U/Q using
the information in attributes P. Using this definition of
the positive region, we can define the rough set degree of
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dependency of a set of attributes Q on a set of attributes P .
For P, Q ⊂ A, it is said that Q depends on P in a degree k
(0 ≤ k ≤ 1), denoted P ⇒k Q, if

k = γP (Q) =
|POSP (Q)|
|U| (4)

Attribute reduction is achieved by comparing equivalence
relations generated by sets of attributes. Attributes are re-
moved so that the reduced set provides the same predictive
capability of the decision attribute as the original. A reduct
Rmin is defined as a minimal subset R of the initial attribute
set C such that for a given set of attributes D, γR(D)
= γC(D). From the literature, R is a minimal subset if
γR−{a}(D) 6= γR(D) for all a ∈ R. This means that no
attributes can be removed from the subset without affecting
the dependency degree. Hence, a minimal subset by this
definition may not be the global minimum (a reduct of
smallest cardinality). The intersection of all the sets in
Rall is called the core, the elements of which are those
attributes that cannot be eliminated without introducing more
contradictions to the representation of the dataset. For many
tasks a reduct of minimal cardinality (i.e. globally optimal)
is ideally searched for.

B. Discernibility Matrices

Many applications of rough sets to feature selection use
discernibility matrices for finding reducts. A discernibility
matrix [12] of a decision table D = (U,C∪D) is a symmetric
|U| × |U| matrix with entries defined:

cij = {a ∈ C|a(xi) 6= a(xj)} i, j = 1, ..., |U| (5)

Each cij contains attributes that differ between objects i and
j. To find reducts, the decision-relative discernibility matrix
is of interest: this considers those object discernibilities
that occur when the corresponding decision features differ.
Grouping all entries containing single features forms the core
dataset (features appearing in every reduct); they imply that
at least two objects can only be distinguished by this feature
alone, so must appear in all reducts.

From this, we define the discernibility function: a concise
notation of how each object within the dataset may be
distinguished from the others. A discernibility function fD
is a boolean function of m boolean variables a∗1, ..., a

∗
m

(corresponding to the attributes a1, ..., am) defined as:

fD(a∗1, ..., a
∗
m) = ∧{∨c∗ij |1 ≤ j ≤ i ≤ |U|, cij 6= ∅} (6)

where c∗ij = {a∗|a ∈ cij}. By finding the set of all prime
implicants [12] of the discernibility function, all the minimal
reducts of a system may be determined.

Initial work investigating the application of propositional
satisfiability techniques to the discovery of crisp reducts from
discernibility functions can be found in [7].

III. FUZZY DISCERNIBILITY MATRICES

The RSAR process above can only operate effectively
with datasets containing discrete values. There is also no

way of handling noisy data. As most datasets contain real-
valued attributes, it is necessary to perform a discretization
step beforehand. This is typically implemented by standard
fuzzification techniques, enabling linguistic labels to be asso-
ciated with attribute values. However, membership degrees of
attribute values to fuzzy sets are not exploited in the process
of dimensionality reduction. By using fuzzy-rough sets [6],
it is possible to use this information to better guide feature
selection; this already has been shown to be a highly useful
technique in reducing data dimensionality [8].

A. Fuzzy-Rough Approximations

Definitions for the fuzzy lower and upper approximations
can be found in [4], [11], where a T -transitive fuzzy simi-
larity relation is used to approximate a fuzzy concept X:

µRPX(x) = inf
y∈U

I(µRP
(x, y), µX(y)) (7)

µRPX
(x) = sup

y∈U
T (µRP

(x, y), µX(y)) (8)

Here, I is a fuzzy implicator and T a t-norm. RP is the fuzzy
similarity relation induced by the subset of features P :

µRP
(x, y) = Ta∈P {µRa

(x, y)} (9)

µRa
(x, y) is the degree to which objects x and y are

similar for feature a. Many fuzzy similarity relations can
be constructed for this purpose, for example:

µRa
(x, y) = exp(− (a(x)− a(y))2

2σa2
) (10)

µRa(x, y) = max(min(
(a(y)− (a(x)− σa))

(σa)
,

((a(x) + σa)− a(y))
(σa)

), 0)
(11)

where σa
2 is the variance of feature a. As these relations

do not necessarily display T -transitivity, the fuzzy transitive
closure must be computed for each attribute. The combina-
tion of feature relations in equation (9) has been shown to
preserve T -transitivity [15].

In a similar way to the original FRFS approach, the fuzzy
positive region can be defined as:

µPOSRP
(Q)(x) = sup

X∈U/Q
µRPX(x) (12)

The resulting degree of dependency is:

γ′P (Q) =

∑
x∈U

µPOSRP
(Q)(x)

|U| (13)

A fuzzy-rough reduct R can be defined as a (locally
minimal) subset of features that preserves the dependency
degree of the entire dataset, i.e. γ′R(D) = γ′C(D). Core
features may be determined by considering the change in
dependency of the full set of conditional features when
individual attributes are removed:

Core(C) = {a ∈ C|γ′C−{a}(Q) < γ′C(Q)} (14)
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B. Fuzzy Discernibility Matrix-based FS

There are two main branches of research in crisp rough set-
based FS: those based on the dependency degree and those
based on discernibility matrices. The developments above
are solely concerned with the extension of the dependency
degree to the fuzzy-rough case. Hence, methods constructed
based on the crisp dependency degree can be employed for
fuzzy-rough FS. By extending the discernibility matrix to
the fuzzy case, it is possible to employ approaches similar to
those in crisp rough set FS to determine fuzzy-rough reducts.
A first step toward this is presented in [14] where a crisp
discernibility matrix is constructed for fuzzy-rough selection.
A threshold is used, breaking the rough set ideology, which
determines which features are to appear in the matrix entries.
However, information is lost as membership degrees are not
considered. Search based on the crisp discernibility may
result in reducts that are not true fuzzy-rough reducts.

1) Fuzzy Discernibility: We extend the crisp discernibility
matrix by employing fuzzy clauses. Entries in the fuzzy
discernibility matrix is a fuzzy set, to which every feature
belongs to a certain degree. The extent to which a feature a
belongs to the fuzzy clause Cij is determined by the fuzzy
discernibility measure:

µCij
(a) = N(µRa

(i, j)) (15)

where N denotes fuzzy negation and µRa(i, j) is the fuzzy
similarity of objects i and j, and hence µCij

(a) is a measure
of the fuzzy discernibility. For the crisp case, if µCij

(a) = 1
then the two objects are distinct for this feature; if µCij

(a)
= 0, the two objects are identical. For fuzzy cases where
µCij (a) ∈ (0, 1), the objects are partly discernible. (The
choice of fuzzy similarity relation must be identical to that
of the fuzzy-rough dependency degree approach to find cor-
responding reducts.) Each entry in the fuzzy indiscernibility
matrix is a set of attributes and their memberships:

Cij = {ax|a ∈ C, x = N(µRa
(i, j))} i, j = 1, ..., |U| (16)

For example, an entry Cij in the fuzzy discernibility
matrix might be: {a0.4, b0.8, c0.2, d0.0}. This denotes that
µCij

(a) = 0.4, µCij
(b) = 0.8, etc. In crisp discernibility

matrices, these values are either 0 or 1 as the underlying
relation is an equivalence relation. The example clause can
be viewed as indicating the value of each feature - the extent
to which the feature discriminates between the two objects i
and j. The core of the dataset is defined as:

Core(C) = {a ∈ C|∃Cij , µCij
(a) > 0,

∀f ∈ {C− a} µCij
(f) = 0} (17)

2) Fuzzy Discernibility Function: As with the crisp ap-
proach, the entries in the matrix can be used to construct the
fuzzy discernibility function:

fD(a∗1, ..., a
∗
m) = ∧{∨ C∗ij |1 ≤ j < i ≤ |U|} (18)

where C∗ij = {a∗x|ax ∈ Cij}. The function returns values
in [0, 1], which can be seen to be a measure of the extent

to which the function is satisfied for a given assignment
of truth values to variables. To discover reducts from the
fuzzy discernibility function, the task is to find the minimal
assignment of the value 1 to the variables such that the
formula is maximally satisfied. By setting all variables to
1, the maximal value for the function can be obtained as this
provides the most discernibility between objects.

3) Decision-relative Fuzzy Discernibility Matrix: As with
the crisp discernibility matrix, for a decision system the
decision feature must be taken into account for achieving
reductions; only those clauses with different decision values
are included in the crisp discernibility matrix. For the fuzzy
version, this is encoded as:

fD(a∗1, ..., a
∗
m) = {∧{{∨ C∗ij} ← qN(µRq (i,j))}|

1 ≤ j < i ≤ |U|} (19)

for decision feature q, where ← denotes fuzzy implication.
This allows the extent to which decision values differ to
affect the overall satisfiability of the clause. If µCij

(q) =
1 then this clause provides maximum discernibility (i.e. the
two objects are maximally different according to the fuzzy
similarity measure). When the decision is crisp and crisp
equivalence is used, µCij

(q) becomes 0 or 1.

IV. FRFS-SAT

Reducts are calculated via the fuzzy clauses from by
the construction of the fuzzy discernibility function above.
Crisp discernibility matrices can be adapted with suitable
extensions. The aim here is to determine those reducts that
are minimal in the global sense (i.e. of smallest cardinal-
ity). Thus, heuristic techniques are not applicable as the
resulting reducts may not satisfy this property, and there is
no computationally efficient way of determining this for a
particular reduct. This section proposes a fuzzy extension
to propositional satisfiability for the purpose of determining
globally minimal reducts.

A. Formulation

The degree of satisfaction of a clause Cij for a subset of
features P is defined as:

SATP (Cij) = Sa∈P {µCij (a)} (20)

for a t-conorm S. Returning to the example clause
{a0.4, b0.8, c0.2, d0.0}, if the subset P = {a, c} is chosen,
the resulting degree of satisfaction of the clause is

SATP (Cij) = S{0.4, 0.2} = 0.6

using the Łukasiewicz t-conorm, min(1, x+ y).
In traditional (crisp) propositional satisfiability, a clause is

fully satisfied if at least one variable in the clause has been
set to true. For the fuzzy case, clauses may be satisfied
to a certain degree depending on which variables have been
assigned the value true. By setting P = C, the maximum
satisfiability degree of a clause may be obtained:

maxSATij = SATC(Cij) = Sa∈C{µCij
(a)} (21)
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This is the maximal amount that clause Cij can be satisfied.
The maximum satisfiability degree of the example clause is
S(0.4, 0.8, 0.2, 0.0) which evaluates to 1 if the Łukasiewicz
t-conorm is used. Here it can be seen that, depending on the
t-conorm used, clauses may in fact be maximally satisfied by
the selection of several sub-maximal features. Using the max
t-conorm, the maximum satisfiability degree is 0.8, obtained
only by the inclusion of feature b in P .

In this setting, a fuzzy-rough reduct corresponds to a
(minimal) truth assignment to variables such that each clause
has been satisfied to its maximum extent. See the appendix
for a proof that fuzzy-rough reducts maximally satisfy the
set of clauses for a given dataset.

B. Algorithm

The DPLL-based algorithm for finding minimal subsets is
in figure 1, where search is conducted in a depth-first manner.
The key operation in this procedure is the unit propagation
step, unitPropagate(CL), in lines (6) and (7). Clauses in the
formula that contain a single literal will only be satisfied if
that literal is assigned the value true (unit clauses). Unit
propagation examines the current formula for unit clauses
and assigns the appropriate value to the literal they contain.
The elimination of a literal can create new unit clauses, and
thus unit propagation eliminates variables by repeated passes
until there is no unit clause in the formula. The order of the
unit clauses within the formula makes no difference to the
results or the efficiency of the process.

Branching occurs at lines (10) to (14) via the function
selectLiteral(CL). Here, the next literal is chosen heuristi-
cally from the current formula, assigned the value true,
and the search continues. If this branch eventually results
in unsatisfiability, the procedure assigns the value false to
this literal instead and continue the search. Choosing good
branching literals is important - different branching heuristics
may produce drastically different sized search trees for the
same basic algorithm, affecting the efficiency of the solver.

One heuristic is to select the variable whose fuzzy dis-
cernibility is non-zero in the most clauses of the current set
of clauses. Alternatively, the sum of the fuzzy discernibilities
for a particular attribute across all clauses gives a good indi-
cation of attribute importance. This is the heuristic adopted.

Some pruning takes place in the search by remembering
the size of the currently considered subset d and the smallest
optimal subset encountered so far D. If the number of vari-
ables currently assigned the value true equals the number of
those in the presently optimal subset then any further search
down this branch will not result in a smaller optimal subset.
Also, if an empty clause is generated during UPDATE-FALSE,
the algorithm stops the search down this branch.

Line (3) is reached when all clauses have been maximally
satisfied (a fuzzy-rough reduct has been reached) and the
corresponding variable assignment is outputted. The final
outputted variable assignment is the globally minimal reduct.

Figure 2 shows the update of the current clause list if the
variable x is set to true. The updated clause list is stored
in CL′ and returned upon completion. Line (4) determines

DPLL-SOLVE(d, CL, D).
d, the current depth of search;
CL, the current list of clauses;
D, the depth of the best reduct found so far (initially |C|).

(1) if (d ≥ D) or (CL == null)
(2) // Further search down this branch is unnecessary
(3) else if (CL.size() == 0) and (d < D)
(4) D ← d
(5) output current assignment
(6) else if (CL contains a unit clause {l})
(7) CL′ ← unitPropagate(CL)
(8) DPLL-SOLVE(d+ 1,CL′,D)
(9) else
(10) x ← selectLiteral(CL)
(11) CL′ ← UPDATE-TRUE(CL, x)
(12) DPLL-SOLVE(d+ 1,CL′,D)
(13) CL′ ← UPDATE-FALSE(CL, x)
(14) DPLL-SOLVE(d,CL′,D)

Fig. 1. The DPLL-SOLVE algorithm

UPDATE-TRUE(CL, x).
CL, the current clause list;
x, the variable to be set to true.

(1) CL′ ← ∅
(2) foreach C ∈ CL
(3) if (!isSatisfied(C))
(4) CL′ ← CL′ ∪ C
(5) return CL′

Fig. 2. The UPDATE-TRUE algorithm

if the clause C will be maximally satisfied if variable x is
set to true. If not, the fuzzy clause is retained and added to
the updated clause list. Once a clause is maximally satisfied,
it is not considered further down this branch in the search.

When the chosen literal is assigned the value false (i.e.
does not appear in subsets beyond this branching point), the
fuzzy clauses are updated according to Figure 3. Each clause
C in the current set of clauses is examined. In line (4), |C|
denotes the number of literals in the clause that can be set to
true; if this is zero, then this clause cannot be satisfied. Line
(4) also checks to see if the clause is satisfiable, i.e. could
potentially reach the maximum satisfiability degree if further
literals are chosen. If not, the current variable assignment
cannot lead to a fuzzy-rough reduct, and so search down
this branch need not be considered.

1) Example: Table I illustrates the operation of FRFS-
SAT, using an example dataset. The fuzzy connectives used
are the Łukasiewicz t-norm (max(x + y − 1, 0)) and the
Łukasiewicz fuzzy implicator (min(1 − x + y, 1)). As rec-
ommended in [4], the Łukasiewicz t-norm is used as this
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UPDATE-FALSE(CL, x).
CL, the current clause list;
x, the variable to be set to false.

(1) CL′ ← ∅
(2) foreach C ∈ CL
(3) if (|C|==0) or (!isSatisfiable(C))
(4) return null //Further search is pointless
(5) else CL′ ← CL′ ∪ C
(6) return CL′

Fig. 3. The UPDATE-FALSE algorithm

Object a b c q
1 -0.4 -0.3 -0.5 no
2 -0.4 0.2 -0.1 yes
3 -0.3 -0.4 -0.3 no
4 0.3 -0.3 0 yes
5 0.2 -0.3 0 yes
6 0.2 0 0 no

TABLE I
EXAMPLE DATASET

produces fuzzy T -equivalence relations dual to that of a
pseudo-metric. The use of the Łukasiewicz fuzzy implicator
is also recommended as it is both a residual and S-implicator.

Using the fuzzy similarity measure in (11), the resulting
relations are as follows for each feature in the dataset:

Ra(x, y)
1.0 1.0 0.699 0.0 0.0 0.0
1.0 1.0 0.699 0.0 0.0 0.0

0.699 0.699 1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.699 0.699
0.0 0.0 0.0 0.699 1.0 1.0
0.0 0.0 0.0 0.699 1.0 1.0


Rb(x, y)

1.0 0.0 0.568 1.0 1.0 0.0
0.0 1.0 0.0 0.0 0.0 0.137

0.568 0.0 1.0 0.568 0.568 0.0
1.0 0.0 0.568 1.0 1.0 0.0
1.0 0.0 0.568 1.0 1.0 0.0
0.0 0.137 0.0 0.0 0.0 1.0


Rc(x, y)

1.0 0.0 0.036 0.0 0.0 0.0
0.0 1.0 0.036 0.518 0.518 0.518

0.036 0.036 1.0 0.0 0.0 0.0
0.0 0.518 0.0 1.0 1.0 1.0
0.0 0.518 0.0 1.0 1.0 1.0
0.0 0.518 0.0 1.0 1.0 1.0


Next, the fuzzy discernibility matrix needs to be con-

structed based on the fuzzy discernibility given in equation
(15). For objects 2 and 3, the resulting fuzzy clause is
{a0.301 ∨ b1.0 ∨ c0.964} ← q1.0,

The fuzzy discernibility of objects 2 and 3 for attribute a
is 0.301, indicating that the objects are partly discernible for

this feature. The objects are fully discernible with respect to
the decision feature, indicated by q1.0. The set of clauses is:

C12 : {a0.0 ∨ b1.0 ∨ c1.0} ← q1.0
C13 : {a0.301 ∨ b0.432 ∨ c0.964} ← q0.0
C14 : {a1.0 ∨ b0.0 ∨ c1.0} ← q1.0
C15 : {a1.0 ∨ b0.0 ∨ c1.0} ← q1.0
C16 : {a1.0 ∨ b1.0 ∨ c1.0} ← q0.0
C23 : {a0.301 ∨ b1.0 ∨ c0.964} ← q1.0
C24 : {a1.0 ∨ b1.0 ∨ c0.482} ← q0.0
C25 : {a1.0 ∨ b1.0 ∨ c0.482} ← q0.0
C26 : {a1.0 ∨ b0.863 ∨ c0.482} ← q1.0
C34 : {a1.0 ∨ b0.431 ∨ c1.0} ← q1.0
C35 : {a1.0 ∨ b0.431 ∨ c1.0} ← q1.0
C36 : {a1.0 ∨ b1.0 ∨ c1.0} ← q0.0
C45 : {a0.301 ∨ b0.0 ∨ c0.0} ← q0.0
C46 : {a0.301 ∨ b1.0 ∨ c0.0} ← q1.0
C56 : {a0.0 ∨ b1.0 ∨ c0.0} ← q1.0

Due to the properties of implicators, all clauses with q0.0
may be removed without influencing the final outputted
reduct, hence the clause list can be reduced to (with
duplicates removed):

C12 : {a0.0 ∨ b1.0 ∨ c1.0} ← q1.0
C14 : {a1.0 ∨ b0.0 ∨ c1.0} ← q1.0
C23 : {a0.301 ∨ b1.0 ∨ c0.964} ← q1.0
C26 : {a1.0 ∨ b0.863 ∨ c0.482} ← q1.0
C34 : {a1.0 ∨ b0.431 ∨ c1.0} ← q1.0
C46 : {a0.301 ∨ b1.0 ∨ c0.0} ← q1.0
C56 : {a0.0 ∨ b1.0 ∨ c0.0} ← q1.0

The DPLL-SOLVE algorithm is then used to determine
the minimal reduct. Clause C56 is a unit clause (here feature
b is a core attribute), so variable b is set to true. The
UPDATE-TRUE procedure is then executed, removing all
clauses that are now maximally satisfied as a result of this
assignment:

C14 : {a1.0 ∨ 0.0 ∨ c1.0} ← q1.0
C26 : {a1.0 ∨ 0.863 ∨ c0.482} ← q1.0
C34 : {a1.0 ∨ 0.431 ∨ c1.0} ← q1.0

Next, line (12) of the algorithm is executed. There are
no unit clauses, so line (10) is reached and the variable a
is chosen as the sum of its fuzzy discernibilities is greater
than that of c. With a set to true, all clauses have been
maximally satisfied and {a, b} is outputted. The algorithm
terminates at this point, as the choice of setting b to false
is unavailable as b was chosen via a unit clause (and hence
must be set to true).

C. Simplification

Crisp discernibility matrices are simplified by removing
duplicate entries and clauses that are supersets of others. This
can be achieved for fuzzy discernibility matrices: duplicate
clauses can be removed as a subset that satisfies one clause
to a certain degree will always satisfy the other to the same
degree. Also, clauses whose decision component is zero can
also be removed due to the properties of fuzzy implication.

1419



A further degree of simplification is obtained by an exten-
sion of the crisp approach where clauses that are supersets of
others are removed (termed absorption), for the fuzzy case:

S(Cij , Ckl) =
∑
a∈C T (µCij

(a), µCkl
(a))∑

a∈C µCij
(a)

(22)

If S(Cij , Ckl) = 1 then clause Ckl is subsumed by clause
Cij and can be removed. Of course, further simplification
techniques from the literature on crisp discernibility matrices
and functions could be extended and applied, but only fuzzy
absorption is considered here.

Returning to the example, the original set of clauses used
as input to DPLL-SOLVE are:

C12 : {a0.0 ∨ b1.0 ∨ c1.0} ← q1.0
C14 : {a1.0 ∨ b0.0 ∨ c1.0} ← q1.0
C23 : {a0.301 ∨ b1.0 ∨ c0.964} ← q1.0
C26 : {a1.0 ∨ b0.863 ∨ c0.482} ← q1.0
C34 : {a1.0 ∨ b0.431 ∨ c1.0} ← q1.0
C46 : {a0.301 ∨ b1.0 ∨ c0.0} ← q1.0
C56 : {a0.0 ∨ b1.0 ∨ c0.0} ← q1.0

The fuzzy absorption simplification process compares each
pair of clauses and removes those that are subsumed. For
example, clauses C46 and C23:

S(C46, C23) =
∑
a∈C T (µC46(a), µC23(a))∑

a∈C µC46(a)

=
T (0.301, 0.301) + T (1, 1) + T (0, 0.964)

1.301

In this case, S(C46, C23) = 1 so clause C23 can be removed.
Any assignment of truth values to variables such that C46

is maximally satisfied also implies that C23 is maximally
satisfied. The reverse is not true, so C23 provides no further
information than that already possessed by C46. Applying
this process to all clauses results in:

C14 : {a1.0 ∨ b0.0 ∨ c1.0} ← q1.0
C26 : {a1.0 ∨ b0.863 ∨ c0.482} ← q1.0
C56 : {a0.0 ∨ b1.0 ∨ c0.0} ← q1.0

The number of clauses has been reduced to 3 from the orig-
inal 7, and DPLL search from this point is straightforward
resulting in the reduct {a, b}. The subset {b, c} is also a
reduct, as discovered by the original FRFS algorithm [8].
Again, use of the Łukasiewicz t-conorm can result in a clause
being maximally satisfied with the choice of several sub-
maximal features. In this case, S(0.863, 0.482) = 1, so {b, c}
is a valid fuzzy-rough reduct.

This simplification process is effective, but computation-
ally expensive: the process must compare each clause with
every other clause in the clause list. For the worst case, c =
(n2−n)/2 clauses are generated initially, so (c2−c)/2 clause
comparisons are made. This can be reduced by integrating
the simplification into the discernibility matrix construction
process; as clauses are generated, they are checked for fuzzy
absorption against existing clauses and vice versa.

Another simplification method for crisp discernibility ma-
trices is local strong compressibility [13]. If a subset of
attributes is simultaneously present or absent in the set of
clauses, then they can be replaced by a single representative
attribute (since all attributes in this class possess exactly the
same information, then with one of the attributes selected,
the rest are redundant). Figure 4 shows the extension of this
concept to the fuzzy case, where attribute a1 is tested to see
if it is redundant in the presence of attribute a2.

FUZZY-COMPRESSIBILITY(CL, a1, a2).
CL, the current clause list;
a1,a2, conditional attributes.

(1) foreach C ∈ CL
(2) if (S(µC(a1), µC(a2)) > µC(a2))
(3) return false
(4) return true

Fig. 4. The FUZZY-COMPRESSIBILITY algorithm

D. Unsupervised selection

The use of rough and fuzzy-rough sets for unsupervised
feature selection has been investigated [10]. This is achieved
in this framework by setting all decision components to 1,
specifying that all pairs of objects must be distinguishable.

V. EXPERIMENTATION

This section presents the initial experimental evaluation of
the proposed method on 9 benchmark datasets from [2] and
[9]. The number of conditional features ranges from 10 to
39 over the datasets. The methods used in the comparison
were the fuzzy dependency, fuzzy boundary region and fuzzy
discernibility [8] measures, all using a greedy hill-climbing
search process. Additionally, two alternative search methods
were used with the fuzzy dependency measure, genetic
algorithms (GA) and particle swarm optimization (PSO), in
order to search for the smallest subsets1.

JRip [5] was employed for the purpose of evaluating the
resulting subsets. JRip learns propositional rules by repeat-
edly growing rules and pruning them. During the growth
phase, features are added greedily until a termination condi-
tion is satisfied. Features are then pruned in the next phase
subject to a pruning metric. Once the ruleset is generated, a
further optimization is performed where classification rules
are evaluated and deleted based on their performance on
randomized data.

For the experiments themselves, 10×10-fold cross valida-
tion was performed, where each feature selection algorithm
is applied to the training folds and then the resulting subsets
used to reduce the test fold each time. The average subset
size found for each method can be seen in table II and the

1All evaluation measures described in this paper have been im-
plemented in Weka [16]. The program can be downloaded from
http://users.aber.ac.uk/rkj/book/programs.php
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TABLE II
NUMBER OF FEATURES SELECTED

Dataset Unreduced FRFS-SAT Depend. Boundary Discern. GA PSO
Australian 15 12.70 12.85 12.85 12.85 12.77 12.70
Cleveland 14 7.54 7.62 7.65 7.62 8.10 7.80

Glass 14 8.44 9.00 8.44 8.44 8.44 8.44
Heart 10 7.00 7.07 7.07 7.13 7.52 7.12

Ionosphere 35 5.99 6.99 6.99 7.04 9.61 7.33
Olitos 26 4.98 5.00 4.99 5.00 6.03 5.08

Water 2 39 5.85 5.99 5.99 5.99 7.00 6.64
Water 3 39 5.87 6.00 6.00 5.99 7.42 6.80

Wine 14 4.51 5.00 4.87 4.82 5.01 4.98

corresponding average classification accuracies can be found
in table III. Numbers in bold indicate a statistically worse
performance when compared to FRFS-SAT.

From this, FRFS-SAT finds the globally optimal reduct
for each dataset without a statistically significant loss in
classification accuracy. The three measures that employ a
hill-climbing search strategy all locate reducts of a small
size, though not necessarily globally optimal. The boundary
region measure and discernibility measure appear to be more
informed heuristics. The difficulty of finding globally mini-
mal reducts can be seen in the results for the more advanced
search strategies (GA and PSO). Neither method consistently
finds such reducts: PSO always finds the global minimum for
two datasets (Australian and Glass), the GA approach only
finds the minimum for the Glass dataset. Overall the PSO
method outperforms the GA approach. However, the reducts
found by these methods are not guaranteed to be minimal.

The average time taken by the algorithms when performing
selection can be found in table IV. The timings for FRFS-
SAT include the time taken to calculate the fuzzy discerni-
bility matrix as well as the search itself. It can be seen that,
in general, FRFS-SAT can find globally optimal reducts in
a similar amount of time to the other methods. However, as
the dimensionality increases an increasing amount of time is
spent verifying that the discovered reduct is indeed globally
optimal, which is the case for the Water datasets.

VI. CONCLUSIONS

This paper has presented an extension of the discernibility
matrix to the fuzzy case, allowing features to belong to
entries to a certain degree. Based on this, the propositional
satisfiability problem has been extended to allow SAT-style
search of the resulting fuzzy clauses. From these, the globally
minimal reduct for a dataset can be calculated.

Further work in this area will include experimental inves-
tigation of the proposed method and the impact of the choice
of relations and connectives. Additionally, the development
of fuzzy discernibility matrices here allows the extension of
many existing crisp techniques for the purposes of finding
fuzzy-rough reducts. In particular, other SAT solution tech-
niques may be applied that should be able to discover such
subsets, guaranteeing their minimality. The performance may

also be improved through simplifying the fuzzy discernibility
function further. This could be achieved by considering the
properties of the fuzzy connectives and removing clauses that
are redundant in the presence of others.

APPENDIX

Theorem 1: FRFS-SAT reducts are fuzzy-rough reducts.
Suppose that P ⊆ C, a is an arbitrary conditional feature
that belongs to the dataset and q is the decision feature. If
P maximally satisfies the fuzzy discernibility function then
P is a fuzzy-rough reduct.

Proof: The fuzzy positive region for a subset P is

µPOSRP
(Q)(x) = sup

X∈U/Q
inf
y∈U
{µRP

(x, y)→ µX(y)}

The dependency function is maximized when each x belongs
maximally to the fuzzy positive region. Hence,

inf
x∈U

sup
X∈U/Q

inf
y∈U
{µRP

(x, y)→ µX(y)}

is maximized only when P is a fuzzy-rough reduct. This can
be rewritten as the following:

inf
x,y∈U

{µRP
(x, y)→ µRq (x, y)}

when using a fuzzy similarity relation in the place of crisp
decision concepts, as µ[x]R = µR(x, y) [6]. Each µRP

(x, y)
is constructed from the t-norm of its constituent relations:

inf
x,y∈U

{Ta∈P (µRa
(x, y))→ µRq

(x, y)}

This may be reformulated as

inf
x,y∈U

{Sa∈P (µRa(x, y)→ µRq (x, y))} (23)

Considering the fuzzy discernibility matrix approach, the
fuzzy discernibility function is maximally satisfied when

{∧{{∨ C∗xy} ← qN(µRq (x,y))}|1 ≤ y < x ≤ |U|}
is maximized. This can be rewritten as:

Tx,y∈U(Sa∈P (N(µRa(x, y)))← N(µRq (x, y)))

because each clause Cxy is generated by considering the
fuzzy similarity of values of each pair of objects x, y.
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TABLE III
JRIP CLASSIFICATION ACCURACIES (%)

Dataset Unreduced FRFS-SAT Depend. Boundary Discern. GA PSO
Australian 85.36 85.00 85.23 85.23 85.32 84.75 84.13
Cleveland 54.16 53.93 54.03 53.96 54.09 53.96 54.60

Glass 67.05 65.34 67.05 65.34 65.34 65.34 65.34
Heart 79.19 76.30 75.78 75.78 75.41 76.33 75.44

Ionosphere 87.09 86.35 87.13 87.13 84.78 83.30 86.48
Olitos 68.83 61.67 62.75 64.00 62.08 59.67 61.92

Water 2 82.64 81.87 83.56 83.56 81.87 83.13 80.13
Water 3 82.44 81.41 81.51 81.51 82.08 81.33 76.46

Wine 93.18 90.29 91.96 91.62 89.53 89.09 89.74

TABLE IV
TIME TAKEN FOR FEATURE SELECTION (S)

Dataset FRFS-SAT Depend. Boundary Discern. GA PSO
Australian 4.21 7.24 20.07 2.90 12.52 34.07
Cleveland 0.83 0.97 3.25 0.53 2.68 6.63

Glass 0.47 0.34 1.23 0.20 0.68 2.17
Heart 0.60 0.78 1.62 0.35 2.19 5.74

Ionosphere 19.88 1.88 3.51 0.78 2.00 9.20
Olitos 2.41 0.26 0.75 0.14 0.11 1.48

Water 2 97.72 4.86 11.24 1.50 0.92 19.62
Water 3 116.86 4.87 13.50 1.72 2.36 19.69

Wine 0.70 0.27 0.66 0.13 0.75 1.83

Through the properties of the fuzzy connectives, this may
be rewritten as:

Tx,y∈U(Sa∈P (µRa
(x, y)→ µRq

(x, y))) (24)

When this is maximized, (23) is maximized and so the subset
P must be a fuzzy-rough reduct.
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