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A System for Affordance Based learning of Object Grasping in a Robot

James Wilson, Tao Geng and Mark Lee

Department of Computer Science, Aberystwyth University, Wales, UK

Abstract— A system is described which takes synergies ex-
tracted from human grasp experiments and maps these onto a
robot vision and hand-arm platform to facilitate the transfer
of skills [1]. This system forms part of a framework which is
extended by adding a self organizing map based affordance
learning system. This affordance system learns the correlations
between perceived object features and relevant motor outputs
expressed in the form of synergies, and comes to guide grasping
of an object by predicting the appropriate synergy outputs for a
given object. It does so online and autonomously. Preliminary
results test its effectiveness in this role and show that it is
capable of learning fast and in spite of noise.

I. INTRODUCTION

Humans have an unmatched ability to learn about their
environment and generalise this knowledge to novel situ-
ations. Despite the sheer volume of information entering
our brains at any given point in time, we are able to spot
correlations and associate together relevant information in a
fast and online way, allowing us to gain an awareness of the
control we have over both our own body, and by proxy the
environment surrounding it. This paper describes a system
which models human grasping skills in a flexible way by
extracting relevant synergies and mapping them to a robot
system, which can then learn and improve these motor skills
online and autonomously through exploration and imitation.

From birth, humans begin to acquire and improve upon
basic motor skills. It is not long before these motor skills can
outperform robots on many tasks. Typical robot controllers
are endowed with a high degree of precision, able to replicate
the same movement time and time again. However, when
faced with a dynamic environment requiring novel move-
ments, it is often the case that a long and costly search needs
to be employed to find the most suitable one.

Rather than employing often complex and costly search
algorithms to compute suitable motor outputs, humans learn
by trial and error, progressively building up more detailed
correlations between input, action and outcome. When we
wish to grasp an object, rather than using an algorithm to
run through input data and calculate a suitable set of motor
values, we simply access our memory and use prior learning
to shape our grasp, basing it on similar successful grasps in
the past. Initially, we will have very limited prior knowledge,
leading to more random and unsuccessful movements, but
eventually we begin to learn which of these movements leads
to a given set of outcomes, and thus over time we build up
a more detailed knowledge base to draw from.

Mapping human skills directly to a robot system is one
way of giving it the necessary prior knowledge to base its

actions on. Under this paradigm, the robot system can very
quickly be taught to become effective in a variety of different
motor tasks. In order to transfer human motor skills to a
robot, we have to solve two problems. First, we need to
extract or model the human skill to be transferred. Then, we
need to figure out how to implement or map this skill to a
robot platform whose joint configurations and sensorimotor
systems are likely very different from those of a human.

Different methods have been employed in the past in an
attempt to map various human skills to robots in different
environments. Cortesao and Koeppe [2] transferred the hu-
man skill in the peg-in-hole task to a robot. When a human
performed this task, the forces, torques and velocities of the
peg were recorded as a function of its pose. Next, a neural
network trained with this data was used to control the robot
in the same task. In another study [3], the human expertise in
a manipulative task was modelled as an associative mapping
in a neural network and implemented on a direct-drive robot.
Yang and Chen [4] represented human skills in tele-operating
as a parametric model using a hidden Markov model. Unlike
these more specific approaches, the more general framework
proposed by Oztop and Lin [5] integrated a 16-DOF robotic
hand into the experimenter’s body schema and used the
dexterity then exhibited by the experimenter to design a robot
controller.

Rather than directly mapping a human skill to a robot,
skill transfer has also been achieved by imitation, whereby
the robot watches a skill being performed and used the
information gathered to reproduce it. In [6], a robot im-
itated the grasping and placing of a human model. Skill
transfer was realized when the robot learned a goal-directed
sequences of motor primitives. In [7], a continuous hidden
Markov model was trained with characteristic features of the
perceived human movements and used in a simulated robot
to reproduce the human movements. Rather than using robots
to observe or imitate human movements, [8] developed
a communication language for transferring grasping skills
from a nontechnical user to a robot during human-robot
interaction.

While this transfer of skill can help endow robots with the
knowledge required to complete a task, it is often the case
that this knowledge can not be generalised to novel events
or scenarios. In order to refine and generalise existing skills
to new tasks, the acquisition of skills must continue as novel
events are encountered. To achieve this, the mapping used
to transfer skills must allow continued learning to take place
after the skill transfer has been completed. For this reason,



synergies are used to map from human to robot.

A. Synergies

A synergy refers to a subgroup of muscles or joints
that are activated together in a stereotyped pattern [9],
in contrast to the decoupled control of individual joints
commonly used in robot systems. As a simple example,
flexing your biceps muscle naturally relaxes the opposing
triceps muscle. Synergies are biologies way of dealing with
the high dimensionality of joints and therefore large problem
space encountered when deciding which movements to make.
It has been found for example that a small number of
muscle synergies in frogs accounts for a large fraction of
the variation in the muscle patterns observed while jumping,
swimming and walking [9]. In addition, the human hand
had more than 20 degrees of freedom, but two synergies
can account for 84% of human grasping [10]. In addition,
synergies have also been noted in hand reaching movements
prior to grasping [11] [12].

Some robot controllers also make use of synergies [13]
[14] [15], as they are capable of reducing the dimensionality
of the problem space, while still allowing novel movements
based around the kind of movements the synergies were
based on. The system described here uses human grasp
data to extract useful grasp synergies, and a neural network
to map these onto a robot arm and hand system. This
skill transfer endows the robot platform with a human-like
grasping ability, while at the same time reducing the problem
space significantly and keeping the door open for continued
learning and novel grasping movements.

In order to enable online learning once grasp synergies
have been extracted and mapped in the system described,
we propose here an affordance based learning system. The
concept of affordances dates back to 1972 when Gibson
argued that properties in the environment could influence the
organisms goals [16]. Gibson saw affordances as relations
between properties of objects registered directly by our
perceptual system, and the actions that could be performed
on them. More recent research defines affordances more as
relations between objects, their context, and the organism
itself. Under this definition, affordances can be seen as the
associative structures formed from various sensory and motor
information for given objects. A typical object affordance
for an apple might link the name apple with the features
commonly associated with apples, the grasp used to hold it
and an action (eg. eat) that can be performed on it.

Several experiments have demonstrated such a link be-
tween names or features of an object, and associated mo-
tor actions [17] [18] [19]. In addition, research tends to
support the idea that affordances are associative structures
formed from links between different related information.
[20] asked participants to read a sentence composed by an
action or observation verb, and an object name. Next, an
image was shown and participants had to decide whether
it was the same object referred too in the sentence. Action
verbs increased RT’s, as did objects presented in canonical
viewpoints. Viewing affordances as associative structures, it

appears obvious that motor predictions elicited from action
verbs in tandem with object names will prime those objects
more than just their name, especially if the object presented
is in a canonical orientation which better matches the primed
motor information.

B. Affordances

By using affordances, we are essentially learning relevant
associations between information. This allows us to recall
object features typically linked with a name, or motor com-
mands typically linked with a set of features. By endowing
a robotic platform with an affordance learning system, we
give it a model into which associations between various
sensory and motor information can constantly be refined and
improved as it continues to explore its environment, while
at the same time using these associations to guide it.

Self organizing maps form the foundation for the mod-
elling of affordances in the system described here. First
described by Kohonen [21], self organizing maps (SOMs)
map input data down onto a low dimensional input space
(typically just 2) in a topology preserving way, clustering
similar inputs together. This allows for easy visualisation of
data, and as such they are most often used for the clustering
and subsequent visualisation of high dimensional data sets
[22] [23]. However, the learning algorithm of the SOM
lends itself well to associating inputs in different dimensions
together and generalising to novel input patterns. One could
see a SOM as building a map of the average input patterns
it expects to see across the input space, making it naturally
resilient to noise and artefacts. In addition, generalisation
from known input patterns to novel ones is made possible
by the neighbourhood learning approach, as the space be-
tween two known input patterns will be occupied with input
patterns that are the average of the two. As such, applying the
SOM to a system which requires robustness, generalisation
to novel inputs and correlation between multiple dimensions
seems natural.

Next, we describe the methods by which grasping is
learned in the form of synergies and mapped from human
to robot, but then expand on this by showing how a self
organizing map based affordance learning system can be used
to drive the learning of grasps using synergies effectively,
online and fast, while being robust to noise.

II. SYSTEM OVERVIEW

A. Hardware

The robot platform used for grasping comprises a two
camera active vision system and a robot hand and arm
system. The vision system integrates two cameras (each
providing RGB image data at a maximum resolution of
1032x778 at 25 frames per second) mounted on a pan-
tilt-verge unit. Currently, this system is not interested with
moving the cameras and simply uses one camera at a fixed
position to provide input images. The robot arm and hand
systems (SCHUNK GmbH Co. KG) have 7 DOF each (see
Fig. 1). The hand system has 3 fingers. All fingers have 2
segments each equipped with a pressure sensitive sensor pad.



Fig. 1: The hardware that is used for grasp synthesis, including
the 7DoF arm with attached 7DoF Gripper, and twin pan-tilt-verge
camera system.

B. Extracting Synergies from Grasp Data

Synergies are essentially correlations between muscle
movements. A simple example would be opposing muscle
synergies; in the case of arm flexing, as the biceps muscle
contracts, the opposing triceps muscle relaxes. Synergies can
be more complex however. In the case of grasping for exam-
ple, several fingers close simultaneously to achieve the grasp.
In this system, synergies are used to model both reaching and
grasping. Using synergies allows the dimensionality of the
problem space to be significantly reduced, while retaining the
key elements required for successful reaching and grasping.

In order to find and extract the synergies most relevant to
grasping, human grasping experiments were carried out. To
extract grasp synergies from human grasp data, a subject
made 60 two or three finger grasps of various different
objects (see Fig. 2). The positions of the hand joints in
the grasping postures were recorded with a Shapehand data
glove, while the positions and orientations of the wrist
in a fixed world frame were recorded with a Polhemus
Patriot magnetic sensor. The data acquired is processed using
Principal Component Analysis, and the principal components
are found which are responsible for most of the variance
in the grasping and reaching data. The first three principal
components account for 90% of the reaching data and 82%
of the grasp data (see Fig. 3), and are therefore chosen as
synergies [1]. This reduces the dimensionality of the reaching
space from 6 to 3, and the grasping space from 7 to 3. With
respect to the grasp data, this dimensionality reduction makes
it far more likely that selecting random grasp values will
produce sensible grasps rather than just random nonsensical
motor movements, which helps to increase the systems
robustness.

C. Mapping Synergies from Human to Robot

Before applying these synergies to the robot arm-hand
system as a basis for grasping objects, They first need to
be mapped from the human to the robot hand. A novel
method is used to map between human and robot hand
[1]. Ordinarily, a fixed frame of reference between human
and robot hand is decided on prior to experimentation (eg.

Fig. 2: Here we see (A) the selection of objects used in grasping
experiments in order to extract grasp synergies,(B) a three finger
grasp and (C) a two finger grasp.

[24] and [25]). However, given the mechanical constraints
of our robot hand, a genetic algorithm is used to select the
transformation between human and robot frame of reference
which minimises the error between fingertip position online
before each grasp is carried out. After about 1 second and
45 generations, error is reduced to below 2mm.

Given the mapping from human to robot hand, an inverse
kinematics model is used to drive the 7DOF arm system
to reach the desired position. While some approaches are
not suitable for our 7DOF hand, neural networks have been
successfully trained to calculate the inverse kinematics of
high DOF manipulators. Given a dataset of 50000 points and
associated joint angled, four separate MLP neural networks
are trained on 12500 points each. To minimise the error when
asking for joint positions from the network, the minimum
error is taken from each of the 4 networks each time,
significantly reducing the average error rates.

Given that the inverse kinematics can now be calculated,
and the synergies effectively mapped from human grasping
trials to the robot hand, it is now a trivial matter to ensure



Fig. 3: The principle components extracted (A) from human
reaching data, and (B) from human grasp data.

a good grasp results. First, the arm is moved into position
using the aforementioned inverse kinematics. Next, the grasp
described by the synergy values is made by closing one finger
joint at a time. Finally, each finger makes use of the tactile
pads on its end by closing until contact pressure is over
a certain threshold. While this contact pressure is low, the
rubberised pads allow the grasp to successfully grasp and lift
objects up to 2kg in weight [1].

D. The Affordance Learning System

Given a system that can produce grasps by using appro-
priate synergy values, we now introduce a method of quickly
and reliably learning the correlations between relevant object
feature values and those synergies required to successfully
grasp the object.

Affordances, as described earlier, can be seen as asso-
ciative structures linking various related sensory and motor
information together. In this case, we are interested in the
association between various feature information and the
required synergy values necessary to grasp the object with
those features. To model this correlation, we use a modified
SOM (Self Organizing Map) to cluster and consequently
correlate the feature and synergy inputs. Essentially, a SOM
is a grid of nodes (usually 2 dimensional), each representing
a random input pattern. Each time an input is presented,
the node most closely matching the input pattern, and those
around it, have their values moved closer towards the input
pattern (Fig. 4 gives an example of this). The effect is that
more similar inputs will tend to end up closer to eachother.
Ordinarily, SOM’s have a decreasing neighbourhood range
as a function of time. This means that each iteration, the
amount by which input patterns can alter the structure of the

network decreases, until eventually only fine tuning occurs.
To make the SOM work over an undefined length of time, we
instead decrease the neighbourhood range as a function of
input error at each iteration. As such, the network can learn
as normal, but is also capable of dynamically restructuring
itself as required over time, and as novel inputs are presented.
In addition, this gives the SOM the potential to learn faster,
as it does not have to wait for any predefined length of time
to settle down and fine tune its winning nodes.

Fig. 4: Image showing the correlations formed in a single SOM
between 3 feature dimensions (left) and synergy dimensions (right)
soon after training commences (A), and as learning has peaked (B).
Notice the similarities in the structure of the feature and synergy
correlations, as a result of the correlation between feature and
synergy values.

We make use of the associations formed between di-
mensions in the SOM by presenting partial inputs to the
network. The remaining values from the node which comes
closest to this partial input are output, essentially returning
the closest matching complete input present in the SOM.
There is no limit to which or how many inputs one can
provide to the network in order to get complete outputs,
giving it a degree of flexibility not present in standard neural
network models. That said, providing more values as part of
a partial input pattern will result in a more accurate complete
output, as is to be expected. In addition, the discrimination
between predicting and learning is made simple; The SOM
is automatically trained on complete patterns, whereas it will
only predict from partial ones.

In order to speed up learning, we also implement a simple
STM (Short Term Memory) alongside the SOM. This works
as follows. Depending on its predefined size N, the STM
stores N previous trained inputs, and each time a new input is
presented to the SOM for training, all previous inputs in the
STM are also trained. By training a selection of prior inputs,
rather than increasing the learning rate for each individual
input, we have ensured that input to the network is diverse
enough for learning to take place, while also dramatically
decreasing the amount of presentations required to learn
below a given error threshold.



E. System Summary

The complete system aims to integrate the use of synergies
extracted from human grasp experiments, and the affordance
learning system for the online learning of synergy-feature
correlations. The operational procedure is as follows. A set
of features is perceived by the camera system. The features
are sent to the affordance memory and a set of synergies is
retrieved. These synergies are mapped to the robot hand and
executed. If a grasp is successful, the resulting values are
sent back to the affordance memory for learning. Otherwise,
exploration mode is entered. In exploration mode, random
synergy values are generated and tested until a successful
grasp is achieved, at which point, the affordance memory
learns the resulting feature and synergy values. In addition to
this, the system will incorporate an imitation mode, by which
a human hand using the dataglove and patriot magnetic
sensor grasps an object, and the resulting synergies and
object features can be immediately learnt and later replicated.

Essentially, the system described combines the use of
synergies as a robust model of human grasping, with a SOM
based affordance learning system and an exploration mode
to learn and refine grasping of novel objects online and
efficiently.

III. EXPERIMENTATION AND RESULTS

The experimentation focuses on the ability of the proposed
affordance learning system to learn the necessary correlations
between feature information extracted from objects and the
associated motor synergy values used to drive grasping of
them. In addition, we test its ability to learn fast with the
help of the proposed STM addition, and learn in spite of
noisy input data. Both qualities are necessary if this system
is to be effective at learning online using data from a camera
and synergies extracted live.

To perform these experiments, a selection of 27 silhouetted
images of objects picked from the original training set were
used (see Fig. 5). 8 objects from the original set of 35
were discarded on account of having grasp synergies based
on details which could not be picked up during feature
extraction. First, basic features - orientation sine and cosine,
size, and shape (the proportion of minor axis to major axis
length) - were extracted from each of these objects and
normalised to values between 0 and 1. Next, each set of
feature values and their associated synergy values were fed,
in a random order, into the affordance learning system for
training. Testing was carried out by feeding just the object
features into the system after a given number of training
cycles. The system then outputs its best prediction of the
synergy values. Error rates in terms of the euclidean distance
between expected and obtained synergies were recorded.
Each experiment was ran 5 times and average results taken.

First, to test noise in the system, each input value (ranging
from 0 to 1) had noise added to it prior to learning. A noise
level of 0.05 for example, indicates that each input value
was shifted a random amount from 0-5% up or down from
its original value, prior to being learned. Noise levels of 0.02,
0.05, 0.1, 0.12 and 0.15 were tested. Performance is shown in

Fig. 5: The selection of object images used to train the affordance
learning memory with. These were taken from human grasp exper-
iments and therefore each come with the accompanying synergy
values required to grasp them.

Fig. 6. Next, maintaining a constant noise level of 0.05, the
performance of the STM was tested by comparing various
sizes of STM against each other and observing effects on
learning rate. Recall that the STM size is simply the number
of prior inputs stored in it that are trained each time a new
input is trained. As the STM size increases, as does learning
rate (see Fig. 7), although this effect diminishes and further
size increases have a diminishing effect.

Overall, results show that the affordance learning system
is robust to noise and can still learn effectively with around
10% noise added. In addition, learning rate can be dramati-
cally increased with the help of a simple STM module. Taken
together, these preliminary results suggest that the affordance
learning system described is well suited to the online learning
and prediction of object grasping.

IV. CONCLUSION

In summary, the grasp modelling system described can
successfully map from human grasps to robot grasps using
robust dimension reducing synergies to model the problem
space. To enable the online and autonomous learning of
grasps in this system, we have proposed an affordance
learning system which can successfully learn the correlations



Fig. 6: Graph showing the error rate when predicting the correct
grasp to apply to a given object decreasing over time, despite
various amounts of noise ranging from 2% to 15% noise (see
the legend). It can be seen that more noise leads to a decreased
reduction in error rates over the number of cycles shown.

Fig. 7: Graph showing the error rate after a given number of cycles
with various different sizes of STM ranging from 2 to 30 prior
inputs. It can be seen that increasing the number of inputs in the
STM, we significantly decrease learning times. That said, increasing
the size beyond 30 leads to little benefit and greater cost.

between object features and grasp synergies online, fast,
and autonomously through exploration of the environment.
Preliminary results have been presented, and support this
assumption. We are now in the process of integrating these
systems together in our general framework, with the aim to
create a system that models grasping in terms of synergies
extracted from human grasp data, and learns to correlate
these grasps with appropriate objects online and through
exploration of the environment by using the affordance
learning system proposed here.
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