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Abstract

Candidates to the least perimeter partition of various polygonal shapes into
N planar connected equal-area regions are calculated for N 6 42, compared to
partitions of the disc, and discussed in the context of the energetic groundstate
of a two-dimensional monodisperse foam. The total perimeter and the number of
peripheral regions are presented, and the patterns classified according to the number
and position of the topological defects, that is non-hexagonal regions (bubbles). The
optimal partitions of an equilateral triangle are found to follow a pattern based on
the position of no more than one defect pair, and this pattern is repeated for many
of the candidate partitions of a hexagon. Partitions of a square and a pentagon
show greater disorder.

Candidates to the least perimeter partition of the surface of the sphere into N

connected equal-area regions are also calculated. For small N these can be related to
simple polyhedra and for N > 14 they consist of 12 pentagons and N −12 hexagons.

1 Introduction

A dry foam is a collection of polyhedral bubbles surrounded by thin films. Its high-
interface structure leads to a multitude of industrial and domestic uses [1]. The surface
energy of a three-dimensional foam is the surface area of the films multiplied by the surface
tension of each one [1]. A foam in equilibrium attains a local minimum of this energy,
subject to the constraint of fixed bubble volumes. In doing so, it satisfies Plateau’s rules
[2, 3]: three and only three films meet in a line (a Plateau border) at 120◦ and these lines
meet with four-fold tetrahedral symmetry. In addition, the Laplace Law relating pressure
difference and curvatures gives the further condition that each film is a surface of constant
mean curvature.

A celebrated problem in this context is due to Kelvin [4, 5]: what is the least energy
partition of space into cells of equal volume? Kelvin’s solution, a tetrakaidecahedral
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bubble in the form of a truncated octahedron with six quadrilateral and eight hexagonal
faces, still stands as the best monohedral tiling ever found. A proof of its optimality is,
however, elusive. One hundred years after Kelvin considered the problem, Weaire and
Phelan [6] discovered a partition of space with lower energy; the Weaire-Phelan structure
has a unit cell consisting of eight bubbles of two different topologies.

Given the complexity of the search for a global minimum in the Kelvin problem, it
makes sense to retreat to two dimensions. Consider for example, a foam squeezed between
parallel plates, so that the films form a network of lines surrounding the bubbles. The
surface energy of this two-dimensional foam is simply the total perimeter of the lines (or
edges) multiplied by surface tension. The rules of equilibrium now imply that each edge
is a circular arc and that they meet in threes at angles of 120◦. The bubble areas are
considered fixed and we seek the arrangement of bubbles that gives the global minimum
of perimeter. For bubbles filling the plane, the hexagonal honeycomb has been proved
to be optimal in this sense [7]. This result was widely believed but difficult to prove,
as is the case for so many of these minimal perimeter problems. The approach adopted
here, and expanded upon below, is to seek candidates to such problems numerically and,
except in some special cases, forgo any attempt at a proof that the structure is a global
minimum. Instead, we rely on a procedure that calculates the perimeter of many different
candidates, giving a high probability but no guarantee that we will find the “best” one.

So, the honeycomb conjecture is proven, but there are many variations on the conjec-
ture that are worthy of further exploration. One obvious direction is to relax the condition
that all bubbles have equal area [8, §15.9][9]. Another is to consider finite collections of N
equal-area bubbles (clusters), which we do here. An important assumption is that in the
global minimum each bubble consists of a single component. We retain this assumption of
connectedness for all problems considered here. The difficulty of proving this assumption
is the major stumbling block to proving optimality in general.

For small numbers of bubbles, N 6 3, there are various proofs of optimality for free
clusters (in 2D, 3D and beyond); see e.g. [8, 10, 11, 12, 13]. For example, a single bubble
(N = 1) forms a circle, and two bubbles form what is known as the standard double
bubble – see the last column of figure 1. Cox et al. [14] “shuffled” a monodisperse cluster of
bubbles from one configuration to another by performing neighbour-switching T1 changes
[15] on an initially defect-free cluster to explore the space of possible candidates. Those
results for the least-perimeter arrangement of N monodisperse bubbles, along with a
number of more recent improvements [16], are shown in figures 1 to 5.

The colour scheme in the figures requires explanation: topological defects are classified
using the idea of charge [17]. Bulk bubbles have a charge q = 6−n, where n is the number
of sides. Thus hexagons have zero charge and are not coloured. In the same way, peripheral
bubbles have charge q = 5 − n. The total charge of the cluster is then

∑

q = 6. Cox
et al. [14] found that in the free cluster case, positive (coloured red in the figures if q = 1,
if q > 2) and negative (yellow) charges tend to be associated, and that the remaining
positive charges are usually well-spaced around the periphery of the cluster. As the size
of the cluster grows, the result of the honeycomb conjecture suggests that bubbles far
from the periphery of the cluster are likely to be hexagonal, as is indeed the case.
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Simulations by Cox and Graner [18] showed that for N up to 10,000 the trade-off
between reducing the length of the periphery of the cluster and attaining regular hexagons
in the bulk is “won” by the bulk. That is, the perimeter of the cluster is minimized by a
cluster that has a periphery that is itself hexagonal, allowing the bulk to consist only of
regular hexagons, rather than rounding the cluster to reduce the length of the periphery.
This suggestion has not gained universal agreement: Morgan [19], for example, expects
the periphery of the optimal cluster to become circular at even higher N .

Bounds on the perimeter E of a finite cluster of hexagons have been given by Heppes
and Morgan [20]. These are asymptotically of the form

Ef(N)/L = 3N + k
√

N, (1)

for some parameter k. The first term is the contribution of hexagonal bubbles in the bulk
and the

√
N term is a correction due to the peripheral bubbles. Thus L is the length of

one edge of a regular hexagonal bubble (since each edge is shared between two bubbles) of
area A = 1

2
3
√

3L2. In fitting this form to the results of simulations, the second term must
also account for deviations of hexagons from regularity and any non-hexagonal bubbles
in the centre, or bulk, of the cluster. Cox et al. [14] found k = 3.068 for free clusters.

A further refinement of the problem of finding the least perimeter arrangement of
bubbles is to consider a number of bubbles confined within a given boundary. The equi-
librium conditions are augmented by the rule that edges meet the bounding walls at 90◦.
Cañete and Ritore [21] proved that the best arrangement of three bubbles within a circle
is the same topology as in the free cluster for N = 3 [13]. A number of authors have
made conjectures in the monodisperse case for N up to 6 [21, 22, 23, 24] and Cox [16]
performed a search for N up to 45 that confirmed most of these (see the fifth column of
figures 1 to 5, which also contains improvements for N = 40 (this work) and N = 42 [29]
to those given in [16]).

For different confining geometries, there are only conjectures [22, 23, 24] for the square
and equilateral triangle, again for N up to 6. Here, we consider partitions of both of these,
as well as a pentagonal and hexagonal boundary, for N up to 42. For each boundary
shape we seek the least perimeter partition into N bubbles of equal area, equivalent to
the energetic groundstate for N monodisperse bubbles or the optimal packing of equal-
area objects. We examine values of N up to 42 and record the least perimeter, the number
of peripheral bubbles Np and the topology (number of sides) of the bubbles in the bulk
of the cluster. That is, we determine candidates to the least perimeter arrangement,
and examine the influence of the periphery in creating deviations of the cluster from the
regular hexagonal lattice.

In addition, we consider the least perimeter partition of the surface of the unit sphere
into N regions of equal area. In this case each edge is an arc of a great circle, and the
edges meet in threes as before. The case N = 2 is solved by two hemispherical shells.
There are proofs that three identical strips joining the poles is optimal for N = 3 [25], and
that the optimal partition into N = 4 regions consists of four equal triangles [26]. Hales
[27] proved that for N = 12 the optimal partition is the one based on the pentagonal
dodecahedron. It is believed that the cube provides the topology of optimal partition into
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N = 6 regions. Indeed, we find that the ten geodesic partitions of the sphere that are
three-connected at 120◦, which occur for N = 2 − 10, 12 (see [28]), provide the minimum
perimeter. Further conjectures can be found in [30, 31].

Our aim is partly to inspire the derivation of exact results. In addition, in the same
way that the optimal arrangement of a free cluster of bubbles appears to predict the
arrangement of retinal cells in Drosophila [32], the solutions found here may provide
information about other biological structures, such as the arrangement of seeds in a flower
[33, 34]. They are also reminiscent of the results of more traditional packing problems, in
which objects should fill a given space with least deformation.

2 Method

The value of surface tension, which is equal for all edges, is taken as one.
For small N 6 6, all possible combinatorial types can usually be enumerated, which

provides a check on the numerical procedures described below. For certain boundary
shapes, there are magic numbers of bubbles: configurations in which the least perimeter
solution has no topological defects. Two examples are (i) hexagonal numbers, of the form
3i2−3i+1 for i = 1, 2, . . ., which were found to be optimal for free clusters, those confined
in a circle, and, as we will see below, are optimal for those confined in a hexagon; (ii)
triangular numbers, of the form NT = 1

2
i(i + 1), which we find (see below) to be optimal

for bubbles confined in an equilateral triangle; that is, for values of N = NT the cluster
formed by cutting a triangular segment from a hexagonal honeycomb and allowing it to
deform slightly to satisfy area constraints provides the global minimum.

2.1 Polygonal boundary

Candidates to the optimal arrangement of bubbles within a polygonal boundary are cre-
ated as follows (the method is similar to the one described in [16]): N points, which
represent bubble centres, are scattered at random in a unit square. The points are moved
so as to minimize a potential (see below) and then a Voronoi partition of these N seed
points is calculated [35], The resulting structure is imported into the Surface Evolver [36],
where each Voronoi cell represents a bubble. The polygonal boundary is set to have sides
of unit length, the bubble areas are prescribed to be equal and we then use Evolver’s
circular arc mode to converge to a minimum of the perimeter. The equilibrium perimeter
E of the candidate configuration is then calculated, including the length of the boundary
to facilitate comparisons between different boundary shapes.

This complete procedure is repeated for each local minimum of the potential, of which
there are of the order of ten to twenty for each N , and the least-perimeter candidate
recorded in each case. Following the initial perimeter minimization step, short edges are
sequentially removed, through T1 neighbour switching processes, and the perimeter again
minimized to seek better nearby minima.

We supplement this automated procedure with manipulations of the existing candi-
dates by hand, based upon intuition about the structure and symmetry of the candidates,
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and any patterns noticed.
There is no reason why any given inter-particle potential should provide good candi-

dates to the minimum perimeter problem. Indeed, there are many well-known potentials
[37], the solutions to which may show a precise correspondence between the particle po-
sitions and the arrangement of bubble centres in the optimal partition, at least at small
N . We therefore choose a number of different potentials and compare their effectiveness
in determining the least perimeter candidate.

Each potential consists of a sum of different contributions:

V = c1

∑

i

~ri
2 +

∑

i

∑

j 6=i

Vij , (2)

where ~ri = (xi, yi) is the position vector of the ith particle. The first term is a symmetric
harmonic confining potential that keeps the particles close to the origin, weighted by a
constant c1, usually equal to one. The second term is the inter-particle potential, which
tries to keep the points well-spaced. We tried three possibilities for Vij :

V Coulomb
ij =

1

|~ri − ~rj|
(3)

V Squared
ij =

1

|~ri − ~rj|2
(4)

V Log
ij = − log |~ri − ~rj| . (5)

In the triangular (s = 3) and square (s = 4) cases, we used only the second, squared,
inter-particle potential in the second term, and added a further term that acts to make
the boundary of the cluster of points polygonal:

Vpoly = c2

∑

i

~ri
2 cos2(θimod(2π/s)), (6)

with tan θi = yi/xi. The constant c2 is between zero and one, and in these cases c1 is
reduced.

2.2 The surface of a sphere

To find candidates to the least perimeter partition of the surface of a sphere, the method
is simpler. We choose the sphere to have radius R = 1, centred at the origin, and tile it
with N bubbles of area A = 4πR2/N . We use the Surface Evolver [36] in a “spherical
arc mode”, that represents each edge as an arc of a great circle, to minimize the total
perimeter P .

We commence by covering the sphere with curvilinear triangles that have their base
on the equator and their apices at one of the poles. By sequentially allowing neighbour
switching topological changes on short edges and converging to a local equilibrium after
each one, the perimeter of the pattern is reduced. We continue this process until the
perimeter ceases to decrease, and then introduce further topological changes at random
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to search the nearby energy “landscape”. We record the perimeter E and the pattern
of the topology with the least perimeter. A two-dimensional image of each pattern is
obtained by projecting the vertices and edges on the surface of the sphere to the plane
according to a Gauss map:

x′ =

(

1

2
π + tan−1

(

z
√

x2 + y2

))

cos(tan−1
(y

x

)

)

y′ =

(

1

2
π + tan−1

(

z
√

x2 + y2

))

sin(tan−1
(y

x

)

) (7)

z′ = −1.

It became apparent (see §4) that many candidates, particularly at larger N , consisted
of arrangements of hexagons and pentagons only. We therefore implemented an additional
procedure: the software CaGe [38] was used to enumerate all tilings of the sphere by
hexagons and pentagons for each N . Each of these was imported into the Surface Evolver
and its equilibrium perimeter found. This showed that the random search procedure
described above was in general only finding optimal candidates for N 6 20.

3 Results

3.1 Triangular boundary

Even in the monodisperse case, the least perimeter partition of an arbitrary triangle will
depend on its precise shape. For example, in the case N = 3 in an isosceles triangle there
are three optimal arrangements, each of which is best for a certain range of angles [39].
We thus concentrate our effort on the equilateral case.

Our candidate configurations are shown in figures 1 to 5, and the perimeters plotted
in figure 6 and tabulated in Table 1. We find the same candidates for N = 1, 2, 3 and
6 as those found by Bleicher [23] and give better ones for N = 4 and N = 5. To the
best of our knowledge, no candidates have been given for higher N . It can be shown,
by enumerating all topologies, that the least-perimeter solution for N = 4 does not have
three-fold rotational symmetry [40] but is instead of the same form as the free cluster.

In the candidate configurations it is never optimal to have an edge emanating from an
apex of the triangle. A semi-rigorous proof can be obtained by considering the partition
of a scalene triangle into two bubbles.

For the triangular values, NT = 1, 3, 6, 10, . . . , 1
2
i(i+1), the optimal candidate consists

of part of a hexagonal honeycomb, albeit a deformed one that accommodates the area
constraints. Based upon the number of peripheral bubbles in this defect-free case, we
propose the following formula for Np:

Np =

[

3

2

(√
1 + 8N − 3

)

]

, (8)
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where [] denotes the nearest integer. This expression fits the data well, except (at higher
N) on either side of the triangular values where Np changes more steeply.

An approximate formula for the perimeter can be derived, based upon the idea that
each bubble in the bulk attains its optimal hexagonal shape and that each wall bubble
(except for those in the corners, which are not significant in this approximation) attains
the optimal stretched-half hexagon shape that accommodates the area constraint. There
are 3N − 2Np − 3 edges of length L in the bulk and Np edges of length 5L/4 that touch
the walls, with Np given by (8). For a polygonal boundary with s sides, we must add

s walls of length L̄(s)/L =
√

6
√

3 tan(π/s)N/s. The resulting expression for the total
perimeter is

Eapprox = (3N − 2Np − 3)L +
5

4
NpL + sL̄,

i.e. Eapprox/L = 3

(

N − 1

4
Np − 1

)

+

√

6
√

3 tan(π/s)Ns. (9)

with s = 3 in this case.
Based upon the perimeter for the N = 3 case, the expression E/L = (3+Np/

√
12)

√
6N

appears to give the perimeter for all triangular numbers, and thus provides a good lower
bound for the perimeter for all N . A fit to the form in (1), Ef (N)/L = 3N + k

√
N gives

k = 4.302.
For all other N there is exactly one pair of defects, i.e. one bubble with positive

topological charge adjacent to one bubble with negative topological charge. This provides
a clear realization of the conjecture of Cox et al. [14] that defects should associate.

The position of the defect pair depends upon the proximity of N to a triangular
number. If N is of the form NT ± 1, then the defect pair will touch the boundary. If N
is of the form NT + 1 then the positive charge will be against the boundary while if N
is of the form NT − 1, the negative charge will touch the boundary. If N is two or more
away from NT , the defect pair will move into the bulk, keeping the same orientation of
the positive-negative charge.

This suggests a recipe to generate the optimal candidate for each value of N , given
the optimal defect-free candidate for the nearest NT , as follows. Find the closest value of
NT to N , and if there are two, choose the lower. Consider each defect-free configuration
for NT as a stack of rows of bubbles. Then add (or subtract if N < NT ) bubbles to/from
the middle of successive rows, starting from the row along the base of the triangle, until
the number of bubbles reaches N . Then re-converge to equilibrium, allowing neighbour
switching events on short edges where required.

3.2 Square boundary

Our candidate configurations are shown in figures 1 to 5 and the perimeters plotted
in figure 6 and tabulated in Table 1. We confirm Tomonaga [22] and Bleicher’s [23]
conjectures for N 6 5.
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The magic numbers are squares, of the form NS = i2: although the number of defects
is not minimized in these candidates, the defects lie along opposite edges of the square to
leave hexagonal bubbles in the bulk. Figure 6(b) suggests that this does not result in a
significant lowering of the perimeter compared to clusters for similar N .

Keeping the defects close to a pair of opposite boundaries is seen in many of the
candidates. Again, it often appears to beat candidates that have few defects. As N
increases, an isolated 5-sided bubble in the bulk no longer generates a large penalty and
is seen occasionally. About half of the candidates show reflective or rotational symmetry.

Following the derivation of (8), the square values of N suggest the following expression
for the number of peripheral bubbles:

Np =
[

4
(√

N − 1
)]

. (10)

Were it not for the values N = 8, 15 and 23, this would provide an upper bound, and it
overestimates Np for the majority of the candidates.

A fit of the perimeters to the form in (1) gives k = 3.809, less than in the triangular
case but still significantly above the free case, reflecting the effect of confinement.

3.3 Pentagonal boundary

Our candidate configurations are shown in figures 1 to 5 and the perimeters plotted in
figure 6 and tabulated in Table 1.

Five-fold rotational symmetry is exhibited for the pentagon for the magic numbers
N = 6, 16, 31, as for the circle [16], and may continue to be found for N of the form
1 + 5i(i − 1)/2. In addition, the pentagon shows the same topology as the circle for
N = 15, 32, 33.

In general, however, the candidate configurations in a pentagon are highly disordered.
With the further exception of N = 9, 11, 13, 18, 21, 24 and 34, all candidates for N > 7
show at least one negative defect, usually in the form of a defect pair.

Based on the patterns for the magic numbers, we propose that the number of peripheral
bubbles follows

Np =

[

5

2

(

√

8N − 3

5
− 1

)]

, (11)

which turns out provides a (tight) lower bound to the data.
A fit of the perimeters to the form in (1) gives k = 3.569, slightly lower than the

square case.

3.4 Hexagonal boundary

Our candidate configurations are shown in figures 1 to 5 and the perimeters plotted in
figure 6 and tabulated in Table 1.
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Many of these configurations are similar to either or both the circular and/or free
cases (N = 1 − 12, 14, 17 − 22, 24, 25, 27, 29, 30, 34, 35, 37− 39, 41), including the magic
numbers of the form 1 + 3i(i + 1).

There is a similar progression to that seen in the triangular case (e.g. for 30 6 N 6 42)
with a single defect pair that moves away from the boundary as N increases. For lower
N this is disrupted by defect-free cases, that differ from the magic numbers by an uneven
spacing of bubbles around the sides of the hexagon.

The number of peripheral bubbles is well-approximated by [14]:

Np =

[

3

(

√

4N − 1

3
− 1

)]

, (12)

which gets all but eleven values correct. The same expression gets all but thirteen values
correct for the circular case and all but four values correct for free clusters.

The expression for the perimeter derived in (9), with Np given by (12) and s = 6,
works well here, indicating that the bubbles are quite regular. (This expression fails to
describe the square and pentagonal data.) A fit of the perimeters to the form in (1) gives
k = 3.452, only slightly greater than in the circular case (k = 3.378 [16]) and the free
case. In common with these two cases and the triangle, the partitions of the hexagon
never show more than one negative defect.

3.5 Discussion

To test the potentials, we consider the circular case for which good candidate config-
urations exist [16]. No choice of potential finds all these candidates, but between the
potentials all known solutions are found and one better solution for N = 40 (both log
and coulomb potentials). The coulomb potential performs best, finding 40 out of 42 of
the known least perimeter configurations. For N > 25 the least perimeter configuration
rarely corresponds to the minimum energy arrangement of particles; rather, it is one of the
local minima that gives it. In a small number of cases the least perimeter configuration is
only found after performing T1s. In summary, there appears to be no “magic” potential
for which the groundstate corresponds to the groundstate for the bubble cluster, and an
optimal strategy should probably include variation of the potential as well as the random
initial placement of the seed points.

How do the candidates compare for each N? Cox [16] showed that the least-perimeter
partition of the circle is often the same as the solution in the free case, and it is also
the case that the topology of the partitions of the hexagon are often the same. As the
number of sides of the polygonal boundary increases, we expect this correspondence to
be retained.

Referring to figure 1, it is clear that for N 6 4 the same topology solves all least
perimeter partitions. Omitting the triangular case, which satisfies the procedure remarked
upon above, the same topology solves the remaining five cases for N = 6 and 7, and
omitting both the square and triangle, we find the same topology for N = 5, 8, 9, 11, 17
and 18.
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The positions of s positive defects are pre-determined to lie in the corners of a polygonal
boundary with s sides, and this constrains the problem further. But for polygons with
more than six sides (not considered here) there will be more defects than necessary,
implying that a negative defect must always be introduced somewhere. A single seven-
sided bubble at the centre of the cluster and seven-fold symmetry overall, which was
observed for the circle for N = 8 and 22 (but not for N = 43, the next in the sequence)
[16] may be found for clusters confined within a regular heptagon, where the cost may be
sufficiently low at higher N for this topology to win.

The number Np of peripheral bubbles does not increase monotonically, although in all
cases it scales roughly as

√
N [14]. Despite the relatively high energy of the clusters in

a pentagon, Np is lowest in this case. It is highest for the triangular clusters, because of
the sharp corners.

A comparison of the perimeters of the candidates to each minimal perimeter problem
is given in figure 6(a). It shows, for each N , the perimeter of the candidates for a free
cluster and a cluster confined in a circular, triangular, square, pentagonal or hexagonal
boundary. The perimeter increases monotonically with N in all cases. It is clear that
the lack of confinement in the free case leads to the lowest perimeter. Hexagonal clusters
have slightly higher perimeter than those constrained by a circle, but the two are very
similar. The triangular clusters have particularly high perimeter, followed by the square
and then the pentagon.

We subtract the fit to the perimeter of the free clusters, Ef(N)/L = 3N + 3.068
√

N ,
from each set of data, shown in figure 6(b). It is now easier to see the “magic” clusters –
the dips in the data – where the perimeter is particularly low. These occur at the same
N for hexagonal, circular and free clusters.

4 Least perimeter partition of the surface of a sphere

We seek the least perimeter partition of the sphere into N bubbles of equal area [30, 31],
equivalent to the energetic groundstate for N monodisperse bubbles or the optimal packing
of equal-area objects. We examine values of N up to 32 and record the least perimeter
and the configuration that realizes it.

Candidate configurations are shown in figure 7, and the perimeters are tabulated
in Table 2. In figure 8 the perimeters are shown and compared with a tiling of the
plane with N hexagons of area Ab = 4πR2/N , which has Ehex/L = 3N and therefore

Ehex/R =
√

8
√

3πN .
For N = 2 − 4, 12 we find the candidates for which proofs exist. For other N 6 10,

the candidates have the topology of the geodesic networks described in [28], with edges
meeting at 120◦. For example, the topology of N = 5 consists of a pair of triangles
covering the poles joined by 3 quadrilaterals, N = 6 is cubic, N = 7 consists of a pair
of pentagons covering the poles joined by 5 quadrilaterals, N = 8 consists of a pair of
quadrilaterals covering each pole joined by four pentagons, and N = 10 has quadrilaterals
at the poles and two rows of four pentagons.
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A hexagon first appears in the case N = 11 and the angles are no longer 120◦. For
N = 13 it is not possible to insert just one hexagon and this is the highest N for which a
quadrilateral bubble appears; in fact, it has the same topology as the Matzke cell, one of
the most common types of bubble in 3D monodisperse foams [41, 42].

For N > 14 it is apparent that all candidates found consist of 12 pentagons and N−12
hexagons. These are fullerenes, now well known from carbon chemistry. For example, the
optimal candidate for N = 32 is the C60 fullerene, in which each pentagon is separated
from the other pentagons by hexagons. Thus for N > 14 we conjecture that the best
candidate can be found by finding the optimal location of the 12 pentagons in a partition
that otherwise consists of hexagons.

5 Conclusions

We have found candidates to the minimal perimeter of partitions of a regular polygon with
up to six sides into N regions of equal area. Equivalently, we have found the global en-
ergetic groundstate of a monodisperse two-dimensional foam confined within a polygonal
boundary. For the triangle we conjecture that optimal partitions for other N can be found
from the nearest “magic” cluster, i.e. for N a triangular number, by adding/subtracting
bubbles in successive layers from the wall. A similar procedure finds many candidates for
the hexagonal boundary but not for any other boundary shape.

Few general results emerge from the data for square and pentagonal boundaries. Only
defects with charge ±1 are observed (for N > 3) and they tend to be close to the bound-
aries. Seven-sided bubbles are usually paired with five-sided bubbles.

We have also found candidates to the minimal perimeter of partitions of a sphere into
N regions of equal area. Equivalently, we have found the global energetic groundstate of
a monodisperse two-dimensional foam confined to the surface of a sphere. For N > 14 all
candidates are fullerenes. Thus, we conjecture that finding the least perimeter partition
of the sphere for large N is equivalent to the problem of finding the fullerene with the
largest spacing between pentagonal faces.

For each N , the algorithm, even though repeated many times, explores only a few
hundred different candidates at most. It remains an open question as to how many
candidates actually exist, and whether it is possible to enumerate and test them in a
reasonable time. Certainly, to extend the results presented here to higher N will require
an improved algorithm. Similarly, relaxing the condition of monodispersity, to consider
for example bidisperse clusters [9], leads to many more candidates and the likelihood of
fully exploring the space of all good candidates decreases.
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Forces Moléculaires. Gauthier-Villars, Paris, 1873.

[3] J.E. Taylor. The structure of singularities in soap-bubble-like and soap-film-like
minimal surfaces. Ann. Math., 103:489–539, 1976.

[4] W. Thomson. On the Division of Space with Minimum Partitional Area. Phil. Mag.,
24:503–514, 1887.

[5] D. Weaire, editor. The Kelvin Problem. Taylor & Francis, London, 1994.

[6] D. Weaire and R. Phelan. A counter-example to Kelvin’s conjecture on minimal
surfaces. Phil. Mag. Lett., 69:107–110, 1994.

[7] T.C. Hales. The honeycomb conjecture. Discrete Comput. Geom., 25:1–22, 2001.

[8] F. Morgan. Geometric Measure Theory: A Beginner’s Guide. Academic Press, San
Diego, 4th edition, 2009.

[9] M.F. Vaz, S.J. Cox, and M.D. Alonso. Minimum energy configurations of small
bidisperse bubble clusters. J. Phys.: Condens. Matter, 16:4165–4175, 2004.

[10] M. Alfaro, J. Brock, J. Foisy, N. Hodges, and J. Zimba. Compound soap bubbles in
the plane, SMALL Geometry Group report, 1990.

[11] J. Foisy, M. Alfaro, J. Brock, N. Hodges, and J. Zimba. The standard double soap
bubble in R2 uniquely minimizes perimeter. Pac. J. Math., 159:3542–3546, 1993.

[12] F. Morgan. Mathematicians, including undergraduates, look at soap bubbles. Amer.
Math. Monthly, 101:343–351, 1994.

[13] W. Wichiramala. Proof of the planar triple bubble conjecture. J. reine. angew.
Math., 567:1–50, 2004.

[14] S.J. Cox, F. Graner, M.F. Vaz, C. Monnereau-Pittet, and N. Pittet. Minimal perime-
ter for N identical bubbles in two dimensions: calculations and simulations. Phil.
Mag., 83:1393–1406, 2003.

[15] D. Weaire and N. Rivier. Soap, cells and statistics–random patterns in two dimen-
sions. Contemp. Phys., 25:59–99, 1984.

the electronic journal of combinatorics 17 (2010), #R45 12



[16] S.J. Cox. Calculations of the minimal perimeter for N deformable cells of equal area
confined in a circle. Phil. Mag. Letts., 86:569–578, 2006.

[17] F. Graner, Y. Jiang, E. Janiaud, and C. Flament. Equilibrium states and ground
state of two-dimensional fluid foams. Phys. Rev. E, 63:011402, 2001.

[18] S.J. Cox and F. Graner. Large two-dimensional clusters of equal-area bubbles. Phil.
Mag., 83:2573–2584, 2003.

[19] F. Morgan. Soap Bubble Clusters. Rev. Modern Phys., 79:821–827, 2007.

[20] A. Heppes and F. Morgan. Planar Clusters and Perimeter Bounds. Phil. Mag., 85:
1333–1345, 2005.

[21] A. Cañete and M. Ritore. Least-perimeter partitions of the disk into three regions
of given areas. Indiana Univ. Math. J., 53:883–904, 2004.

[22] Y. Tomonaga. Geometry of Length and Area. Dept. of Mathematics, Utsunomiya
University, Japan, 1974.

[23] M.N. Bleicher. Isoperimetric divisions into several cells with natural boundary. In
Intuitive geometry. North-Holland, Amsterdam., 1987. Colloq. Math. Soc. János
Bolyai, 48:63–84.

[24] E. Baumann, 2007. http://private.mcnet.ch/baumann/EqAreaOverview.htm.

[25] J. Masters. The perimeter-minimizing enclosure of two areas in S2. Real Analysis
Exchange, 22:645–654, 1996/7.

[26] M. Engelstein. The Least-Perimeter Partition of a Sphere into Four Equal Areas.
Discrete Comput. Geom. (to appear). DOI: 10.1007/s00454–009–9197–8, 2009.

[27] T.C. Hales. The honeycomb conjecture on the sphere. arXiv:math/0211234, 2002.

[28] F.J. Almgren and J.E. Taylor. Geometry of soap films. Sci. Am., 235:82–93, 1976.

[29] B. Shuttleworth. Private communication, 2007.

[30] M. Goldberg. The Isoperimetric Problem for Polyhedra. Tohoku Math. J., 40:226–
236, 1934.

[31] E. Newkirk. Least-Perimeter Partitions of the Sphere. Undergraduate thesis,
Williams College, Williamstown, Massachusetts, 2009.

[32] T. Hayashi and R.W. Carthew. Surface mechanics mediate pattern formation in the
developing retina. Nature, 431:647–652, 2004.

[33] T. Tarnai. Optimum packing of circles in a circle. In I. Hargittai and T. Laurent,
editors, Symmetry 2000, pages 121–132. Portland, 2002.

the electronic journal of combinatorics 17 (2010), #R45 13



[34] T. Tarnai and K. Miyazaki. Circle Packings and the Sacred Lotus. Leonardo, 36:
145–150, 2003.

[35] C.B. Barber, D.P. Dobkin, and H.T. Huhdanpaa. The Quickhull algorithm for convex
hulls. ACM Trans. on Mathematical Software, 22:469–483, 1996.

[36] K. Brakke. The Surface Evolver. Exp. Math., 1:141–165, 1992.
www.susqu.edu/brakke/.

[37] Y.-J. Lai and L. I. Packings and defects of strongly coupled two-dimensional Coulomb
clusters:Numerical simulation. Phys. Rev E, 60:4743–4753, 1999.

[38] G. Brinkmann, O. Delgado Friedrichs, A. Dress, and T. Harmuth. CaGe - a vir-
tual environment for studying some special classes of large molecules. MATCH
Commun. Math. Comput. Chem., 36:233–237, 1997. http://www.mathematik.uni-
bielefeld.de/∼CaGe/.

[39] D. Ferguson. Private Communication, 2009.

[40] B.A. Shuttleworth. Isoperimetric problems in a triangle. Master’s thesis, Aberyst-
wyth University, 2008.

[41] E.B. Matzke. The three-dimensional shape of bubbles in foam - an analysis of the
rôle of surface forces in three-dimensional cell shape determination. Am. J. Botany,
33:58–80, 1946.

[42] A.M. Kraynik, D.A. Reinelt, and F. van Swol. The structure of random monodisperse
foam. Phys. Rev. E, 67:031403, 2003.

the electronic journal of combinatorics 17 (2010), #R45 14



N = 1

N = 2

N = 3

N = 4

N = 5

N = 6

N = 7

N = 8

N = 9

N = 10

Figure 1: Least perimeter candidates for N = 1 to 10.
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Figure 2: Least perimeter candidates for N = 11 to 20.
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Figure 3: Least perimeter candidates for N = 21 to 30.
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Figure 4: Least perimeter candidates for N = 31 to 40.
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N = 41

N = 42

Figure 5: Least perimeter candidates for N = 41 and 42.
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N triangular square pentagonal hexagonal circular free
1 4.559 4.000 3.812 3.722 3.545 3.545
2 7.895 7.071 6.934 6.784 6.609 6.359
3 10.176 9.740 9.453 9.239 9.072 8.794
4 13.085 11.951 11.945 11.743 11.542 11.188
5 15.579 14.539 14.215 14.302 14.025 13.558
6 17.615 16.999 16.325 16.476 16.155 15.777
7 20.304 19.263 18.828 18.378 18.335 17.928
8 22.759 21.490 21.183 20.955 20.634 20.200
9 24.937 23.703 23.423 23.275 23.016 22.454
10 26.902 26.025 25.684 25.364 25.192 24.569
11 29.455 28.286 27.830 27.684 27.361 26.773
12 31.814 30.401 30.063 29.646 29.478 28.846
13 34.046 32.716 32.210 32.043 31.706 31.049
14 36.151 34.853 34.292 34.031 33.841 33.112
15 38.046 37.058 36.313 36.365 36.041 35.313
16 40.522 39.154 38.393 38.494 38.102 37.370
17 42.794 41.401 40.711 40.550 40.234 39.514
18 45.043 43.511 42.873 42.559 42.282 41.554
19 47.148 45.624 45.066 44.329 44.291 43.539
20 49.192 47.690 47.143 46.748 46.544 45.738
21 51.047 49.814 49.287 48.930 48.634 47.780
22 53.467 51.991 51.402 51.070 50.759 49.921
23 55.690 54.097 53.459 53.156 52.886 51.954
24 57.884 56.274 55.570 55.086 54.928 53.930
25 60.028 58.329 57.674 57.350 57.033 56.095
26 62.069 60.576 59.722 59.361 59.078 58.108
27 64.087 62.608 61.718 61.219 61.077 60.067
28 65.908 64.663 63.737 63.522 63.255 62.242
29 68.289 66.675 65.774 65.617 65.301 64.245
30 70.467 68.720 67.778 67.474 67.321 66.201
31 72.631 70.775 69.847 69.777 69.462 68.364
32 74.769 72.860 72.055 71.794 71.506 70.391
33 76.824 74.986 74.131 73.830 73.526 72.328
34 78.842 77.078 76.247 75.831 75.568 74.460
35 80.832 79.220 78.297 77.809 77.557 76.456
36 82.629 81.232 80.348 79.730 79.518 78.410
37 84.980 83.390 82.391 81.470 81.486 80.344
38 87.127 85.390 84.495 83.798 83.669 82.507
39 89.258 87.401 86.486 85.928 85.748 84.528
40 91.377 89.496 88.529 88.011 87.791 86.465
41 93.456 91.447 90.566 90.074 89.870 88.593
42 95.469 93.545 92.618 92.108 91.892 90.608

Table 1: Perimeter E/L for the least perimeter candidates found here, normalized to
bubbles of unit area.
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Figure 6: (a) Total perimeter of the least perimeter clusters found in the plane, normalized
to bubbles of unit area. (b) Subtracting the fit (1) to the free clusters from each set of
data separates the data and identifies the magic numbers.
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Figure 7: Candidate topologies for the least line length configuration of N bubbles on the
surface of the unit sphere, for 2 6 N 6 32. In addition to showing the network of edges
on the sphere, for each N a representation based upon a Gauss map of the sphere surface
to the plane (see §2) is given, with one bubble shown as the periphery of the cluster.
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N E/R Topology
1 0.000 −
2 6.283 12

3 9.425 23

4 11.464 34

5 13.452 3243

6 14.772 46

7 16.360 4552

8 17.710 4454

9 18.867 4356

10 20.015 4258

11 21.163 425861

12 21.892 512

13 23.112 4151062

14 23.964 51262

15 24.891 51263

16 25.736 51264

N E/R Topology
17 26.649 51265

18 27.478 51266

19 28.290 51267

20 29.015 51268

21 29.792 51269

22 30.528 512610

23 31.246 512611

24 31.933 512612

25 32.639 512613

26 33.290 512614

27 33.918 512615

28 34.575 512616

29 35.230 512617

30 35.844 512618

31 36.417 512619

32 36.951 512620

Table 2: Perimeter E/R and topology of the candidates to the minimum perimeter par-
tition into equal-area bubbles of the surface of the unit sphere. The topology is recorded
in the form ab, indicating a b-sided bubbles etc.
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Figure 8: Total perimeter of the least perimeter tiling of the surface of the unit sphere with
equal-area bubbles. Also shown is the energy of a hexagonal honeycomb with bubbles of
the same area for each N , which is slightly greater.

the electronic journal of combinatorics 17 (2010), #R45 23


