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EVIDENCE DIRECTED GENERATION OF PLAUSIBLE
CRIME SCENARIOS WITH IDENTITY RESOLUTION

Xin Fu, Tossapon Boongoen, and Qiang Shen
Department of Computer Science, Aberystwyth University, Penglais Campus,
Aberystwyth, United Kingdom

� Given a set of collected evidence and a predefined knowledge base, some existing knowledge-
based approaches have the capability of synthesizing plausible crime scenarios under restrictive
conditions. However, significant challenges arise for problems where the degree of precision of
available intelligence data can vary greatly, often involving vague and uncertain information.
Also, the issue of identity disambiguation gives rise to another crucial barrier in crime
investigation. That is, the generated crime scenarios may often refer to unknown referents
(such as a person or certain objects), whereas these seemingly unrelated referents may actually
be relevant to the common revealed. Inspired by such observation, this article presents a
fuzzy compositional modeler to represent, reason, and propagate inexact information to support
automated generation of crime scenarios. Further, the article offers a link-based approach to
identifying potential duplicated referents within the generated scenarios. The applicability of this
work is illustrated by means of an example for discovering unforseen crime scenarios.

INTRODUCTION

To resolve the puzzle of a given crime from a set of available
evidence, investigators and forensic analysts aim to disclose the scenario
that has actually taken place and to determine efficient strategies to
proceed with the investigation (Shen et al. 2006). Hence, the effectiveness
of this analytical process depends critically on investigators’ ability to
articulate plausible scenarios and to identify course of actions needed for
differentiating them.

Although the bottleneck of accomplishing such a task is the fact
that humans are relatively inefficient at hypothetical reasoning, a
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254 X. Fu et al.

decision-support system may assist investigators in generating plausible
scenarios and analyzing them objectively. To this extent, compositional
modeling (CM) (Keppens and Shen 2001) has been successfully used
to synthesize plausible crime scenarios from collected evidence (Keppens
et al. 2005; Shen et al. 2006). This intelligent CM-based approach is
brought forward to underpin the significant advantage of its ability to
automatically construct many variations of an underlying crime scenario
from a relatively small knowledge base. However, in such existing work
it is assumed that the basic knowledge elements, termed scenario
fragments (SF) as collected within the knowledge base, can all be
expressed by precise and crisp information. Particularly, a set of probability
distributions, possessed by each SF for representing the likelihood of its
associated possible outcomes, are specified in numerical forms. In spite of
this, especially in the case of crime detection and prevention, the degree
of precision of available evidence and intelligence data can vary greatly,
subject to different perception, judgement, and individuality of people.
As such, an assessment of likelihood typically reflects the expertise and
knowledge of experienced investigators is normally available in linguistic
terms instead (Halliwell et al. 2003; Halliwell and Shen 2009). The use of
seemingly precise numeric descriptors suffers from an inadequate degree
of accuracy.

Another crucial barrier for any investigation decision-support system is
identity disambiguation problem that is commonly encountered in intelligence
data analysis (Badia and Kantardzic 2005; Pantel 2006; Wang et al.
2005). In particular, a modest resolution used within the previous crime
investigation systems (Keppens et al. 2005; Shen et al. 2006) is to
assume that the identities of any involving instances (e.g., person, object,
place, and organization) are globally unambiguous. However, this simple
ignorance of possible identity aliases drastically reduces the degree of
this approach’s flexibility and actual utilization within the real world. Yet,
another significant problem occurs whenever the scenario composition
process has to refer to unknown identities. For instance, given the evidence
of a man having been shot by a 9-mm gun, the abductive reasoner
(Shen et al. 2006) can hypothesize the existence of a murderer owning
such a weapon but requiring the possible matching of this unknown gun
with weapon identities instantiated within the scenario space. Henceforth,
complementing such abductive reasoning with the mechanism of identity
resolution would enhance not only the quality and coverage of scenario
acquired by associating sparse SFs through shared identities of involving
participants but also the effectiveness of system management regarding
duplicated fragments.

Recognizing the aforementioned shortcomings, we extend the initial
model of fuzzy CM (Fu et al. 2007) in which the theory of fuzzy sets
is applied to the conventional CM approach to provide a mechanism

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
F
u
,
 
x
i
n
]
 
A
t
:
 
2
2
:
1
5
 
1
2
 
A
p
r
i
l
 
2
0
1
0



Evidence Directed Generation of Crime Scenarios 255

for representing, reasoning, and propagating vague and uncertain
information. In addition, a link-based approach to identity resolution,
which has proven effective for disclosing aliases in intelligence data
(Boongoen and Shen 2008; Boongoen et al.), is exploited to identify
duplicated identities within a collection of generated scenarios. This novel
approach is not only able to refine the quality of scenarios but also to
optimize the resource utilization.

The rest of this article is organized as follows. We next introduce
knowledge representation of vague and uncertain information within CM
by the use of fuzzy sets and then present an outline of the proposed
approach. Then, we show how the plausible scenarios can be synthesized
from available evidence and knowledge base under uncertainty. Next we
describe how such generated scenarios can be refined to handle the
identity problem by using link-based analysis. This is followed by an
illustrative example showing the capability of the proposed approach to
provide support in crime investigation. Finally, we conclude this article and
point out future research.

REPRESENTING EVIDENCE AND CRIME SCENARIOS
UNDER UNCERTAINTY

Knowledge Representation in CM

The conventional CM approach has been successfully applied to
generate descriptions of crime scenarios from evidence (Keppens et al.
2005). In CM the knowledge base consists of a number of generic SFs,
which represent generic relationships between domain objects and their
states for certain types of partial scenario. An SF has two parts that encode
domain knowledge: i) the relations between domain elements, which are
often represented in a form that is similar to the style of conventional
production rules but involving much more general contents, and ii) a set
of rule instances that represent how likely it is that the corresponding
relationships hold.

More formally, an SF is represented as follows:

If �Ps�

Assuming �Pa�

Then �pt�

Distribution pt�

· · ·
�s1, � � � , �

s
m , �

a
1, � � � , �

a
k → �t : q
· · · �
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256 X. Fu et al.

where

• Ps = �ps
1, � � � , p

s
m� is a set of antecedent predicates. The If statement

describes the required conditions for a partial scenario to become
applicable.

• Pa = �pa
1 , � � � , p

a
k � is a set of assumption predicates, referring to those

pieces of information which are unknown or cannot be inferred from
other scenario fragments, but they may be presumed to be known for
the sake of performing hypothetical reasoning.

• pt is the consequent predicate, which describes the consequent when
the conditions and presumed assumptions hold. It may represent a piece
of new knowledge or relations which are derived from the hypothetical
reasoning.

• In the Distribution statement, the left-hand side of the “implication” sign
in each rule instance is a combination of predicate-value pairs, involving
antecedent and assumption predicates and their values, and the right-
hand side indicates the likelihood of each alternative outcome if the
fragment is instantiated.

Given a collection of such SFs and some collected pieces of evidence,
CM applies an abductive reasoner to create plausible scenarios (see Shen
et al. 2006 for details). However, for many problem domains, especially
for crime detection and prevention, different kinds of inexact information
may be involved which conventional CM cannot always handle, including

• Vagueness: It occurs when the boundary of a piece of information
cannot be determined precisely (e.g., Bob is tall).

• Uncertainty: It captures the reliability or confidential weight of a given
piece of information, usually represented by numerical values (e.g., If X
is a bird, then it can fly, with certainty degree 0.95).

• Both vagueness and uncertainty: Often, these two different kinds of
inexactness may coexist (e.g., The amount of collected fiber is a lot, with
certainty degree 0.7).

• Both vagueness and uncertainty with the uncertainty also described
in fuzzy terms: Instead of using numerical values, the uncertainty is
represented as fuzzy numbers or linguistic terms (e.g., The amount of
collected fiber is a lot, with certainty degree very likely).

The following subsections focus on the creation of a structured
knowledge representation scheme, which is capable of storing and
managing both vague and uncertain information. It involves two
conceptually distinct aspects: i) fuzzification of SFs, including fuzzy
parameters and fuzzy constraints, and ii) definition of fuzzy complex
numbers, which facilitates the propagation of vagueness and uncertainty
within the process of model composition.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
F
u
,
 
x
i
n
]
 
A
t
:
 
2
2
:
1
5
 
1
2
 
A
p
r
i
l
 
2
0
1
0



Evidence Directed Generation of Crime Scenarios 257

Fuzzification of SFs

Fuzzy Parameters
Within the present work, vague and ill-defined concepts and quantities

are defined as fuzzy variables whose values are fuzzy sets. For example,
the police discovered the dead body of Smith in his bedroom. Bob, who
is the next-door neighbor, witnessed somebody going into Smith’s house;
however, it is difficult for Bob to state an accurate height for that person
(e.g., 180 cm). Intuitively, he might just describe the height of the person
as short, average, or tall. In this case, height can be modeled as a fuzzy
variable and can be described by using fuzzy sets short, average, or tall.

In implementation, fuzzy variables are indicated by means of the
keyword fuzzyvariable. Defining such a variable involves specifying the
following fields:

• Name: A constant that uniquely identifies the fuzzy variable.
• Universe of discourse: The domain of the fuzzy variable.
• Unit: The variable’s physical dimension. If a fuzzy variable has no unit,
a default value of none is set.

• Cardinality of partition: The number of fuzzy sets that jointly partition
the universe of discourse. It is represented by a positive integer.

• Quantity space: The membership functions of the fuzzy sets that jointly
cover the partitioned domain.

• Name of fuzzy sets: The symbolic label of each fuzzy set in the defined
quantity space.

• Unifiability: The declaration of a unifiable property of the variable,
specified by a predicate.

The following example defines a fuzzy variable named Chance. The
defined quantity space is shown in Figure 1.

FIGURE 1 The fuzzy quantity space of Chance.
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258 X. Fu et al.

Define fuzzyvariable�
Name : Chance
Universe of discourse : [0, 1]
Unit : none
Cardinality of partition : n = 7
Quantity space :

fs1 = �0, 0, 0�

fs2 =
[
0, 0,

1
n − 3

]

· · ·
fsi =

[
i − 3
n − 3

,
i − 2
n − 3

,
i − 1
n − 3

]

· · ·
fsn−1 =

[
n − 4
n − 3

, 1, 1
]

fsn = �1, 1, 1�

Name of fuzzy sets : �0,VL,L,M ,H ,VH , 1�
Unifiability : Chance(X )

�

Fuzzy Constraints
In CM, knowledge is normally expressed as constraints or relations

that must be obeyed by certain variables. Particularly, constraints used
in the existing work require numerical values to quantify the probability
of a consequence’s occurrence. However, such subjective assessments are
often the product of barely articulate intuitions. In fact, the seemingly
numerically precise expressions may cause loss of efficiency, accuracy, and
transparency (Cooman 2005; Halliwell et al. 2003; Halliwell and Shen
2009). Often, an expert may be unwilling or simply unable to suggest a
numerical probability.

The work developed here models the vagueness of the probability
distribution in terms of subjective certainty degree. Rather than using
numerical value as in the literature, a fuzzy variable called Chance, which
takes linguistic values from [0, 1], is introduced to capture subjective
certainty degrees.

The following sample SF illustrates the concepts and applicability of
fuzzy parameters and fuzzy constraints:

If �height(S),height(V)�
Assuming �attempted to kill(S ,V )�
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Evidence Directed Generation of Crime Scenarios 259

Then �difficult level(overpower(S ,V ))�

Distribution difficult level(overpower(S ,V ))�

r1: tall, short, true → easy: VH

r2: short, tall, true → easy: VL��

It describes a general relation between the heights of two people
involved in a fight and the difficulty level for one to overpower the other.
Here, the height is modeled as a fuzzy variable that takes values from a
predefined quantity space of Q = �very short , short , average , tall , very tall�,
and difficulty level is another fuzzy variable with possible values being easy,
average, and difficult. In particular, this fragment covers two rule instances
indicating that if suspect S is tall and victim V is short and S indeed
attempted to kill V , then S stands a very high chance to overpower V easily.
Conversely, if S is shorter than V and he indeed attempted to kill V , then
there is only a very low chance for S to overpower V easily.

Note that it is not required that every possible combination of
antecedent and assumption values has to be assigned a certainty degree
because the number of combinations increases exponentially with the
number of variables. Knowledge embedded in any reasoning system is
always incomplete, and it is unlikely to obtain all such details but the most
significant components. As with any practical knowledge-based approach,
the default certainty degree for those unassigned combinations is set to 0.

Fuzzy Complex Numbers

Because generic SFs may involve both vague and uncertain
information, when dynamically composing the potentially relevant ones
into plausible scenario descriptions, such inexact information needs to be
combined and propagated in the emerging scenarios. To achieve this, an
innovative notion of fuzzy complex numbers (FCN), which extends real
complex numbers, has recently been proposed (Fu and Shen 2009) with
the significant capability of representing two-dimensional uncertainties
simultaneously. For completeness, a brief account of this novel concept is
given below in the context of CM.

Definition 1. Inherit from the real complex numbers, an FCN, z̃, is
defined in the form of:

z̃ = ã + i b̃, (1)

where both ã and b̃ are fuzzy numbers with membership functions �ã(x)
and �b̃(x). It is obvious that ã is the real part of z̃, whereas b̃ represents the
imaginary part, i.e., Re(z̃) = ã and Im(z̃) = b̃.
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260 X. Fu et al.

In this work, to support CM both the real part and the imaginary
part of an FCN are assigned with their embedded semantic meaning, and
they will be propagated, respectively, in the model composition process.
Specifically, the real part represents the certainty degree of a certain
piece of information, whereas the imaginary part represents the fuzzy
matching degree of a given evidence or derived piece of information
using a particular rule instance of a certain SF. As such, FCNs offer an
effective and efficient common scheme to represent the four types of
inexact information as previously identified such that

• Vagueness: In CM, the imaginary part only exists when fuzzy matching is
performed between two pieces of information. In addition, given a piece
of evidence, if there is no specific certainty degree assigned to it, then it
is assumed to be certain by default. In this case the real part of the FCN
in representing this piece of evidence is equal to 1. For example, given a
fact, f1: Bob is tall, this single piece of vague information is represented
as z̃ = 1. However, when a piece of evidence, e1: victim is tall, is collected,
f1 matches with e1 with a fuzzy matching degree b̃, such that if f1 is
activated, the FCN attached to f1 is written as z̃ = 1 + i b̃.

• Uncertainty: If a piece of information (e.g., a rule) only involves
uncertainty, then the corresponding uncertainty measure can be
represented as z̃ = ã, which can either be a real number or a fuzzy
number.

• Both vagueness and uncertainty coexist: The third and fourth types of
inexactness can both be represented in the following generic form: z̃ =
ã + i b̃. The only difference is that ã is a real number in the third type
and is a fuzzy number in the fourth.

Note that the basic operations on FCNs form a straightforward
extension of those on real complex numbers, and they are omitted here.
Interested readers can refer to (Fu and Shen 2009) for further details.
However, it is worthy to point out that the modulus of FCNs is introduced
to constrain the scenario descriptions; it will be used as a global measure
to evaluate the overall confidence level of a piece of information. As such,
the modulus of an FCN z̃ is defined as

|z̃| =
√
ã2 + b̃2, (2)

where |z̃| is a newly derived fuzzy number with the following membership
function:

�|z̃|(y) =
∨

y=
√

x21+x22

(�ã(x1) ∧ �b̃(x2))� (3)
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FIGURE 2 Outline of the approach.

OUTLINE OF THE APPROACH

The outline of the proposed approach is shown in Figure 2. A new or
ongoing investigation results in an initial set of evidence. Then, the Scenario
Generator component generates a collection of plausible scenarios, called
scenario space, by exploiting a given knowledge base. The scenario space
describes how plausible states and events may be related to have caused
the given evidence. Having obtained scenarios, the Link-based Analysis
component is used to handle the identity problem. Consequently, a list of
duplicate candidates is fed back to the Scenario Generator to produce an
updated, more refined, scenario space.

GENERATION OF PLAUSIBLE SCENARIOS

Given a set of collected evidence and a predefined knowledge base,
plausible scenarios can be generated by a joint exploitation of two
conventional inference techniques, named backward chaining and forward
chaining. Note that because the precision degree of the underlying
information can vary substantially, the collected evidence and the
knowledge base in general cannot be matched precisely, and a partial
matching may suffice. A fuzzy matching method is developed to perform
such partial matching and hence SF instantiation (with respect to the
given evidence). In addition, when composing an instantiated SF with
an emerging plausible scenario, the attached certainty degree and fuzzy
matching degree (which are concisely represented in terms of FCNs) need
to be propagated from individual SFs to their related ones. Hence, an
algorithm for propagating FCNs within the model composition process is
also proposed herein.
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262 X. Fu et al.

Initialisation

Collected evidence and facts are used to form the initial elements
contained within the emerging scenarios space (which is empty before this
initialisation step). To allow instantiation of a fuzzy SF in accordance with
a given piece of evidence, the system requires matching specific data items
with broader and relatively subjective information. Such fuzzy matching is
accomplished by the following procedure:

1. Find the so-called candidate SFs that involve any of the variables used
to describe the collected evidence.

2. Identify the degree of match between evidence and each candidate
SF. For simplicity, the match degree is obtained by calculating the
maximum membership value over the overlapping area between the
relevant fuzzy sets.

3. Return the matched SFs with the largest FCN modulus for instantiation.

Propagation of FCNs

After the initial instantiation, each added node in the emerging space
has an FCN attached. Note that each rule instance in any generic SF
also has an FCN attached that is called z̃r , which indicates the certainty
degree of its subjective causal propositions. In the generation of plausible
scenarios, the attached FCNs are propagated to their related nodes via the
FCN of the activated rule instance (z̃r ).

For simplicity, the following rule instance in an SF:

IF ps
1 is vs

1 ⊕ · · · ⊕ ps
m is vs

m , ASSUMING pa
1 is va

1 ⊕ · · · ⊕ pa
k is va

k ,

THEN pt is vt(z̃r )

is rewritten as

IF p1 ⊕ · · · ⊕ pn , THEN c (z̃r ),

where p1, � � � , pn , n = m + k are the antecedent propositions, c is the
consequent proposition, and z̃r is the FCN attached to the rule. Note that
the assumption propositions are treated as part of the antecedent due to
their logical equivalence. Also, ⊕ in the antecedent may be interpreted as
either a conjunctive operator or a disjunctive operator.

Definition 2. If ⊕ is a conjunctive operator, the aggregated FCN of the
antecedent is

z̃antecedent = min(Re(z̃p1), � � � ,Re(z̃pn )) + imin(Im(z̃p1), � � � , Im(z̃pn ))� (4)
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Definition 3. If ⊕ is a disjunctive operator, the aggregated FCN of the
antecedent is

z̃antecedent = max(Re(z̃p1), � � � ,Re(z̃pn )) + imax(Im(z̃p1), � � � , Im(z̃pn ))� (5)

The propagation process is then a combination process of the FCNs
given to the variables (antecedents or consequent) with the FCN attached
to the activated rule instances (z̃r ). Because the rule instance in an SF only
has the certainty degree attached, i.e., z̃r = Re(z̃r ), the newly derived FCN
attached to the consequent is computed using the following method:

z̃new = z̃antecedent × z̃r

= Re(z̃antecedent) × z̃r + iIm(z̃antecedent) × z̃r , (6)

where Re(z̃antecedent), Im(z̃antecedent), and z̃r are represented by different fuzzy
numbers.

Backward Chaining
This involves the abduction of domain variables and their states, which

might have led to the available evidence. Plausible causes are created by
instantiating the conditions and assumptions of the SFs, whose consequent
match the given evidence with the largest FCN modulus. After that, the
newly created instances of all plausible causes are recursively used in
the same manner as with the original piece of evidence, instantiating all
relevant fragments and adding the resulting instantiated variables, termed
nodes to the emerging scenario space.

Due to the lack of inverse operators over fuzzy numbers, in backward
chaining, given z̃c and z̃r , no general method exists to derive the exact
value of z̃antecedent in a closed form. Hence, specific fuzzy quantity spaces
are built to approximately represent the possible values of the real and
imagery parts of z̃antecedent, assuming that they can only take values from
such predefined quantity spaces. For computational simplicity, in this work
it is further assumed that only fuzzy values from the same quantity space,
QFN = �VFN1 , � � � ,VFNj , � � � ,VFNn �, are possibly taken by z̃c and z̃r .

In backward chaining, z̃c and z̃r are given. Algorithm 1 is constructed
by ensuring the generality that each element in QFN could be the possible
value of z̃antecedent. Thus, all such values are checked using Eq. (6) as the
constraint. The value that best satisfies this constraint when given z̃c is
selected to represent z̃antecedent. Note that, the Re(z̃c) and Im(z̃c) are checked
against the constraint separately.

Forward Chaining
All plausible causes of the collected evidence that the knowledge base

entails may be introduced to the emerging scenario space during the
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Algorithm 1 Backward propagation (z̃c , z̃r )

1: Re(z̃antecedent) ← ∅
2: Im(z̃antecedent) ← ∅
3: SRe = 0
4: SIm = 0
5: for j = 1 : n do
6: if S(Re(z̃c ),VFNj × z̃r ) > SRe then
7: SRe = S(Re(z̃c ),VFNj × z̃r )
8: Re(z̃antecedent) = VFNj

9: end if
10: if S(Im(z̃c ),VFNj × z̃r ) > SIm then
11: SIm = S(Im(z̃c ),VFNj × z̃r )
12: Im(z̃antecedent) = VFNj

13: end if
14: end for
15: return z̃antecedent

backward chaining phase. Here, the forward chaining phase is responsible
for extending the scenario space by adding all plausible consequences
of the fragments whose conditions and assumptions match the instances
created in the last phase. This produces further pieces of information that
have not yet been identified otherwise but may be used to improve the
plausible scenario description.

This procedure applies logical deduction to all the SFs in the knowledge
base, whose conditions match the existing nodes in the emerging
scenario space. Therefore the corresponding FCN propagation algorithm
is straightforward, as described in Algorithm 2. In particular, z̃antecedent and
z̃r are known, the z̃new is computed by applying Eq. (6), where z̃new is the
calculated FCN of the consequent variable. Given the fired QFN in this
work, once z̃new is obtained it is used to match with the elements in QFN , the
element receives the highest fuzzy matching degree with z̃new is returned
to represent z̃c .

FCN Updating

In the emerging scenario space, if an existing node resulted from
instantiating another SF such that two instantiated SFs share a common
variable, then the existing FCN of this node needs to be updated. Suppose
that given the following two FCNs:

z̃A = VFNi + iVFNj ,
(7)

z̃ ′
A = VFNm + iVFNk �
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Algorithm 2 Forward propagation (z̃p1 , � � � , z̃pn , z̃r )

1: Calculate z̃antecedent
2: z̃new = z̃antecedent × z̃r
3: SRe = 0
4: SIm = 0
5: for j = 1 : n do
6: if S(VFNj ,Re(z̃new)) > SRe then
7: SRe = S(VFNj ,Re(z̃new))
8: Re(z̃c ) = VFNj

9: end if
10: if S(VFNj , Im(z̃new)) > SIm then
11: SIm = S(VFNj , Im(z̃new))
12: Im(z̃c ) = VFNj

13: end if
14: end for
15: return z̃c

As the modulus of an FCN is used to evaluate the information content,
if |z̃A| and |z̃ ′

A| are the same (while z̃A �= z̃ ′
A), then both z̃A and z̃ ′

A are kept
as possible FCNs. However, if |z̃A| �= |z̃ ′

A|, then the newly updated FCN of
variable X1 taking value A is obtained by

z̃ ′′
A = min(VFNi ,VFNm ) + imin(VFNj ,VFNk )� (8)

This is an intuitive appeal because, if z̃ ′′
A = min(VFNi ,VFNm ) +

imin(VFNj ,VFNk ) is supported by the existing inference, then z̃ ′′
A =

max(VFNi ,VFNm ) + imax(VFNj ,VFNk ) is also supported.

Removal of Spurious Nodes

In the previous phases of scenario space generation, spurious nodes
may have been added to the emerging scenario space. Such nodes are
root nodes in the space graph that are neither facts nor instantiated
assumptions nor the justifying nodes that support the instantiated
assumptions. That is, they are irrelevant to the actual case under
investigation and, hence, should be removed. The removal procedure
recursively examines the root nodes in the emerging scenario space and
deletes such nodes. It terminates when each root node in the emerging
scenario space corresponds to either a fact or an assumption, guaranteeing
all the spurious nodes are removed.

IDENTITY RESOLUTION

To achieve a decision support system that is truly effective to battle
real crimes within highly deceptive environment, a verification mechanism
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is required to handle the identity problem, (Badia and Kantardzic 2005;
Pantel 2006; Wang et al. 2005) thereby refining the quality of hypothesized
scenarios. This analytical process is crucial as falsified identity has become
the common denominator of all serious crime such as mafia trafficking,
fraud, and money laundering. In particular to the September 11 terrorist
attacks, tragic consequences could have been prevented to some extent if
U.S. authorities had been able to discover the use of deceptive identity,
e.g., multiple dates of birth and alias names. To such extent, many exiting
verification systems (Branting 2003; Wang et al. 2006) that rely on the
inexact search of textual attributes would fail drastically to recognize the
unconventional truth like that between Osama bin Laden and The Prince
(Hsiung et al. 2005).

Link Analysis Approach

The aforementioned dilemma may be overcome through link analysis
that seeks to discover information based on the relations hidden in data
about people, places, objects, and events. Link analysis techniques have
proven effective for identity problems (Boongoen and Shen 2008; Hsiung
et al. 2005; Pantel 2006) by exploiting link information observed from
legitimate activities such as making use of mobile phones and financial
systems. Essentially, to justify the similarity between entities (e.g., names)
within a link network, several well-known algorithms, such as SimRank,
(Jeh and Widom 2002) concentrate on the cardinality of joint neighbors to
which they are linked (more details in Liben-Nowell and Kleinberg 2007).

Analogously, the Connected-Triple method (Klink et al. 2006)
evaluates the similarity of objects in accordance with their overlapping
social context. This measurement is based on the social network G(V ,E)
in which objects of interest and their relations are represented by the set
of vertices V and that of edges E , respectively. The similarity of any two
objects can be estimated by counting the number of Connected-Triples of
which they are a part. Formally, a Connected-Triple, Triple = �VTriple,ETriple�,
is a subgraph of G containing three vertices VTriple = �v1, v2, v3� ⊂ V and
two edges ETriple = �ev1v2 , ev1v3� ⊂ E , with ev2v3 �∈ E . Figure 3 presents an
example of a social network in which object A and object B are justified
similar because there exists a Connected-Triple link connecting them
together, VTriple = �A,B,D� and ETriple = �eAD , eBD�, with eAB �∈ E .

Application to Scenario Refinement

Within a scenario generated by the method of the previous section,
associations among information entities (e.g., persons, objects, and
locations) can be perceived through n-nary (n > 1) predicates p (i.e.,
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FIGURE 3 A social network with Connected-Triple.

a general notation for any ps , pa , and pt in If, Assuming, and
Then statements, respectively), instantiated through user inputs or the
underlying abductive and deductive reasoning processes. To identify
entity pairs that are likely to constitute alias references, a link network
G(V ,E ,W ) (where V , E , and W represent a set of vertices, edges, and that
of edge weights) is initially constructed from a given scenario S as follows:

• Let O and pk(ok1 , � � � , o
k
m) be a set of entities included in the scenario S

and a m -nary predicate specified over entities ok1 � � � o
k
m ∈ O . In addition,

an FCN z̃pk systematically expresses the quality of the predicate pk ∈ S to
which it is attached. Each unique entity oi ∈ O , which can be included
in a single or multiple predicates, is represented as a vertex vi ∈ V .

• A link between objects oi , oj ∈ O , which is denoted by an edge eij ∈
E between the corresponding vertices vi , vj ∈ V , exists when they are
part of q predicates (q ≥ 1). In particular, each edge eij ∈ E possesses
UTij = �ut 1ij , � � � ,ut

q
ij �, a set of quality measures acquired from those q

predicates, where utkij = Re(z̃pk ),∀k = 1 � � � q . Note that utkij is semantically
represented by one of the fuzzy sets shown in Figure 1.

• Then, the weight wij ∈ W of an edge eij ∈ E , where wij ∈
�0,VL,L,M ,H ,VH , 1�, can be estimated as

wij = min
∀k∈UTij

ut kij � (9)

Having obtained the link network, the similarity s(oi , oj) of any two
entities oi , oj ∈ O can be estimated from the number of their shared
neighbors |Noi oj |, where Noi oj ⊂ O is the set of objects ox directly links to oi
and oj , i.e., eix , ejx ∈ E , eij �∈ E . However, unlike the conventional Connected-
Triple approach, the cardinality-based similarity measure s(oi , oj) is adapted
to weighted edges as

s(oi , oj) =
∑

∀nx∈Noi oj

SC(min(woinx ,woj nx )), (10)
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FIGURE 4 Definition of fuzzy sets for describing a similarity measure.

where SC(f ) ∈ [0, 1], f ∈ �0,VL,L,M ,H ,VH , 1� denotes the score of
each fuzzy set f , specifically exploited here to simplify the aggregation
of collective measures: SC(0) = 0, SC(VL) = 1

6 , SC(L) = 2
6 , SC(M ) =

3
6 , SC(H ) = 4

6 , SC(VH ) = 5
6 , SC(1) = 1. Other scoring schemes may be

used, but this one is the simplest in implementation.
Fuzzy sets presented in Figure 4 are used to generate a coherently

interpretable linguistic description of any similarity degree s(oi , oj): VL =
Very Low, L = Low, M = Moderate, H = High, and VH = Very High. For
instance, the similarity measure of 1�5 can be expressed as being L(0�5)
and M (0�5), where membership degrees to corresponding fuzzy sets are
given in brackets. Note that although the semantics of these descriptors
are defined by domain experts in the current research, they can also be
formulated from historical data using a machine learning technique. With
this methodology, an investigator can efficiently differentiate and select the
most likely case upon which the scenario is refined (see next section for
an example).

ILLUSTRATIVE EXAMPLE

It is obvious that many explosive ingredients and liquids can be
combined to create homemade liquid bombs. However, a lot of explosive
chemicals can be concocted from some very common items, such
as perfumes, drain cleaner, and batteries, and they are innocent in
themselves. Also, the initial collected evidence may seem to be irrelevant
with each other from the outset. This makes it very difficult for intelligence
analysts to detect a plausible threat. This section shows how the proposed
fuzzy compositional modeler and the link-based identity resolution can be
used to generate and refine the plausible scenario space, given both vague
and uncertain information in this application context.
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Scenario Generation

Consider the following scenario: Assume that a suspect named Dave was
trying to bring a bottle of coke on board on aircraft and a mobile phone is found on
him. A few hours later the security control center found a small bag of hair dye in a
suitcase under the name of Bob. Also, a light blue Nissan Micra was caught on the
airport CCTV and Dave was alone in the car. With further investigation the police
found out that this Nissan Micra belongs to Bob and the mobile phone is registered
under the name of Bob as well. These pieces of evidence and some key SFs
are listed in the Appendix. Note that because the evidence obtained from
different sources may receive different certainty degrees, for example, the
piece of evidence gathered by the CCTV camera record may receive a
higher certainty degree than that described by a witness. To reflect this, the
certainty degree (which may be initially assigned) of each piece of evidence
is also provided.

Initial creation of the emerging scenario space is done by matching a
given piece of evidence, say e1, against the knowledge base. It is obvious
that MF1 is first instantiated. This piece of evidence only involves boolean
proposition, such that the fuzzy matching degree of e1 and MF1 is either 1
or 0. By applying Algorithm 1 to MF1, the results of Table 1 are obtained.

As indicated previously, to avoid generating unnecessary explanations,
the modeler produces only the current best or the most plausible
explanations in the first instance. With regard to the use of the modulus
of a derived FCN for plausibility evaluation, only r1 in MF1 is instantiated
for further development. As a result the first node, “Seen with(Bob,Hair
dyes,Airport)”, is added to the emerging scenario space with the FCN: H +
i1. Given this and the instantiated MF1, backward chaining is performed
from the existing node. This leads to the instantiated antecedences and
assumption in MF1 being added to the scenario space. According to
Table 1, z̃antecedentr1 = 1 + i1, it follows from Eq. (4) that

Re(z̃antecedentr1) = min(Re(z̃Possess(Bob,Hair_dyes):True),Re(z̃Location(Airport):True),

Re(z̃Substance(Hair_dyes):True),Re(z̃Person(Bob):True)),

Im(z̃antecedentr1) = min(Im(z̃Possess(Bob,Hair_dyes):True), Im(z̃Location(Airport):True),

Im(z̃Substance(Hair_dyes):True), Im(z̃Person(Bob):True))�

TABLE 1 Results of Backward Chaining Due to e1

Rule index Re(z̃antecedent) Im(z̃antecedent)

r1 1 1
r2 N/A 0
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It is obvious that

Re(z̃antecedentr1) = 1 ⇐⇒




Re(z̃Possess(Bob,Hair_dyes):True) = 1

Re(z̃Location(Airport):True) = 1

Re(z̃Substance(Hair_dyes):True) = 1

Re(z̃Person(Bob):True) = 1

Im(z̃antecedentr1) = 1 ⇐⇒




Im(z̃Possess(Bob,Hair_dyes):True) = 1

Im(z̃Location(Airport):True) = 1

Im(z̃Substance(Hair_dyes):True) = 1

Im(z̃Person(Bob):True) = 1

Therefore the FCNs associated with the newly added scenario nodes can
be derived.

Similarly, the remaining pieces of evidence are used to match with
the knowledge base sequentially. Note that, for those existing nodes in
the emerging scenario space, their associated FCNs are updated by using
Eq. (8). As a result, after the backward-chaining and forward-chaining
phase, the generated scenario space is depicted in Figure 5.

Identity Resolution

According to the scenario given in Figure 5, the link network (shown
in Figure 6) is achieved by following the method set out in the previous
section. In particular, several entity pairs are identified with non-zero
similarity values, thus forming a candidate list of duplicates. For instance,

• s(Bob, Dave) = Low(0.5), Moderate(0.5)
• s(Mobile phone, Nissan) = Low(0.67), Moderate(0.33)
• s(Hair dyes, Nissan) = Very Low(0.33), Low(0.67)
• s(Coke, Mobile phone) = Very Low(0.5), Low(0.5)
• s(Coke, Nissan) = Very Low(0.5), Low(0.5)

With fuzzy linguistic similarity descriptors, an investigator can
conveniently perceive and differentiate among candidate pairs. The higher
the similarity value, the greater the possibility of the entity pair being
duplicates becomes. Intuitively, only the pair of (Bob, Dave) is applicable
because others include incompatible entity types (e.g., Coke and Nissan),
and they are justified with lower similarity degrees. Hence, Bob and Dave
are accepted to be different references to the same person. This new
finding is then used to refine the existing scenario space of Figure 5 by
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FIGURE 6 A link network with fuzzy linguistic weights.

activating MF4. The forward chaining procedure is then performed and
the results are listed in Table 2.

According to the modulus of the FCN obtained for each matched
proposition instance, the one associated with r1 in MF4 outperforms those
associated with the rest. The revised scenario space is depicted in Figure 7.
It is noteworthy that a new and interesting hypothesis of preparing a liquid
bomb emerges as the result of this identity fusion. In addition to the
capability to discover an unforseen scenario, the link-based approach is
able to help the CM modeler scaling up to a large problem, in which
instantiated instances can be efficiently managed.

CONCLUSION

This article presents a novel approach to generate and refine plausible
crime scenarios from available evidence. It has two significant advantages:
i) the ability to represent and reason with information at varying degrees
of precision and ii) the ability to enhance the quality of generated
scenarios through the resolution of duplicated references. Initially, a
knowledge representation formalism is introduced to represent both vague
and uncertain information. In particular, FCN propagation algorithms are
developed and integrated to the conventional abductive modeler (Shen
et al. 2006) to generate plausible scenarios. Having obtained scenarios,

TABLE 2 Results of Forward-Chaining
Propagation Within MF4

Rule index Re(z̃c ) Im(z̃c )

r1 H H
r2 VL VL
r3 VL VL
r4 H L
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a link-based method is used to identify potential duplicates (i.e., aliases),
which are consequently exploited to refine the underlying scenarios.

To extend its applicability, an ontological methodology may be
introduced such that the knowledge-based decision support system
becomes compatible with a variety of information entities and their
relations. Essentially, the similarity among entities, estimated from the
ontology, can improve the effectiveness of both scenario generation
(semantic matching) and identity resolution (filtering out candidates
with dissimilar-typed entities). Also, a more general constraint satisfaction
mechanism suitable for constraining variables modified by FCNs would
help to improve the generality of the proposed approach. In particular,
this may avoid the need to prefix just one common quantity space to which
the real and imaginary parts of any FCN may belong.

APPENDIX KEY SFs IN SAMPLE KNOWLEDGE BASE

Define fuzzyvariable{
Name = Amount
Universe of discourse: [0,1]
Unit = none
Cardinality of partition = 5
Quantity space:

fs1 = [
0, 0, 1

n−1

]
· · ·

fsi = [
i−2
n−1 ,

i−1
n−1 ,

i
n−1

]
· · ·

fsn = [
n−2
n−1 , 1, 1

]
Names of fuzzy sets = {none, few, several, many, a lot}
Unifiability = Amount(X)}

If {Person(P),Substance(X), Location(L)}
Assuming {Possess(P,X)}
Then {Seen with(P,X,L)}
Distribution Seen with(P,X,L){
r1: true,true,true,true → true:H,
r2: true,true,true,true → false:VL} (MF1)

If {Person(P),Substance(X)}
Assuming {Possess(P,X)}
Then {Seen with(P,X)}
Distribution Seen with(P,X){
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r1: true,true,true → true:H,
r2: true,true,true → false:VL} (MF2)

If {Person(P),Substance(X)}
Assuming {Possess(P,X)}
Then {Registered to(P,X)}
Distribution Registered to(P,X){
r1: true,true,true → true:VH,
r2: true,true,true → false:VL} (MF3)

If {Amount(X), Amount(Y), Possess(P,X), Possess(P,Y)}
Assuming {Isa liquid(X), Isa hydrogen peroxide(Y)}
Then {Prepare liquid bomb(P,B)}
Distribution Prepare liquid bomb(P,B){
r1: many, few, true, true, true, true → true:VH,
r2: many, few, true, true, true, true → false:VL,
r3: few, many, true, true, true, true → true:VL,
r4: few, many, true, true, true, true → false:VH} (MF4)

Collected Evidence
e1: Seen with(Bob, hair dyes, airport) = true with

certainty degree:H
e2: Registered to(Bob, Nissan) = true with certainty

degree:VH
e3: Seen with(Dave, mobile phone, airport) = true with

certainty degree:M
e4: Registered to(Bob, mobile phone) = true with certainty

degree:1
e5: Seen with(Dave, coke) = true with certainty degree:H
e6: Seen with(Dave, Nissan) = true with certainty degree:M
e7: Amount(coke) = a lot with certainty degree:H
e8: Amount(hair dyes) = few with certainty degree:H
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