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Abstract

Topological defects in a foam, either isolated (disclinations and dislocations) or in pairs,
affect the energy and stress, and play an important role in foam deformation. Surface Evolver
simulations were performed on large finite clusters of bubbles. These allow us to evaluate
the effect of the topology of the defects, and the distance between defects, on the energy and
pressure of foam clusters of different sizes. The energy of such defects follows trends similar
to known analytical results for a continuous medium.

1 Introduction

Soft materials, such as aqueous foams, block copolymers andcolloidal emulsions exhibit ordered
structures which present a wide variety of complex geometries and topologies. These ordered
structures are not perfect and may contain several types of defects.

Defects can be classified into two types: topological defects, which engender no change in
area, and geometrical defects, which do. Dislocations and disclinations are included in first class,
and it is these that we consider here. The study of defects is important because defects in the
crystal structure are responsible for many of the physical,chemical and mechanical properties of
a material. For example, the plastic deformation of metals occurs due to the motion of disloca-
tions [1]. For elastoplastic materials, an extensive analysis has been made to find exact analytical
solutions for all characteristic fields of screw and edge dislocations [2], wedge [3] and twist [4]
disclinations.

In two dimensions (2D), crystal structures are based upon the hexagonal lattice (or its dual, the
triangular lattice). This perfectly ordered structure hasbeen studied extensively, particularly in the
context of 2D foams (i.e. monolayers of bubbles), but the situation in which the lattice contains
a small number of topological defects has been rather neglected. Exceptions include experiments
[5–7] and simulations [8], with an emphasis on determining the coarsening behaviour of the foam
over time. In contrast, rather more authors consider singlegeometrical defects [9–12].
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A 2D foam can be viewed as a cellular pattern for which the surface energy is the total perimeter
multiplied by the value of surface tension (assumed here to be constant). The ordered state is
hexagonal [13] and a disclination is thus a non-hexagonal bubble, while the elementary dislocation
(i.e. that with the smallest Burgers vector) is a pair of 5- and 7-sided bubbles [14, 15]. We next
survey results for the strain energy of disclinations and dislocations before describing simulations
of 2D foams containing them and comparing the two.

2 Strain energy of disclinations and dislocations

2.1 Disclinations

A useful way to think about disclinations in a solid is provided by the Volterra construction. Con-
sider a torus of material lying in thexy-plane: disclinations are produced by inserting (P > 0) or
removing (P < 0) a wedge of anglePπ/3 in the torus [16, 17], where we denote byP the strength
of the disclination. To accommodate the wedge, the torus hasto be cut from the outer edge to the
hollow core. Disclinations are classified according to the relative motion of the two cut surfaces:
rotation around the axis of the torus will produce a wedge disclination [18], whereas rotations
around axes perpendicular to the axis of the torus will produce twist disclinations. In what follows
only 2D wedge disclinations are considered.

Disclinations are rarely observed in 3D structures such as metals because they are energeti-
cally very costly [18], but are seen occasionally in foams [6, 7] and they often appear in block
copolymers [19] and liquid crystals [16, 18, 20–22], particularly in nematic liquid crystals. The
latter typically consist of elongated molecules that tend to be oriented in the same direction, but
are positionally disordered. In a nematic liquid, the energy of a wedge disclination is

w = πKP2 ln
(ρ

a

)

, (1)

whereρ is the distance between the dislocation line and the container,a is the molecular dimension
andK is the average elastic constant [16].

In addition, disclinations may occur in pairs with oppositesigns. They tend to be coupled at
short distances since this reduces long-range distortion [20]. In a nematic liquid the energy per
unit length of line,w, for two wedge disclinations of opposite strengths+P and−P a distanced
apart is

w = 2πKP2 ln

(

d
a

)

. (2)

Compared to equation (1) a factor of two is introduced andρ is replaced by the distanced between
the two defects [16, 20].

The strain field due to a disclination can be evaluated withinan elastic continuum model that
assumes a strain field with radial symmetry [23]. When applied to a hexagonal 2D foam, the strain
energy densityw, i.e. the energy per unit area per unit length, of a disclination cluster of strength
P was found to be

w =
G
36

P2, (3)

whereG is the shear modulus [23]. For a given distancer from the core to the external part of the
defect, the strain energy is thus proportional toP2, and independent ofr. In a 2D incompressible
medium, the elastic modulusE satisfiesE = 4G, and for a 2D hexagonal lattice

G =
1

2
√

3

γ
a0

, (4)
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wherea0 is the edge length of a hexagonal bubble with areaA (i.e. A = 1
23
√

3a2
0) andγ is the film

tension [23].

2.2 Dislocations

Dislocations in a continuous medium can likewise be understood in terms of the Volterrra con-
struction. The torus is cut again from the outer edge to the hollow core; any motion of the two cut
surfaces that has no rotational component yields a dislocation. The motion can be in one of three
directions: if it occurs along one of the two axes that are perpendicular to the axis of the torus,
edge dislocations are obtained. If the motion is parallel tothe axis of the torus, it defines a screw
dislocation [18]. Only edge dislocations will be considered in this work.

Morral and Ashby [24] analysed dislocations in detail, including the pair of 5- and 7-sided
cells in a cellular structure. Dislocations in foams have been observed since the pioneering work
of Bragg and Nye [25], who noted them in bubble rafts. 5/7 dislocations were also observed in
other types of liquid foams [26] and are responsible for the propagation of plastic deformation in
foams [26, 27].

The energy of a dislocation can be described by the well-known equations of the elastic strain
field of an edge dislocation [23, 28–30]. The strain energy densityw of a dislocation with Burgers
vectorB in an incompressible foam cluster is

w =
G
4π

B2 1
r2 . (5)

Note thatw decreases with the distancer from the core asr−2 [23]1.
The interaction energy of two edge dislocations with opposite signs a distanced apart in the

same glide plane can be adapted from [28, 29]:

w =
G
π

(

B√
A

)2

ln

(

d√
A

)

. (6)

When two dislocations of opposite signs are in the same glideplane, they attract each other to
reduce their total elastic energy. That is, the dislocations act as dipoles and the strain energy
changes with ln(d) and tends to zero asd approaches the bubble size from above. Any closer, and
they will combine and annihilate each other.

In the present work we study the effect of the presence of isolated defects, both dislocations
and disclinations, on the energy of a 2D cluster, and the interaction of pairs of defects.

3 Simulation method

We simulate large polygonal foam clusters [31], consistingof N bubbles of unit area, almost all of
which are hexagonal. The clusters consist of a central bubble withn sides surrounded bys shells of
hexagonal bubbles, and therefore haven-fold symmetry. In addition to the central defect, there are
n four-sided bubbles at the outer “corners” of the cluster. All internal bubbles have six neighbours,
but due to the strain in the foam induced by the defects the bubbles neighbouring the defects are
no longer regular hexagons.

The clusters are constructed from a Voronoi partition of an array of points. Defects are intro-
duced by removing points from an ordered array. The resulting partition is then imported into the
Surface Evolver [32] and the surface energyE (equivalent to total perimeter) is minimized.

1We believe the factor ofπ2 in the denominator of equation (21) in [23] to be in error.
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Figure 1: Examples of clusters with isolated disclinationsfor n = 5 (N=4101,s = 40 shells) and
n= 7 (N=5741,s = 40 shells).

Figure 2: Examples of clusters with a single 5/7 dislocation(N=1925,s = 25 shells) and a pair of
5/7 dislocations (N=1261,s = 20 shells) in a six-fold symmetric cluster.

An isolated disclination in a cluster was formed by creatinga central bubble withn sides
(n 6= 6), surrounded bys shells of hexagonal bubbles. We define the strength of the disclination to
beP = n−6. Examples are shown forn = 5 andn = 7 disclinations in figure 1. Disclinations with
n= 8 and 9 were also considered.

Clusters containing pairs of disclinations were formed by joining two of these clusters, con-
taining central bubbles withn1 andn2 sides, and eliminating a certain number of bubbles between
the two disclinations to vary the separationd between their centres. This introduces two seven-
sided bubbles at the periphery of a cluster, one at each end ofthe join, which we presume does not
change the interaction between the two centralized defects. We considered pairs of disclinations of
the same strength (n1=n2=5 or 7) or opposite (n1 = 5 andn2 = 7). Examples are shown in figure 3.

A 5/7 dislocation is constructed from a hexagonal cluster (n = 6) by removing a wedge of
bubbles originating at the centre (figure 2). To simulate pairs of dislocations we again start from
a hexagonal cluster and perform a single topological changeon an edge near the centre [15]. This
allows us to study the special case in which the two dislocations have opposite sign and are in
the same glide plane (figure 2). To change the distance between the defects, we perform further
topological changes. The Burgers vector of a dislocation isthe vector between adjacent hexagons,
parallel to the 5/7 edge, which defines the direction of gliding. The two dislocations of figure 2
have opposite Burgers vectors, i.e. have opposite signs, but share the same glide plane.
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Figure 3: Examples of clusters with pairs of separated disclinations forn1 = n2 = 5 (N=3252,
s = 25 shells,d ≈ 42) andn1 =5, n2 = 7 (N=2740,s ≈ 25 shells,d ≈ 30).

4 Results

4.1 Disclinations

The energy (or perimeter) per unit area (i.e. per bubble),Ê = E/N, decreases as the number of
shells (bubbles) increases for givenn, as shown in figure 4(a). For givens, Ê is least forn = 6. In
fact, the data is described very well by the following two-parameter fits:

Ê5(N) = 1.86898+1.90172N−1/2,

Ê6(N) = 1.86171+1.90625N−1/2, (7)

Ê7(N) = 1.86701+1.92538N−1/2,

which are also shown in figure 4(a). Note the value 1.86 that recurs – it is close to half the perimeter
of a regular hexagon of unit area in an infinite honeycomb, since each side is shared between two
bubbles. This means that the second term of each expression for the energy can be regarded as an
excess energy that reflects the effect of the topology of the defect on the external boundary of the
cluster, as will be discussed.

The energy of a bubble cluster can be expressed as a sum of the bubble areasAi and pressures
pi [33]: E = 2∑Ai pi, relative to an external pressure taken as zero. In the monodisperse case con-
sidered here, we therefore find that the average pressure is〈p〉 = 1

2Ê, so that the average pressure
in a cluster containing a single disclination decreases in the manner shown in figure 4(a).

The individual bubble pressures vary significantly about the average, however. The pressure of
the central bubble is strongly correlated withn, and varies only weakly withN (figure 5(a)). For
n ≤ 5,P ≤−1 the bubble pressure is highest at the centre of the cluster,while for n ≥ 7, P ≥+1 it
is higher at the periphery, as can be seen in figure 5(b-c).

The energy per unit area in a cluster containing two disclinations is shown in figure 4(b). It
decreases in much the same way as for clusters containing a single disclination, showing a similar
dependence on the cluster size,N.
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Figure 4: Energy per unit area,Ê, for all clusters. (a) Clusters with isolated disclinations forn = 5
to 9; the lines are fits to the formN−1/2 for n = 5,6,7, and the horizontal line is half the perimeter
of a regular hexagon of unit area. Also shown are clusters with 5/7 dislocations. (b) Clusters with
pairs of defects separated by different distancesd. The continuous lines are the fits shown in (a).
Points joined by lines are for the same number of shellss. The energy of a pair of dislocations
varies relatively little withd and is shown as a single point.

6



(a)
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

 0  1000  2000  3000  4000  5000  6000

C
en

tr
al

 b
ub

bl
e 

pr
es

su
re

Number of bubbles N

n=5
n=6
n=7
n=8
n=9

(b)
 0.8

 0.9

 1.0

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0  5  10  15  20  25  30  35  40

 0  5  10  15  20  25  30  35

P
re

ss
ur

e

Shell number

Radial position

By shell
By position

(c)
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

 1.1

 1.2

 0  5  10  15  20  25  30  35  40

 0  5  10  15  20  25  30  35  40  45

P
re

ss
ur

e

Shell number

Radial position

By shell
By position

(d)
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

 0  5  10  15  20  25

 0  5  10  15  20  25
P

re
ss

ur
e

Shell number

Radial position

By shell (n=6)
By position (n=6)

By shell (5/7)
By position (5/7)

Figure 5: (a) Pressure in the central bubble of a cluster containing a single disclination. The
pressure depends strongly on the value ofn, but weakly on the size of the cluster. (b-d) Bubble
pressure as a function of radial distance from the centre of the cluster, and the average pressure
in each shell (error bars show standard deviation) for clusters with (b)n = 5 disclination,s = 40,
N = 4101, (c)n = 7 disclination,s = 40,N = 5741, (d)n = 6 disclination,s = 25,N = 1951 and
5/7 dislocation,s = 25,N = 1926. Notice the change of slope forn = 5 versusn = 7 and that the
dislocation introduces only a local perturbation of the pressures compared to the hexagonal case.
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4.2 Dislocations

The energy per unit area in an approximately six-fold cluster with a 5/7 defect at the centre is
shown in figure 4(a). The energies of this type of defect are close to the value for a defect-free
(hexagonal) cluster, suggesting that the 5/7 dislocation has a lesser cost than a disclination as would
be the case in a solid crystal.

This is confirmed by the energy of a pair of dislocations a distanced apart (figure 4(b)): the
dependence ond is not significant compared to the dependence onN, and the energy/unit area is
close to the value for a defect-free cluster.

The pressure distribution in a dislocation cluster is shownin figure 5(d): the average pressure
in each shell is much the same as for a defect-free cluster (n = 6), but the scatter in pressures
increases to a maximum close to the centre of the cluster. Thetwo become coincident about 15
shells from the centre of the cluster, giving a measure of the“screening length” [34].

5 Discussion

5.1 Disclinations

The variation ofÊ with N may be interpreted as follows. Exact calculations for clusters with
disclinations and different areas predict that the energy of a cluster is [35]

E =
3.72

2 ∑
i

A1/2
i +2.04

(

∑
i

Ai

)1/2

, (8)

in terms of the bubble areasAi. The second term of the equation is related to the shape of the
cluster boundary, and 2.04 corresponds to a rounded cluster. For clusters with regular hexagonal
boundary the factor 2.04 decreases to 1.94 [35]. For clusters with unit area this leads to

Ê =
E
N

= 1.86+1.94N−1/2 (9)

This is in accordance with our findings (§4.1, equation (8) and figure 4), although it does not
distinguish between clusters with differentn, i.e. it does not take topology into account.

For isolated disclinations of strengthP in a 2D foam the energy density should be determined
by equation (3). This is the excess energy density relative to the energy of a perfect hexagonal 2D
foam (w = 0 if P = 0). In order to compare the energy of isolated defects in foams, we propose to
calculatew as

w = Ê − Ê6(N), (10)

whereÊ is the total perimeter per unit area obtained in the simulations, see figure 6(a). Equation
(3) implies that the energy density for ann = 5 disclination (P = 1) is the same as for ann = 7
disclination (P = +1), for the same radius, which is indeed seen to be approximately the case, but
the magnitude ofw is only about half of that predicted.

For paired disclinations a distanced apart, we define the strain (excess) energy in a similar
way by subtracting the energy of a joined cluster without defects. The number of rows of bubbles
that are removed when the clusters are joined varies ass−d, wheres is the number of shells. We
therefore propose the following expression:

w = Ê − Ê6(N
′) with N′ = N + k1s(k2s−d) (11)
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Figure 6: (a) Excess (strain) energyw = Ê − Ê6(N), for all clusters with isolated disclinations for
n = 5 to 7 and a 5/7 dislocation. The horizontal line is the value given by equation (3) for bubbles
of unit area. (b) Excess (strain) energyw = Ê − Ê6(N′) for clusters with pairs of disclinations.
Points joined by lines are for the same number of shellss. Also shown is a logarithmic fit to the
data forn1 = 5,n2 = 7,s = 19. All data converge to the values for a single disclination, shown in
(a).
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wherek1 andk2 are two fitting parameters extracted from the casen1 = n2 = 6; we findk1 = 1.1
andk2 = 0.5. This should take into account the shape of two joined clusters and the presence of
two extra defects at the end of the line where they join.

Figure 6(b) shows thatn1 = n2 = 5 andn1 = n2 = 7 have similar strain energies, which decrease,
as expected, as the separation of the like defects becomes greater.

The energy density of two disclinations of opposite strengths in a nematic liquid crystal is
predicted to depend on their separationd through equation (2). We hypothesize that the energy
density of two disclinations in a 2D foam has a similar functional form: assuming that the defect
core is the size of the central bubbleA, we takea =

√
A = 1 and write

w = MP2 ln

(

d√
A

)

, (12)

whereM is an elastic constant. The casen1 = 5,n2 = 7, shown in figure 6(b), certainly increases
with d, and a logarithmic fit withM = 2.5×10−3 seems reasonable.

5.2 Dislocations

The Burgers vector of the dislocation of figure 2 can be related to a0, the edge length of a bub-
ble with areaA, to giveB =

√
3a0, which is the smallest possible component of the vector in a

hexagonal cell, equivalent to the centre-to-centre distance between bubbles. Thus for a hexagonal
foam containing bubbles of unit area we haveB = 1.074. Equation (5) gives the energy density of
a dislocation cluster of sizer in an infinite honeycomb. Although it was derived for a cylindrical
body, we taker as the radius of a circle with perimeter equal to the perimeter L of the periphery of
the cluster, so thatr ∼

√
N.

Figure 7 shows that the energy density decreases with the radial size of the cluster as 1/rα with
α = 1.88±0.24; this is not far fromα = 2 as predicted by equation (5), although the prefactor
appears to be out by a factor of 4.

For paired dislocations a distanced apart (figure 2, right), we calculate the strain energy by
subtracting the energy of the same (hexagonal) cluster without defects, shown in figure 7(b). The
strain energy increases almost logarithmically withd, according to (6), shown in figure 7(b). In
this case it is possible to compare the data with the same defects embedded in an infinite (periodic)
hexagonal foam, eliminating the effect of the cluster boundaries. Thea posteriori confirmation
that the boundaries do not have a large effect on the interaction between defects is apparent from
the proximity of the lines in figure 7(b). The strain energy inthe hexagonal foam is fit better by a
function of the form ln(kd +1)

6 Conclusion

This work describes simulations of 2D finite aqueous foam clusters containing topological defects.
The presence of one defect, in particular a disclination, clearly affects the energy and the pressure
of the cluster. The energy of a disclination cluster deviates from the energy of a defect-free cluster
if the number of sides of the central cell is different from six, and decreases as the number of shells
increases. Both the energy and the pressure of a cluster withn = 6 match very well with those
found for a 5/7 dislocation cluster. In fact, the average pressure in each shell is the same in the two
cases.

Many processes, such as plastic deformation, deal with the interactions between defects. Our
simulations of pairs of defects reveal how the presence of one defect is “felt” by the other defect as
a function of their separation. Analytic approaches have been developed, in the context of solids or
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Figure 7: (a) Excess (strain) energy per unit area,Ê − Ê6(N), for a 5/7 dislocation. The data fit to
r−α with α = 1.88±0.24, which is consistent with the functional dependence given by equation
(5). (b) Excess energy per unit area for two 5/7 dislocationsa distanced apart. The result for a
finite 6-fold cluster ofN = 1261 bubbles is compared with the prediction of equation (6)and the
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of liquid crystals, for the same cases as studied here. For most of them defects in foams follow the
predicted trends. For example, the energy of two disclinations with opposite strengths a distanced
apart appears to be proportional to lnd.

Nonetheless, a perfect match between analytical results and simulations is not to be expected,
as the assumptions under which the former were derived are not always satisfied in the systems
considered here. Clusters withn = 5 andn = 7 are examples of this: because these disclinations
have the same strength (in absolute value), one would expectthat they would have the same energy,
yet the two clusters have different boundaries, and it is clear that the energy of a cluster is strongly
dependent on boundary shape. Further work still needs to be undertaken to fully separate the
contributions of defect shape and cluster shape to the energy of a foam.

Acknowledgements

We acknowledge support from the British Council/FCT Transnational Cooperation Scheme. SJC
thanks G. Mishuris, A. Mughal and A. Piccolroaz for useful discussions, and EPSRC for funding
(EP/D071127/1, EP/D048397/1).

References

[1] A. Cottrell, Mechanical Properties of Matter (Wiley, New York, 1964).

[2] M. Lazar, Comp. Mat. Sci.28, 419 (2003).

[3] M. Lazar, Phys. Lett. A311, 416 (2003).

[4] M. Lazar, J. Phys.: Condens. Matter15, 6781 (2003).

[5] A. Abd-el-Kader and J.C. Earnshaw, Phys. Rev. E58, 760 (1998).

[6] Y. Ishida and S. Iyama, Acta Metallurgica24, 417 (1976).

[7] M. J. Bowick, L. Giomi, H. Shin and C.K. Thomas, Phys. Rev.E 77, 021602. (2008).

[8] H. J. Ruskin and Y. Feng, J. Phys.: Condens. Matter7, L553 (1995).

[9] M. F. Vaz and M. A. Fortes, J. Phys.: Condens. Matter9, 8921 (1997).

[10] W. Y. Tam, Phys. Rev. E58, 8032 (1999).

[11] Y. Jiang, J. C. M. Mombach and J. A. Glazier, Phys. Rev. E52 R3333 (1995).

[12] B. S. Gardiner, B. Z. Dlugogorski and G. J. Jameson J. Phys.: Condens. Matter11, 5437
(1999).

[13] T. Hales, Discrete Comput. Geom.25, 1 (2001).

[14] N. Rivier, M. F. Miri and C. Oguey, Coll. Surf. A: Phys. Eng. Aspects263, 39 (2005).

[15] D. Weaire and N. Rivier, Contemp. Phys.25, 59 (1984), reprinted in Contemp. Phys.50, 199
(2009).

[16] P. G. de Gennes and J. Prost,The Physics of Liquid Crystals, 2nd Edition (Oxford University
Press, Oxford, 1995).

12



[17] P. M. Chaikin and T. C. Lubensky,Principles of Condensed Matter Physics (Cambridge
University Press, Cambridge, 1995).

[18] W. F. Harris, Scientific American237, 130 (1977).

[19] R. A. Segalman, A. Hexemer, R. C. Hayward and E. J. Kramer, Macromol.36, 3272 (2003).

[20] F. R. N. Nabarro (ed), “Other effects of Dislocations: Disclinations” inDislocations in Solids,
vol. 5, (North Holland, Amsterdam, 1980).

[21] M. Ravnik and S.̌Zumer, Soft Matter5, 269 (2009).

[22] W. Song, H. Tu, G. Goldbeck-Wood and A. H. Windle, J. Phys. Chem. B,109, 19234 (2005).

[23] M. A. Fortes and M. F. Vaz, J. Phys.: Condens. Matter10, 7519 (1998).

[24] J. E. Morral and M. F. Ashby, Acta Metall.22, 567 (1974).

[25] W. L. Bragg and J. F. Nye, Proc. Roy. Soc. Lond. A190, 474 (1947).

[26] M. E. Rosa and M. A. Fortes, Phil. Mag. A77, 1426 (1998).

[27] M. A. Fortes, M. E. Rosa and L. Afonso, Materials ScienceForum455-456, 644 (2004).

[28] F. R. N. Nabarro,Theory of Crystal Dislocations (Clarendon Press, Oxford, 1967).

[29] D. Hull, Introduction to dislocations (Pergamon Press, Oxford, 1965).

[30] E. Clouet, Phil. Mag.89, 1565 (2009).

[31] S. J. Cox and F. Graner, Phil. Mag.83,2573 (2003).

[32] K. Brakke, Exp. Math.1, 141 (1992) (see also http://www.susqu.edu/brakke/evolver/).

[33] S. Ross. Ind. Engng. Chem.61, 48 (1969).

[34] S. J. Cox, F. Graner and M. F. Vaz, Soft Matter4, 1871 (2008).

[35] M. F. Vaz, M. A. Fortes and F. Graner, Phil. Mag. Lett.82, 575 (2002).

13


