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Abstract
Topological defects in a foam, either isolated (disclioasi and dislocations) or in pairs,
affect the energy and stress, and play an important roleaimfdeformation. Surface Evolver
simulations were performed on large finite clusters of bebblThese allow us to evaluate
the effect of the topology of the defects, and the distan¢eden defects, on the energy and
pressure of foam clusters of different sizes. The energydi slefects follows trends similar
to known analytical results for a continuous medium.

1 Introduction

Soft materials, such as aqueous foams, block copolymersd@lwidal emulsions exhibit ordered
structures which present a wide variety of complex geometand topologies. These ordered
structures are not perfect and may contain several typesfetts.

Defects can be classified into two types: topological dsfeahich engender no change in
area, and geometrical defects, which do. Dislocations @&sdiiations are included in first class,
and it is these that we consider here. The study of defectapsitant because defects in the
crystal structure are responsible for many of the physa@mical and mechanical properties of
a material. For example, the plastic deformation of metatsics due to the motion of disloca-
tions [1]. For elastoplastic materials, an extensive aisljas been made to find exact analytical
solutions for all characteristic fields of screw and edgéodetions [2], wedge [3] and twist [4]
disclinations.

In two dimensions (2D), crystal structures are based upehdéxagonal lattice (or its dual, the
triangular lattice). This perfectly ordered structure hasn studied extensively, particularly in the
context of 2D foams (i.e. monolayers of bubbles), but theasion in which the lattice contains
a small number of topological defects has been rather negleE&xceptions include experiments
[5—7] and simulations [8], with an emphasis on determinhmydoarsening behaviour of the foam
over time. In contrast, rather more authors consider siggtenetrical defects [9-12].
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A 2D foam can be viewed as a cellular pattern for which theem@renergy is the total perimeter
multiplied by the value of surface tension (assumed hereetedmstant). The ordered state is
hexagonal [13] and a disclination is thus a non-hexagoriabley while the elementary dislocation
(i.e. that with the smallest Burgers vector) is a pair of 5d drsided bubbles [14, 15]. We next
survey results for the strain energy of disclinations arstbdations before describing simulations
of 2D foams containing them and comparing the two.

2 Strain energy of disclinationsand dislocations

2.1 Disclinations

A useful way to think about disclinations in a solid is prosttby the Volterra construction. Con-
sider a torus of material lying in they-plane: disclinations are produced by insertiRg 0) or
removing P < 0) a wedge of anglert/3 in the torus [16, 17], where we denote Byhe strength
of the disclination. To accommodate the wedge, the torusdbs cut from the outer edge to the
hollow core. Disclinations are classified according to #lative motion of the two cut surfaces:
rotation around the axis of the torus will produce a wedgeligiation [18], whereas rotations
around axes perpendicular to the axis of the torus will pecedwist disclinations. In what follows
only 2D wedge disclinations are considered.

Disclinations are rarely observed in 3D structures such esls)because they are energeti-
cally very costly [18], but are seen occasionally in foams7pand they often appear in block
copolymers [19] and liquid crystals [16, 18, 20-22], pardéely in nematic liquid crystals. The
latter typically consist of elongated molecules that temth¢ oriented in the same direction, but
are positionally disordered. In a nematic liquid, the egyafya wedge disclination is

w=TKP?In (). (1)

wherep is the distance between the dislocation line and the coertaiis the molecular dimension
andK is the average elastic constant [16].

In addition, disclinations may occur in pairs with opposigns. They tend to be coupled at
short distances since this reduces long-range distorfioh [In a nematic liquid the energy per
unit length of line,w, for two wedge disclinations of opposite strengthB and —P a distanced
apartis

\sznKP%n(g). (2)

Compared to equation (1) a factor of two is introduced pislreplaced by the distancdebetween
the two defects [16, 20].

The strain field due to a disclination can be evaluated widimirelastic continuum model that
assumes a strain field with radial symmetry [23]. When apliea hexagonal 2D foam, the strain
energy densityy, i.e. the energy per unit area per unit length, of a disdlmatluster of strength

P was found to be
we Sp2 3)
36
whereG is the shear modulus [23]. For a given distand¢em the core to the external part of the
defect, the strain energy is thus proportionalPfo and independent af In a 2D incompressible

medium, the elastic modulls satisfiesE = 4G, and for a 2D hexagonal lattice

_ty
=5 A

2

(4)



whereqg is the edge length of a hexagonal bubble with akdae. A = l3\/§a(2)) andy is the film
tension [23].

2.2 Didlocations

Dislocations in a continuous medium can likewise be undersin terms of the Volterrra con-
struction. The torus is cut again from the outer edge to thiewaore; any motion of the two cut
surfaces that has no rotational component yields a distotathe motion can be in one of three
directions: if it occurs along one of the two axes that arg@eedicular to the axis of the torus,
edge dislocations are obtained. If the motion is parall¢h&axis of the torus, it defines a screw
dislocation [18]. Only edge dislocations will be considene this work.

Morral and Ashby [24] analysed dislocations in detail, utthg the pair of 5- and 7-sided
cells in a cellular structure. Dislocations in foams haverbebserved since the pioneering work
of Bragg and Nye [25], who noted them in bubble rafts. 5/7atiations were also observed in
other types of liquid foams [26] and are responsible for tregppgation of plastic deformation in
foams [26, 27].

The energy of a dislocation can be described by the well-kneguations of the elastic strain
field of an edge dislocation [23, 28—30]. The strain energydgw of a dislocation with Burgers
vectorB in an incompressible foam cluster is

G »1
=—B"=. 5
4 12 ®)
Note thatw decreases with the distancéom the core as—2 [23] .
The interaction energy of two edge dislocations with opjgosigns a distance apart in the
same glide plane can be adapted from [28, 29]:

SHENC)

When two dislocations of opposite signs are in the same glidee, they attract each other to
reduce their total elastic energy. That is, the dislocatiaot as dipoles and the strain energy
changes with Ifd) and tends to zero abapproaches the bubble size from above. Any closer, and
they will combine and annihilate each other.

In the present work we study the effect of the presence oétedldefects, both dislocations
and disclinations, on the energy of a 2D cluster, and theant®n of pairs of defects.

3 Simulation method

We simulate large polygonal foam clusters [31], consistihly bubbles of unit area, almost all of
which are hexagonal. The clusters consist of a central leulith n sides surrounded sshells of
hexagonal bubbles, and therefore haveld symmetry. In addition to the central defect, there are
n four-sided bubbles at the outer “corners” of the clustetimternal bubbles have six neighbours,
but due to the strain in the foam induced by the defects thélbameighbouring the defects are
no longer regular hexagons.

The clusters are constructed from a Voronoi partition of mayaof points. Defects are intro-
duced by removing points from an ordered array. The regufiartition is then imported into the
Surface Evolver [32] and the surface eneEjfequivalent to total perimeter) is minimized.

LWe believe the factor af® in the denominator of equation (21) in [23] to be in error.
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Figure 1: Examples of clusters with isolated disclinatifmrsn =

5 (N=4101,s= 40 shells) and
n=7 (N=5741,s= 40 shells).

Figure 2: Examples of clusters with a single 5/7 disloca{ldn1925,s = 25 shells) and a pair of
5/7 dislocations|=1261,s = 20 shells) in a six-fold symmetric cluster.

An isolated disclination in a cluster was formed by creatingentral bubble witm sides
(n+# 6), surrounded bg shells of hexagonal bubbles. We define the strength of tledimagion to
beP =n—6. Examples are shown for=5 andn = 7 disclinations in figure 1. Disclinations with
n=8 and 9 were also considered.

Clusters containing pairs of disclinations were formed dipipg two of these clusters, con-
taining central bubbles withy andn; sides, and eliminating a certain number of bubbles between
the two disclinations to vary the separatidrbetween their centres. This introduces two seven-
sided bubbles at the periphery of a cluster, one at each ethe gdin, which we presume does not
change the interaction between the two centralized deféésconsidered pairs of disclinations of

the same strengtim{=n,=5 or 7) or oppositer(; = 5 andn, = 7). Examples are shown in figure 3.

A 5/7 dislocation is constructed from a hexagonal clusitet(6) by removing a wedge of
bubbles originating at the centre (figure 2). To simulatespaf dislocations we again start from
a hexagonal cluster and perform a single topological changen edge near the centre [15]. This
allows us to study the special case in which the two dislooatihave opposite sign and are in
the same glide plane (figure 2). To change the distance bettheedefects, we perform further
topological changes. The Burgers vector of a dislocatidhessector between adjacent hexagons,
parallel to the 5/7 edge, which defines the direction of glidi The two dislocations of figure 2

have opposite Burgers vectors, i.e. have opposite sighshiawe the same glide plane.
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Figure 3: Examples of clusters with pairs of separated idigtbns forn; = np = 5 (N=3252,
s= 25 shellsd ~ 42) andn; =5, n2 = 7 (N=2740,s~ 25 shellsd ~ 30).

4 Results

4.1 Disclinations

The energy (or perimeter) per unit area (i.e. per bubtiiey; E/N, decreases as the number of
shells (bubbles) increases for givernas shown in figure 4(a). For givenE is least fom = 6. In
fact, the data is described very well by the following twograeter fits:

Es(N) = 1.86898+1.9017N"/?,
Es(N) = 1.86171+1.90623N"%/2, 7)
E;(N) = 1.86701+1.9253N"1/?,

which are also shown in figure 4(a). Note the vall&6lhat recurs —itis close to half the perimeter
of a regular hexagon of unit area in an infinite honeycomizesagach side is shared between two
bubbles. This means that the second term of each expressitrefenergy can be regarded as an
excess energy that reflects the effect of the topology of #featl on the external boundary of the

cluster, as will be discussed.

The energy of a bubble cluster can be expressed as a sum aftibkelareag\ and pressures
pi [33]: E =235 Aipj, relative to an external pressure taken as zero. In the mgpede case con-
sidered here, we therefore find that the average pressipe is %E, so that the average pressure
in a cluster containing a single disclination decreasesemtanner shown in figure 4(a).

The individual bubble pressures vary significantly aboataterage, however. The pressure of
the central bubble is strongly correlated withand varies only weakly witiN (figure 5(a)). For
n <5, P < —1the bubble pressure is highest at the centre of the clugtde forn>7,P > 41 it
is higher at the periphery, as can be seen in figure 5(b-c).

The energy per unit area in a cluster containing two distbnag is shown in figure 4(b). It
decreases in much the same way as for clusters containingle slisclination, showing a similar
dependence on the cluster sike,
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4.2 Didocations

The energy per unit area in an approximately six-fold clustgh a 5/7 defect at the centre is
shown in figure 4(a). The energies of this type of defect ansecto the value for a defect-free
(hexagonal) cluster, suggesting that the 5/7 dislocatsaiesser cost than a disclination as would
be the case in a solid crystal.

This is confirmed by the energy of a pair of dislocations aasised apart (figure 4(b)): the
dependence od is not significant compared to the dependencépand the energy/unit area is
close to the value for a defect-free cluster.

The pressure distribution in a dislocation cluster is shawiigure 5(d): the average pressure
in each shell is much the same as for a defect-free cluster ), but the scatter in pressures
increases to a maximum close to the centre of the cluster.tWihidecome coincident about 15
shells from the centre of the cluster, giving a measure ofgbeeening length” [34].

5 Discussion

5.1 Disclinations

The variation ofE with N may be interpreted as follows. Exact calculations for @rstwith
disclinations and different areas predict that the enefgyatuster is [35]

1/2
E:%DZAWH.M(ZA-) , (8)

in terms of the bubble areas§. The second term of the equation is related to the shape of the
cluster boundary, and.@4 corresponds to a rounded cluster. For clusters with aedngxagonal
boundary the factor.R4 decreases ta94 [35]. For clusters with unit area this leads to

E= E = 1.86+ 1.94N"Y/2 (9)

This is in accordance with our findings (84.1, equation (8) &gure 4), although it does not
distinguish between clusters with differenti.e. it does not take topology into account.

For isolated disclinations of strengkhin a 2D foam the energy density should be determined
by equation (3). This is the excess energy density relabivbe energy of a perfect hexagonal 2D
foam (v= 0 if P=0). In order to compare the energy of isolated defects in &yame propose to
calculatew as

w=E —Eg(N), (10)

whereE is the total perimeter per unit area obtained in the simorestj see figure 6(a). Equation
(3) implies that the energy density for an= 5 disclination P = 1) is the same as for am= 7
disclination P = +1), for the same radius, which is indeed seen to be approglynihite case, but
the magnitude oiv is only about half of that predicted.

For paired disclinations a distandeapart, we define the strain (excess) energy in a similar
way by subtracting the energy of a joined cluster withouedtsf. The number of rows of bubbles
that are removed when the clusters are joined variss-af wheresis the number of shells. We
therefore propose the following expression:

w=E —Eg(N’) with N’ = N + k; S(kps — d) (11)
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wherek; andk, are two fitting parameters extracted from the case- n, = 6; we findk; = 1.1
andkp = 0.5. This should take into account the shape of two joined elgsind the presence of
two extra defects at the end of the line where they join.

Figure 6(b) shows thai; = n, =5 andn; = np = 7 have similar strain energies, which decrease,
as expected, as the separation of the like defects becomat=gr

The energy density of two disclinations of opposite streagh a nematic liquid crystal is
predicted to depend on their separattbthrough equation (2). We hypothesize that the energy
density of two disclinations in a 2D foam has a similar fuactl form: assuming that the defect
core is the size of the central bubl#ewe takea = v/A = 1 and write

_up2in (9
w=MP In<\/z\), 12)

whereM is an elastic constant. The case= 5,n, = 7, shown in figure 6(b), certainly increases
with d, and a logarithmic fit wittVl = 2.5 x 10~3 seems reasonable.

5.2 Didlocations

The Burgers vector of the dislocation of figure 2 can be rdladeny, the edge length of a bub-
ble with areaA, to give B = v/3ap, which is the smallest possible component of the vector in a
hexagonal cell, equivalent to the centre-to-centre degtdretween bubbles. Thus for a hexagonal
foam containing bubbles of unit area we h&se- 1.074. Equation (5) gives the energy density of
a dislocation cluster of sizein an infinite honeycomb. Although it was derived for a cytiicdl
body, we take as the radius of a circle with perimeter equal to the perimetd the periphery of
the cluster, so that~ /N.

Figure 7 shows that the energy density decreases with tied sirk of the cluster as/t® with
o = 1.884 0.24; this is not far froma = 2 as predicted by equation (5), although the prefactor
appears to be out by a factor of 4.

For paired dislocations a distandeapart (figure 2, right), we calculate the strain energy by
subtracting the energy of the same (hexagonal) clusteowittiefects, shown in figure 7(b). The
strain energy increases almost logarithmically wdthaccording to (6), shown in figure 7(b). In
this case it is possible to compare the data with the sametdefmbedded in an infinite (periodic)
hexagonal foam, eliminating the effect of the cluster bauies. Thea posteriori confirmation
that the boundaries do not have a large effect on the interalbetween defects is apparent from
the proximity of the lines in figure 7(b). The strain energyhe hexagonal foam is fit better by a
function of the form Irtkd + 1)

6 Conclusion

This work describes simulations of 2D finite aqueous foarstelts containing topological defects.
The presence of one defect, in particular a disclinaticzarty affects the energy and the pressure
of the cluster. The energy of a disclination cluster dew&tem the energy of a defect-free cluster
if the number of sides of the central cell is different from, sind decreases as the number of shells
increases. Both the energy and the pressure of a clustemwitb match very well with those
found for a 5/7 dislocation cluster. In fact, the averageguee in each shell is the same in the two
cases.

Many processes, such as plastic deformation, deal withntieeaictions between defects. Our
simulations of pairs of defects reveal how the presence eftdefect is “felt” by the other defect as
a function of their separation. Analytic approaches haenlukeveloped, in the context of solids or

10
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of liquid crystals, for the same cases as studied here. Fet ofithem defects in foams follow the
predicted trends. For example, the energy of two disclmativith opposite strengths a distamce
apart appears to be proportional taln

Nonetheless, a perfect match between analytical resultsiamulations is not to be expected,
as the assumptions under which the former were derived dralways satisfied in the systems
considered here. Clusters with=5 andn = 7 are examples of this: because these disclinations
have the same strength (in absolute value), one would epeichey would have the same energy,
yet the two clusters have different boundaries, and it igrdieat the energy of a cluster is strongly
dependent on boundary shape. Further work still needs tontertaken to fully separate the
contributions of defect shape and cluster shape to the goéafoam.
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