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ABSTRACT
Motivation: Distribution analysis is one of the most basic forms of
statistical analysis. Thanks to improved analytical methods, accurate
and extensive quantitative measurements can now be made of
the mRNA, protein, and metabolite from biological systems. Here
we report a large-scale analysis of the population abundance
distributions of the transcriptomes, proteomes, and metabolomes
from varied biological systems.
Results: We compared the observed empirical distributions with a
number of distributions: power law, lognormal, loglogistic, loggamma,
right Pareto-lognormal, and double Pareto-lognormal. The best-fit for
mRNA, protein, and metabolite population abundance distributions
was found to be the double Pareto-lognormal. This distribution
behaves like a lognormal distribution around the centre, and like a
power law distribution in the tails. To better understand the cause
of this observed distribution we explored a simple stochastic model
based on geometric Brownian motion. The distribution indicates that
multiplicative effects are causally dominant in biological systems.
We speculate that these effects arise from chemical reactions: the
central-limit theorem then explains the central lognormal, and a
number of possible mechanisms could explain the long tails: positive-
feedback, network topology, etc. Many of the components in the
central lognormal parts of the empirical distributions are unidentified
and/or have unknown function. This indicates that much more biology
awaits discovery.
Contact: rdk@aber.ac.uk

1 INTRODUCTION
A central goal of science is to find patterns in nature.
Improved analytical methods now mean that extensive and accurate
quantitative measurements can be made of the key classes of
dynamic intercellular molecules: mRNAs (Lockhart and Winzeler,
2000; Schulze and Downward, 2001), proteins (Tyers and Mann,
2003; Cravatt et al., 2007), and metabolites (Fiehn, 2002; Kell,
2004). The question that we address in this paper is whether, despite
the extreme complexity of the specific interactions involved, there
is any pattern in the observed quantities of these molecules in living
systems. The existence of any such pattern would provide valuable
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insight into living systems, provide constraints on Systems Biology
models, and aid the parametrization of analysis methods.

One of the the most basic ways of describing complicated
systems that involve many components is to use population
abundance distributions. These describe the relationship between
the abundance of components to the number of components. This
type of distribution is perhaps most commonly used in ecology,
with the components being species, and with the distribution
summarising how many common and rare species there are.
In this paper we investigate the observed population abundance
distributions of mRNAs, proteins, and metabolites.

There are several reasons which make the existence of pattern(s)
in the observed population abundance distributions plausible.

1) All living systems are both evolutionarily related and
homeostatic. This implies that some structure is preserved both
between species and during different growth-states.

2) It has been empirically found that there are general patterns
in the distribution of connections between components in living
systems (Barabási and Albert, 1999; Arita, 2005; Jeong et al., 2001;
Tong et al., 2004).

3) Initial work has been reported on the distribution of the
observed population abundances of mRNA species. Ueda et al.
(2004) and Kuznetsov et al. (2002) reported power law (or its
variant) distributions, while Konishi (2004) reported a three-
parameter lognormal distribution, and Hoyle et al. (2002) reported a
mixing behaviour of central lognormal with a power law tail. What
is significant about these reports is that similar distributions were
observed across a wide variety of species and technologies.

Omics measurement technology
An ideal analytical measurement experiment would measure with
complete fidelity the quantity of every component in the cell.

Current “omic” experiments are still far from approaching this
ideal due to limitations in: measurement technologies, experimental
techniques, preprocessing procedures, etc. In addition what
is observed and modelled are only samples of the underlying
distributions.

In discussing omics experiments we will use the statistical
measures of: coverage, bias, and accuracy. Arguably the most
important of these is coverage, by this we mean what proportion
of the total number of components of a system are actually
observed. This property applies to both qualitative and quantitative
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measurement technologies. If the coverage of an omics technology
is not complete then the concept of measurement bias is important.
By an unbiased measurement technology we mean one where
the measurement accuracy is independent of the attributes of
the components (e.g. quantity, size, hydrophobicity, etc.). The
most important attribute we are concerned with is quantity. Basic
information theory suggests that it is much easier to determine the
presence of a molecular species present in large quantities than in
small quantities. Thus most omic measurement technologies are
biased, and errors are most probable for low abundance components.
High-abundance components may also be wrongly measured due
to machine saturation. As we are concerned with quantitative
measurement of cellular components, it is desirable that a measuring
technology should make accurate measurements. The concept of
measurement bias is also applicable to quantitative measurements.

One important issue relevant to the experimental strategies is most
current omic experiments only measure the average value of gene,
protein or metabolite expression levels for a population of cells,
rather than that of individual cells. This means that, for example,
intermediate gene expression levels could result from a mixture of
individual cells with high or low states.

The most successful omic technology is probably transcriptomics.
A vast amount of biological knowledge has been generated using
these techniques (Lockhart and Winzeler, 2000; Schulze and
Downward, 2001; Bertone et al., 2004). It is also the omics
technology that approaches the ideal most closely. Until recently
microarrays have been the dominant transcriptomics technology,
but this may be about to change with lower-costs for sequencing
(Nagalakshmi et al., 2008; Wilhelm et al., 2008). Given a known
genome, it is now reasonable to expect that the coverage of
mRNA components is high. However, it is noteworthy, that tiling
arrays and direct sequencing have made it clear that many more
DNA sequences are transcribed in small quantities than previously
expected (Wilhelm et al., 2008), and that standard microarrays do
not have a 100% coverage. A recent large-scale comparison of
microarrays with other techniques has shown that microarrays have
good accuracy (Canales et al., 2006). However, the same study
also highlighted that their accuracy was much poorer with low-
copy number mRNA transcripts, i.e. they are biased towards high
abundance components. This means that any conclusions that can
be made about the distribution of low abundance mRNAs are less
secure than those of high abundance ones.

A vast amount of research has also gone into proteomic research
(Tyers and Mann, 2003; Ishihama et al., 2008). Due to the greater
heterogeneity of proteins and their post-processing, the state-of-
the-art in proteomics is less advanced than that of transcriptomics
(Bantscheff and Schirle, 2007; Cravatt et al., 2007). Within
proteomics the “naming of the parts” is still far from complete
even for the model organisms; and it is generally not possible to
measure the amount (or even the presence) of all the proteins in
a moderately complex biological system. However, there are now
datasets available that report on the observation of thousands of
proteins, and proteomic technology has greatly improved recently
(Newman et al., 2006; Ishihama et al., 2008). The quantification
of proteomic observations is also more difficult than that for
transcriptomics. Proxies for protein amount may be required,
such as ion intensities, the number of peptides observed, the
amount of luminosity, etc (Bantscheff and Schirle, 2007). As with
transcriptomics uncertainties can be mitigated against by use of

multiple technologies, e.g. two-dimensional gel electrophoresis
(2DE) or liquid chromatography (LC), and mass spectrometry (MS).

Metabolomics research is also a large and growing research field
(Fiehn, 2002; Kell, 2004; Wishart et al., 2007). Metabolomics
faces similar difficulties to proteomics. Metabolites are even more
heterogeneous than proteins, which means that different approaches
may need to be used for different classes of metabolites - causing
bias. However, metabolomics does have the advantages of there
being typically far fewer metabolites than proteins (order of 1,000
in simple microorganisms), and that many metabolites are shared
between species, enabling standard techniques. It is hard to estimate
the coverage of metabolomics techniques. For simpler systems this
may be high, but for more complicated organisms, especially plants,
this coverage is much lower.

Many methods have been developed to preprocess omics data
so as to reduce the data limitations resulting from the utilized
techniques. For example, there is a lot of research on development
of models and algorithms for microarrays that exploit hybridization
theory in order to correct the data from noise, non-specified
hybridization and saturation effect (Wu and Irizarry, 2005; Koltai
and Weingarten-Baror, 2008; Marcelino et al., 2006; Chua et al.,
2006). These models for measurement data preprocessing are very
important for analyzing the distributions for cellular component
abundances, but are not the focus of this study. Therefore in this
work, we have selected particular datasets that have already been
preprocessed to represent relative abundances; and it is assumed that
the noise or saturation effect in measurement have been corrected
to a certain extent. In our analysis we were aware of the potential
bias resulting from the preprocessing steps in the original study, e.g.
removal of nonsignificant low-abundant components, or imputation
of the missing values.

In conclusion, although existing omic technologies are far from
ideal, they are now capable of generating high quality quantitative
data on population abundance distributions, and there appears to be
little reason to believe that conclusions drawn from existing data are
unreliable - except perhaps at the low end of the dynamic range.

The power law and lognormal distributions
The most commonly reported distribution in cellular systems are
power law (scale-free) ones (Arita, 2005). Such distributions of
node connections have been reported in metabolic-networks (Jeong
et al., 2000), protein-protein interaction (Jeong et al., 2001), gene
interactions (Tong et al., 2004), etc. Although, these findings
have been challenged on both empirical (Stumpf et al., 2005b;
Khanin and Wit, 2006) and theoretical grounds (Stumpf et al.,
2005a). Lognormal distributions have also been reported for node
connection distributions, and are ubiquitous (Limpert et al., 2001).

A non-negative random variableX has a power law distribution if
its probability density function can be expressed as f(x) = Cx−γ .
A common power law distribution is the Pareto distribution which
satisfies P (X ≥ x) = (x

k
)−(γ−1) for some γ > 1, k > 0

and X ≥ k. Two general classes of argument have been used to
explain power laws in biology: it is a result of how the system
developed over time (Mitzenmacher, 2004); or it has been selected
through natural selection for robustness (Jeong et al., 2000). The
most common proposed models for power laws are based around
preferential attachment mechanisms (“the rich get richer”). The first
proposed generative mechanism for a power law in biology was
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that of Yule (Yule, 1925), who used it to explain the distribution
of species in genera.

A random variable has a lognormal distribution if the random
variable Y = log(X) has a normal distribution. Lognormal
distributions are generally generated by proportionate effect
processes. More generally, the central limit theorem states that
the sum of many independent, identically distributed random
variables with a finite mean and finite variance converges to a
normal distribution asymptotically. Similarly the product of many
positive random variables will approach a lognormal distribution
(Limpert et al., 2001). Sinnott was the first to provide evidence
for the importance of the lognormal distribution in genetics in the
phenotypes of plants (Sinnott, 1937).

The lognormal and power law distributions are closely related:
they are both skewed, can be generated by similar multiplicative
mechanisms, and may be hard to distinguish empirically. Power
law distributions may arise from lognormal distributions from small
changes to the generative model: where the sampling time is not
uniform, or when a lower boundary is put into effect during a
geometric random walk (Mitzenmacher, 2004).

The Pareto-lognormal distribution
Interestingly, there are distributional forms that behave like
a lognormal distributions near the centre and like power-law
distributions in the tails. The double Pareto-lognormal distribution,
first introduced by Reed (Reed, 2003; Reed and Jorgensen, 2004),
has this property, and has been shown to fit some empirical data
better than either the power law or lognormal distributions.

A random variable X follows a double Pareto-lognormal (dPLN)
distribution if log(X) follows the normal-Laplace distribution,
which can be represented as a convolution of independent normal
and Laplace components. Taking the exponential form of a normal-
Laplace random variable results in the double Pareto-lognormal
distribution, which can be represented as X = UQ where U,Q are
independent, with U lognormally distributed log(U) ∼ N(ν, τ2)
and Q ∼ DP (α, β) following the double Pareto distributions. The
density function of the double Pareto distribution can be expressed
as

f(q) =

(
αβ
α+β

qβ−1, for 0 < q ≤ 1;
αβ
α+β

q−α−1, for q > 1.
(1)

where α > 0, β > 0.
The parameters of the dPLN distribution can be used to describe

the features of the corresponding probability density function (Reed
and Jorgensen, 2004). The parameter τ is the standard deviation for
the lognormal component, as τ → 0, the distribution tends to a
double Pareto distribution. The parameter α and β determine the
behaviour in the left and right tails, respectively: the smaller the
value is, the heavier the corresponding tail is. When both α, β →
∞, the distribution tends to be a lognormal distribution; if only β →
∞, the distribution has a fatter tail only in the right; if only α→∞,
the distribution has a fatter tail only in the lower end. When α = β,
it is symmetric and bell-shaped, if plotted in a log scale. Therefore,
the lognormal, right/left PLN and double Pareto distributions can
be considered as special cases for the dPLN model, which can be
regarded as a form of nested model.

An interesting feature of the double Pareto-lognormal distribution
is that it can be derived from a simple stochastic model (Reed,
2003). Consider a geometric Brownian motion defined by the Ito

stochastic differential equation

dx = µXdt+ σXdw (2)

with initial state X(0) = X0 distributed lognormally, log(X0) ∼
N(ν, τ2). After T time units the state X(T ) can be expressed as

X(T ) = X0 exp((µ− σ2

2
)T + σε

√
T ) (3)

where ε ∼ N(0, 1) is a standard normal distributed random
variable. The distribution for X(T ) is then also lognormal and can
be expressed as

logX(T ) ∼ N(ν + (µ− σ2

2
)T, τ2 + σ2T ). (4)

Suppose the time T at which the process is ended is an
exponentially distributed random variable with density fT (t) =
λe−λt, t > 0. The distribution of the state X(T ) is then a mixture
of lognormal random variable (4) with mixing parameter T , and this
can be proved to be the double Pareto-lognormal distribution (Reed
and Jorgensen, 2004).

2 APPROACH
In this work we have extended the investigation of the population
abundance distribution for transcriptomic data to other omic datasets
using stringent statistical tests. To do this, twenty two preprocessed
omics datasets have been selected and fitted to a series of highly
skewed distribution models. The fitted models have been compared
using various statistical criteria such as Bayesian information
criteria. Hypotheses for these models have been further tested using
parametric bootstrap goodness-of-fit tests.

The best-fit for these cellular component population abundance
distributions was found to be the double Pareto-lognormal (dPLN).
The GBM models that generate the fitted dPLN distributions were
then explored to seek links of the abundance distribution to the
underlying mechanisms in biology. Furthermore, we conducted a
functional analysis for the cellular components, in particular to
compare the functional categories for the components found in the
high abundance tail with those in the lognormal mode.

For our analysis we selected a set of datasets from quantitative
transcriptomic, proteomic, and metabolomic experiments. These
datasets were selected for their high quality (high coverage
and accuracy, and low bias), and for diversity of organism
and technology. They include ten transcriptomic datasets, seven
proteomic datasets and five metabolomic datasets (as summarized
in supplementary Table S1). An ID was given to each dataset,
starting with ’mRNA-’, ’prot-’ or ’metab-’ depending on the
omics technology used, followed by the name of the organism.
To distinguish multiple datasets from the same organism, extra
words were added to the end of the ID providing information
such as measurement techniques, original experimental design
or references. The datasets were checked and preprocessed
before distributional analysis. Detailed explanation of the dataset
preparation is also given in supplementary data.

3 STATISTICAL DISTRIBUTION TESTS
To estimate the population abundance distributions we plotted
log-log histograms (see Figure 1). These were generated using
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logarithmic binning for either individual samples or the median
samples. Superimposed on the data points are the fitted density
functions for lognormal and double Pareto-lognormal distributions.
Examination of these indicates that: the data do not follow a power
law distribution, and that a lognormal distribution fits the central
part of the distribution with a power law distributions in most of
the tail(s). The dPLN model seems to fit reasonably well to these
distributions of different shapes: some exhibiting heavy tails in both
sides (e.g. mRNA-Ecoli, mRNA-Celegans, metab-YeastPho), some
not (e.g. mRNA-MouseCodeLink and mRNA-HumanBrain seem to
fit well with a lognormal distribution).

To confirm this analysis we carried out goodness-of-fit tests
using a set of distributions: Pareto, lognormal, loggamma,
loglogistic, right Pareto-lognormal and double Pareto-lognormal
(see supplementary Table S2 for the relevant functional forms
and parameters). The composite parametric bootstrap goodness-
of-fit tests for all six distributions were done using R scripts.
Our distributional goodness-of-fit tests consisted of two basic
steps. In the first step, the parameters of the distributions were
estimated using maximum likelihood. Then goodness-of-fit tests
were conducted to compare the probability models with the
experimental data. We applied both the Kolmogorov-Smirnov
(K-S) and Anderson-Darling (A-D) tests (Stephens, 1974). The
Kolmogorov-Smirnov test is based on a statistic that measures the
deviation of the observed empirical cumulative distribution function
(i.e. the cumulative histogram) from the hypothesized cumulative
distribution function (Stephens, 1974).

The Anderson-Darling test is a modified version of the K-S
test which uses a slightly different statistic defined by DAD =

maxi
|F̂ (x(i))−F (x(i))|
F (x(i))(1−F (x(i)))

, where x(i) is the ith order statistic of

the sample, F̂ (x(i)) and F (x(i)) are the empirical and theoretical
cumulative distribution functions, respectively. The A-D test is more
sensitive to the difference between the theoretical distribution and
the hypothesized distribution at the tails than the K-S test.

Table 1 reports the statistics DAD of the A-D tests and the P
values estimated from the parametric bootstrap A-D tests (with 1000
bootstrap replicates). The results of parametric bootstrap K-S tests
are given in supplementary Table S3.

The relatively small statistics DAD or DKS for the double PLN
distribution provide evidence that the double PLN consistently gives
the best fit to the abundance data in most of the datasets. It is the only
distribution that is not rejected (at significance level of 0.05) by the
parametric bootstrap A-D or K-S tests for all examined data sets.

Notice that the number of parameters for the different distribution
models vary: 2 for the power law, lognormal and loglogistic, 3 for
the loggamma and right Pareto-lognormal, and 4 for the double
Pareto-lognormal distribution. Therefore, besides model likelihood,
DAD and DKS, information criteria such as the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC) have
also been calculated to compare the models by taking both the model
fitness and the model complexity into account (see Supplementary
Table S4).

The preferred model is that with the lowest AIC/BIC value. As
number of data points for each sample is large in this case of omics
data, BIC is more appropriate than AIC for model comparison.
Table S4 indicate that even when the extra parameters are taken into
account the dPLN model still fits the empirical data the best for most
of the cases.

Table S6 reports the parameter estimates, bias and standard
errors from the bootstrap tests for power law, double/right PLN
distribution.

The dPLN variance components For random variable X ∼
dPLN(ν, τ2, α, β), the variance of log(X) can be decomposed into
three parts: σ2

LN+σ2
rP+σ2

lP = τ2+(1/α)2+(1/β)2, corresponding
to the variance from the central lognormal component, the right
sided and left sized Pareto component, respectively (Reed and
Jorgensen, 2004).

To check the dependancy of the parameters on the omics
technologies, the variances estimated using dPLN models have been
compared for yeast (see Supplementary Figure S1). The average
σ2

LN and σ2
rP are smaller for transcriptomics and metabolomics data

than for proteomics data, although the differences among the three
types of omics technoloiges are not really significant according to
the ANOVA tests. Note that only two yeast datasets were used here
for transcriptomics and three for metabolomics; also there are large
variances in the parameters for proteomics data, which seem to
originate in the diversity in analysis techniques and data preprocess/
integration methods. In the case of E. coli σ2

LN and σ2
rP are also

larger for proteomics than for transcriptomics. This implies that
the omics techniques somehow play a role in the dPLN variance
components.

The relationship between the variance components and the
number of genes in genome for transcriptomics data has also been
checked (see supplementary Figure S2). A weak positive correlation
(R2 = 0.36) was observed between σ2

LN and the number of genes
in genome. This correlation seems to be consistent with, although
not as strong as, the one for the variance of log data in (Hoyle et al.,
2002). Moreover the total variance from the Pareto components in
both tails σ2

rP +σ2
lP was observed to be negatively correlated (R2 =

0.42) with the number genes in the genome. One could expect that
these correlations would be much stronger if more datasets were
used.

4 DYNAMIC MODELS LINKING TO ABUNDANCE
POPULATION DISTRIBUTIONS

As noted above the Pareto-lognormal distribution can be generated
by a simple stochastic dynamic model: geometric Brownian motion
(GMB). To explore the biological relevance of this generative
approach, and to investigate the evolution of the dPLN distribution,
GBM model simulation was performed to generate random samples
which followed the fitted distribution. Two examples of the data
simulation with parameters estimated from the median sample are
given in Figure S3.

Our proposed GBM model can be viewed as a simplified
and abstract description of cellular dynamics. It ignores many
details of biochemical networks, such as regulation factors,
and the distribution of the average evolving time for various
cellular components is unlikely to be as simple as an exponential
distribution. On the other hand, as what we are interested in is
the population distribution of the general average abundance for
the cell, such fluctuations and variations may be cancelled out by
averaging, and also might be partially explained by the volatility of
the GBM model. For example, positive feedback or autocatalysis
in general increases the sensitivity to internal or external signals and
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Fig. 1. Distributions (log-log histograms) for the omic datasets. The title in each panel is the corresponding dataset ID. The y-axis corresponds to the
normalized density values and the x-axis to the abundance level in log scale. Solid circles display log-log histogram of the abundance levels for the empirical
data. The solid line and dashed line represent the fitted density function for double Pareto-lognormal and lognormal distributions, respectively.

hence increase the variance of the fluctuation; and negative feedback
or product inhibition dampens the noise and rejects perturbations
(Stelling et al., 2004; Hornung and Barkai, 2008).

Similar dynamic models have been applied to explain the pattern
in the population abundance in living systems in varied research
areas. We review some of the relevant work here and describe
the links between these models. Ochiai et al. (2004) proposed a
constructive approach to a probability model for gene dynamics
from a gene expression instantaneous transition probability (ITP)
model for individual genes by assuming the gene expression level
is described by a stochastic process with Markov property. And
the ITP model used was obtained experimentally and fitted well
to the yeast ITP data as shown in (Ueda et al., 2004). This
leads to emergence of the Black-Scholes model (originally from
economics), which is exactly the same stochastic model as that
for GBM given in Equation (2). From this, by using the same
assumptions as described in the Section 1, including lognormalilty
of the initial distribution of the component level abundances,
and an exponential distributed life time for the components, a
double Pareto-lognormal distribution is derived for the population
abundance levels - if the evolving time is long enough.

Friedman et al. (2006) have also presented a theoretical model
to reconcile the time-resolved and population measurements for
protein concentration, considering that protein production occurs
in random bursts with an exponentially distributed number of
molecules. The proposed analytical framework of gene expression
links stochastic dynamics to population distributions. Starting from
the simple kinetic scheme for protein production characterised by
two parameters: the mean number of bursts per cell cycle, and the

mean number of protein molecules produced per burst, they derived
a gamma distribution in the steady state via approximation for the
same protein, which fits well to their experimental data.

Paulsson (2004, 2005) provides a review of a generic approach
utilizing fluctuation-dissipation theorem (FDT) to stochastic
modelling of the gene expression, which can be applied to model
concentration levels of metabolites as well (Elf et al., 2003).

N.B. that the population distributions described by Ochiai et al,
Friedman et al. and Paulsson are ones of a particular chemical
species from the population of genetically identical cells, rather than
the population distribution for various cellular components within a
system which we have analysed in this work. However, it is still
interesting that similar theoretical framework can be used to link
the cellular dynamics to population distributions, but with different
levels of abstractions and different assumptions.

There have also been some other attempts to understand the
mechanisms explaining the population distribution for general
average over all chemical species within an intracellular network
(Furusawa and Kaneko, 2003; Tokita, 2006). These models may
explain some phenomena in nature but they are inconsistent with
our empirical observations of omic data.

5 FUNCTIONAL ANALYSIS OF THE CELLULAR
CONSTITUENTS

To gain insight into the biological meaning of the observed
distributions we compared the molecular species found in the
high abundance tail with those in the lognormal mode. The most
abundant 5% of mRNA metabolites/proteins were taken, along with
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Table 1. Statistical distribution tests for the omic data.

Distribution Power law lognormal loglogistic loggamma doublePLN rightPLN
Dataset DAD pvalue DAD pvalue DAD pvalue DAD pvalue DAD pvalue DAD pvalue

Transcriptomics
mRNA-Ecoli Inf NA 27.52 0 11.11 0 37.37 0 0.39 0.782 28.94 0.247
mRNA-YeastMetabolism Inf NA 25.29 0 13.09 0 12.73 0 1.08 0.557 3.12 0.216
mRNA-YeastDegradeER Inf NA 54.20 0 17.58 0 75.92 0 2.71 0.343 54.14 0.869
mRNA-Arabidopsis Inf NA 6.71 0 8.87 0 10.02 0.001 8.33 0.525 7.01 0.784
mRNA-Drosophila Inf NA 11.52 0 11.92 0 14.39 0 10.58 0.628 10.79 0.070
mRNA-Celegans Inf NA 264.09 0 60.06 0 225.61 0 5.73 0.047 130.51 0
mRNA-MouseCodeLink NA NA 16.29 0 28.50 0 22.92 0 16.08 0.520 15.92 0.349
mRNA-MouseAgilentcDNA Inf NA 44.50 0 54.77 0 30.34 0 40.80 0.313 40.79 0
mRNA-MouseAgilentOligo Inf NA 98.00 0 94.86 0 23.05 0 51.47 0.958 51.50 0
mRNA-HumanBrain NA NA 20.22 0 35.80 0 28.47 0 17.77 0.992 20.55 0.680

Proteomics
prot-EcoliCytosol 78.02 0 40.67 0 20.93 0 4.003 0 1.159 0.525 1.159 0.291
prot-YeastCytometry Inf NA 48.06 0 35.09 0 3.28 0 11.06 0.153 11.75 0
prot-YeastMembrane 251.3 0 3.818 0 2.200 0 7.051 0 2.046 0.617 3.897 0.366
prot-YeastGhaemmaghami NA NA 12.00 0 5.187 0 4.114 0 2.098 0.678 2.060 0.301
prot-YeastGreenbaum Inf NA 39.76 0 33.96 0 45.98 0 26.36 0.014 44.23 0.001
prot-YeastBeyer NA NA 10.15 0 3.543 0 9.083 0 5.566 0.378 6.695 0.094
prot-YeastBrockmann Inf NA 5.5214 0 2.965 0 5.790 0 4.589 0.530 4.685 0.324

Metabolomics
metab-PotatoGctof 27.91 0 2.28 0 1.83 0 0.36 0.316 0.41 0.846 0.40 0.799
metab-PotatoGcms 2.44 0.008 2.08 0 1.86 0 0.40 0.399 0.55 0.728 0.50 0.618
metab-YeastNit Inf NA 8.685 0 5.531 0 9.902 0 0.6785 0.5766 8.989 0.204
metab-YeastGlu Inf NA 6.683 0 3.894 0 7.940 0 0.2331 0.938 6.874 0.263
metab-YeastPho Inf NA 7.986 0 4.019 0 9.831 0 1.995 0.374 8.369 0.213

The A-D goodness-of-fit tests were conducted on the sample or the median sample (in case of multiple samples) of each data set. The P values were obtained via parametric

bootstrap method (with 1000 replicates). The statistics DAD and P values are reported. The smallest statistics DAD for each dataset have been highlighted in bold, and the second

smallest in italic.

the 10% close to the median (adjacent to the mode) and the functions
of these two subsets compared.

For the mRNA abundance data, their Gene Ontology (The GO
consortium, 2000) annotations were used to obtain the annotation
classes, which were then mapped to a set (128) of generic GO
slim terms (Figure 2). Some generic terms that are not commonly
shared by all the organisms have been excluded from this analysis.
Only the annotated gene products were used for further comparison.
GO annotations were obtained for the gene products in eight
transcriptomic datasets (the two mouse datasets measured with
Agilent techniques were excluded) as were the genes from the yeast
cytometry proteomic dataset.

Functional differences between the two component subsets
(the right tail and the mode) were checked using chi-squared
tests for the 128 GO classes and for 8 individual datasets. To
summarize the comparison of the functional classes over different
transcriptomic datasets, the variance-based weighted odds ratios
across different datasets were computed (Kenneth and Sander,
1998). The significantly different GO classes, which have an odds
ratio of greater than 1.5 or less than 0.7, were then plotted.

The summary results of the analysis for the transcriptomics
data using Gene Ontology are shown in Figure 2. All these class
differences are statistically significant and present in a wide range
of microarray experiments. The over represented high abundance
classes are generally the core cellular components: structural
components, primary metabolism, ribosome associated, electron
transport, etc. The classes that are over represented in the modal
region are: signal transduction, kinases, DNA binding, protein
modification, etc. These are the cell’s control elements. These
results indicate that cells require a relatively large numbers of

different types of low abundance control elements, and fewer types
of high abundance core elements.

It is interesting to note that the number of genes related to
transcription regulation grows much faster with genome size than
the ones for protein biosynthesis (Van Nimwegen, 2003). More
complicated biological systems seem to require larger amount
of genes to participate in the increasingly elaborate regulatory
mechanism while keep them relatively low abundance. This is
consistent with our results.

The results of the analysis for the yeast cytometry proteomics
data using GO is shown in Figure S4. One feature consistent
between mRNAs, proteins, and metabolites is that the components
in the mode are generally less well characterized (many unknown
metabolites and gene products of unknown function/process/component)
than the high abundance tail. These largely uncharacterized modal
regions in the proteome and metabolome hint at a large amount of
undiscovered biology.

For metabolomics we examined the potato GC-Tof MS profiling
data (Catchpole et al., 2005). The most abundant metabolites are
amino acids and sugars (see supplementary Table S5). This is
consistent with these being the core products of metabolism. In
contrast, the metabolites present in the mode are generally not
well characterized. We confirmed these observations by analysis of
another GC-MS potato dataset.

6 DISCUSSION
A single distributional form? The results described in this paper
show that a dPLN model fits well the observed population
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Fig. 2. Comparison of GO functional classes for the gene products with
the highest expression levels and with modal expression levels across the
transcriptomic datasets. The two coloured bars correspond to the percentages
of genes that are associated to a particular GO class at the high end tail and at
the lognormal mode (approximately with abundance level of median range),
respectively

abundance distributions in the datasets we have examined.
We hypothesise that this will be a general observation for
transcriptomic, proteomic, and metabolomic data. If this general
hypothesis is true then it would be of significant biological and
technological interest. In biology it would require us to seek an
explanation for such distributions in the statistical mechanics of
living systems. For technology, the expectation of observing a
specific distribution would enable omic measurement techniques to
be better parameterised, resulting in better empirical measurements.

The left tail - low abundance components The least well
understood part of population abundance distributions is the low
abundance - left tail. This is the hardest part to empirically measure.
The biological relevance of the left tail is most important to
toxicology, as poisons are compounds that have adverse affects at
low dosage.

Transcriptomics has made the greatest progress in measuring the
left tail. Recent work using tiling arrays (Bertone et al., 2004) and
direct sequencing (Nagalakshmi et al., 2008; Wilhelm et al., 2008)
have made it clear that many more DNA sequences are transcribed
in very small quantities than previously expected. Likewise it seems
reasonable to postulate that cells contain small numbers of very rare
chemical compounds (Jaynes, 2005).

However, long left tails were not observed in some of the omic
datasets. In some cases the explanation for this is understood,
for example that of prot-YeastCytometry where the data was
preprocessed before publication to remove the tail. In other cases it
may be due to the great difficulties in measuring such low abundance
molecules. It is of course also possible that the dPLN model does not
generally fit biological systems in the left tail. Time will tell.

Possible explanations for the common pattern in population
abundance within cellular systems What mechanisms could
explain the observation of a common pattern of population

distribution in mRNA, protein, and metabolite distributions? First
note that lognormal and power law distributions are generated by
multiplicative effects. Probably the most straightforward causative
mechanism is that it is the result of the involvement of chemical
reactions (Limpert et al., 2001). Chemical kinetics clearly has
a central role in determining the concentrations of metabolites,
and reflection also makes it clear that it also has a key role
in transcription, transcription factor binding, translation, protein
binding, i.e. all the processes that control the abundances of mRNAs
and proteins.

Given that populations of chemical reactions are expected
to produce multiplicative distributions, it is then reasonable
to expect from the central-limit theorem, that the observed
abundances would follow a lognormal distribution, as the product
of many independent, positive random variables forms a lognormal
distribution (Limpert et al., 2001). As we observe a double Pareto-
lognormal distribution and not a lognormal distribution we conclude
that chemical pathways are not fully independent.

It is less clear what could cause the observed long tails. There are
a number of plausible explanations: positive feedback, a network-
topology effect, a lower boundary effect, etc. Cellular systems
are not random chemical soups, they are under cybernetic control
(Monod, 1971; Milo et al., 2002). A key element of this is cybernetic
control of positive-feedback: the rich-get-richer mechanism typical
of power laws. An alternative, but related explanation, is that it is
the topology of the network that causes the long tails. For example,
considering metabolism: if the pathway node distribution has a
double Pareto-lognormal distribution then the abundances may also
reasonably be expected to have the same distribution given random
movement through the network (we have confirmed this through
simulation); or if the topology of metabolism is tree-like then this
might also produce a double Pareto-lognormal distribution as this
produces an exponential distribution of path lengths.

Life is an auto-catalytic process. We therefore hypothesize that a
non-living complex chemical mixture would produce a lognormal
distribution, and that power law tails is a signature of a living
system. This hypothesis could be easily tested by observing what
happens to mRNA, protein, and metabolite distributions after death,
and in complex non-living chemical systems such as those designed
to create conditions on the early earth (Rasmussen et al., 2004).

To conclude, we observe a common distribution for the
population abundances of mRNAs, proteins, and metabolites in
biological systems: with behaviour like a lognormal distribution
around the centre and power law distributions in the tail(s). The
existence of common distribution provides insight into the statistical
mechanics of living systems, constraints on systems biology cellular
models, and aids the parametrization of analysis methods.
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