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APS/213-QED

Enhancement of Field Squeezing Using Coherent Feedback

J.E. Gough∗ and S. Wildfeuer†

Institute for Mathematics and Physics, Aberystwyth University, SY23 3BZ, Wales, United Kingdom.

(Dated: August 22, 2009)

The theory of quantum feedback networks has recently been developed with the aim of showing
how quantum input-output components may be connected together so as to control, stabilize or
enhance the performance of one of the subcomponents. In this paper we show how the degree to
which an idealized component (a degenerate parametric amplifier in the strong-coupling regime)
can squeeze input fields may be enhanced by placing the component in-loop in a simple feedback
mechanism involving a beam splitter. We study the spectral properties of output fields, placing
particular emphasis on the elastic and inelastic components of the power density.

PACS numbers: 03.65.-w, 02.30.Yy, 42.50.-p, 07.07.Tw

I. INTRODUCTION

In the last two decades quantum physics has witnessed
a remarkable convergence between theoretical models of
interactions, particularly for open systems and measure-
ment apparatuses, and experimental implementations of
quantum engineering. The unifying framework has been
to import and adapt the principles of control theory to
the quantum domain. The advantages over traditional
approaches show that quantum control will play a fun-
damental role in emerging quantum technologies [1, 2]. A
variety of promising control techniques have been put for-
ward [3] -[10] which extend open-loop paradigms (where
control inputs are decided in advance) and measurement-
based closed-loop paradigms (where feedback of observa-
tions is used to determine the control inputs). Real-time
measurement-based feedback has been applied to adap-
tive homodyne measurement [11, 12] to achieve measure-
ment variances close to the standard quantum limit.

Our interest lies in coherent quantum control, which
is a non-measurement based feedback approach. Quan-
tum feedback networks [13, 14] have emerged as a nat-
ural class of objects with which to address assemblies of
quantum input-output components so as to allow feed-
forward and feedback connections. This offers a conve-
nient framework to formulate problems in coherent quan-
tum control and robust quantum control problems [15]-
[21]. (We remark that the early formulation of coherent
quantum feedback control due to Lloyd [22] deals with
the direct interaction between system and its controller,
as opposed to one mediated by quantum field processes.
However, this may be treated as a special case of the
network [14].)

An early application of feedback to enhance the squeez-
ing of an (infrared) cavity mode was given by Wiseman et

al. [23]. Here the mode is coupled to a second harmonic
(green) mode which is subjected to a quantum nondemo-
lition measurement. In contrast, we wish to examine the

∗Electronic address: jug@aber.ac.uk
†Electronic address: sew08@aber.ac.uk

FIG. 1: (Color online) Squeezing Device in a Feedback Loop

squeezing of the input noise field by a cavity mode acting
as an idealized squeezing device. Here the feedback is co-
herent, rather than measurement-based, and we consider
a set up involving a simple beam splitter to introduce
the feedback loop. We shall work in the limit of instan-
taneous feedback throughout. We shall be interested in
the class of linear dynamical systems [24],[17],[18], and
indeed will study static components wherein the internal
degrees of freedom have been eliminated.

The degenerate parametric amplifier (DPA) is a well
known non-linear device capable of squeezing input fields
[25] -[27]. We follow the treatment of Gardiner [28]. For
a single quantum input field coupled to a single cavity
mode a with coupling strength

√
κ and Hamiltonian

HDPA =
iε

4

(

a∗2 − a2
)

, (1)

there is an approximate squeezing parameter given by,
[28] section 7.2.9,

rDPA = ln

(

κ + ε

κ− ε

)

. (2)
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Here the amplification is due to the specific choice of the
Hamiltonian HDPA.

Without feedback, the method of obtaining maximal
squeezing for a degenerate parametric amplifier is to try
and realize the Hamiltonian for the internal mode with
parameter coefficient ε as close to the threshold value
(ε = κ) as possible, see [28] section 10.2. As originally
noted by Yanagisawa and Kimura [24], the value of the
effective damping for an in-loop mode, see FIG. I will
depend on the reflectivity value α:

κ (α) =
1− α

1 + α
κ. (3)

Our strategy is to use coherent feedback for a fixed degen-
erate parametric amplifier (below threshold, and there-
fore internally stable [18])and tune the reflectivity of the
beam splitter so as to select the degree of squeezing.

The degenerate parametric amplifier is an idealized de-
vice in which one assumes that κ and ε are large but with
fixed ratio. We shall investigate the situation where both
these parameters are finite. Also, we introduce additional
quantum damping into the model to see the effect of loss.

II. QUANTUM FEEDBACK NETWORKS

A single component consists of a quantum mechanical
system, with Hilbert space h driven by n quantum input
processes bin,i (i = 1, · · · , n), [28, 29], satisfying canonical
commutation relations of the form [bin,i(t), bin,j(t

′)] = 0,
[b∗in,i(t), b

∗
in,j(t

′)] = 0 and

[bin,i (t) , b∗in,j (t′)] = δij δ (t− t′) . (4)

A schematic of a component appears in FIG. 2.
The component is characterized by generator G =

(S, L,H) where S = (Sij) is a unitary n×n matrix whose
entries are operators on h called the scattering coefficient

matrix, L = (Li) is a column vector whose entries are op-
erators on h called the coupling coefficient vector, and H
is a self-adjoint operator on h giving the system Hamil-

tonian. On the joint system-field space we have the uni-
tary evolution process U (t) which satisfies the quantum
Itō QSDE [30]

dU (t) =







∑

i,j

(Sij − δij) dΛin,ij (t) +
∑

i

LidB∗in,i (t)

−
∑

i,j

L∗i SijdBin,j (t)− (
1

2

∑

i

L∗i Li + iH)dt







U (t) ,

(5)

with U(0) = I.
We encounter the integrated fields Bin,i (t) =

∫ t

0
bin,i (t′) dt′, B∗in,j (t) = Bin,j (t)

∗
and Λin,ij (t) =

� �d d

input, bin

system
output, bout

FIG. 2: Input-output component

∫ t

0
b∗in,i (t′) bin,j (t′) dt′ which satisfy the following quan-

tum Itō table [30]

× dBin,j dΛin,jl dB∗in,j dt
dBin,i 0 δijdBin,l δijdt 0
dΛin,ki 0 δijdΛin,kl δijdB∗in,k 0
dB∗in,i 0 0 0 0
dt 0 0 0 0

.

A. Components In Loop

We may consider a feedback arrangement using a beam
splitter, as in FIG. 3 below. The beam splitter is a static
device which we take to be described by

(

bout

vin

)

= T

(

bin

vout

)

, T =

(

α β
µ ν

)

,

where T is taken to be a real-valued unitary matrix with
determinant σ = αν − βµ = ±1.

Suppose that G0
1 = (S0

1 , L0
1, H

0
1 ) is the generator of the

(n = 1) component before the feedback connections are
made. Once the component is in loop, in the limit of
instantaneous feedback, we find an effective component
with input bin and bout as indicated and generator given
by G1 = (S1, L1, H1) with [13]

S1 = α + β
(

(

S0
1

)−1 − ν
)

µ, (6)

L1 = β
(

1− νS0
1

)−1
L0

1, (7)

H1 = H0
1 + Im

{

(

L0
1

)∗ (
1− νS0

1

)−1
L0

1

}

. (8)

The example above may be extended to include a loss
mechanism describing coupling of the component to the
environment, see FIG. 4. Prior to making connections
we assume that the component is the four-port system
(n = 2) with generator given by

S0 =

(

S0
1 0
0 1

)

, L0 =

(

L0
1

L0
2

)

.

After feedback, the effective generator becomes G =
(S, L,H) with

S =

(

S1 0
0 1

)

, L =

(

L1

L0
2

)

, H = H1.
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FIG. 3: Feedback using a beam-splitter
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FIG. 4: Feedback with loss

In the language of [13],[14] the effective generator is the
concatenation G = (S1, L1, H1)�

(

1, L0
2, 0

)

. We have rea-
soned that since S0 is diagonal, there is no direct scat-
tering between the inputs to the in loop device, and that
concatenation of the effective lossless generator G1 with
the loss mechanism G0

2. This however can be shown to be
correct by utilizing the following construction from [13]:
we note that the beam splitter itself can be understood as
a static four-port component G′ = (T, 0, 0) and the set up
in FIG. 4 is then naturally identified as a Redheffer star-
product arrangement of the two four-port devices, the
effective generator for components in a Redheffer forma-
tion is given in section 5.3 of [13], and substitution into
the expression gives precisely the generator G.

We note that the relations we shall derive below for
linear systems can be arrived at by algebraically elim-
inating the internal fields vin and vout. Whilst this is
obviously easier than evoking the mathematical formula-
tion of quantum feedback networks, we should point out
that this is not entirely consistent and that the in-loop
fields vin and vout are not canonical! Whilst this has
been incorrectly interpreted elsewhere as a violation of
the Heisenberg uncertainty relations, the reality is that
the above description emerges from a regular model in
which the commutation relations hold at all times how-
ever the finite time delay of the feedback is taken into ac-
count [13]. The in-loop fields are eliminated in the instan-
taneous feedback limit and should then not be thought

of as real physical fields. The algebraic arguments pre-
sented here, however, reproduce the correct answer.

III. LINEAR STATE-BASED INPUT-OUTPUT

SYSTEMS

We obtain a linear dynamical model in the case
where our system is an assembly of quantum modes aα

(α = 1, · · · , m) and the components of the generator take
the special form Sij scalars, (using summation convention
for repeated indices from now on)

Li = C−iαaα + C+
iαa∗α, (9)

H = ω−αβa∗αaβ +
1

2
ω+

αβa∗αa∗β +
1

2
ω+∗

αβaαaβ . (10)

In this case it is possible to apply transform techniques to
the dynamical equations. We define the transform fields

b [s] ,

∫ ∞

0

e−stb (t) dt. (11)

Note that

b∗ [s] = (

∫ ∞

0

e−s∗tb (t) dt)∗ = b [s∗]
∗
. (12)

Setting bin,i [s] =
∫∞

0
e−stbin,i (t) dt, etc., we then obtain

an input-output relation of the form

bout,i [s] = Ξ−ij (s) bin [s] + Ξ+
ij (s) b∗in,j [s] , (13)

where Ξ∓ij (s) are the transfer functions. (Here we ignore
additional terms involving the system modes at initial
time. This omission is justified when the model is stable.)

It is convenient to introduce the doubled up nota-

tion: for a vector x = (x1, · · · , xN )
>

, we write x̆ =

(x1, · · ·xN , x∗1, · · · , x∗N )
>

where > is transposition, for

N × M matrices A, B we write ∆ (A, B) =

[

A B
B] A]

]

where ] is entry-wise conjugation, [Aij ]
]
=

[

A∗ij
]

. We also

set ∆ (A, B)
[
= ∆

(

A†,−B>
)

where † is the usual hermi-

tian conjugation. We say that a matrix S̃ = ∆(S−, S+)
is Bogoliubov, or symplectic, if it is invertible with

S̃[ = S̃−1.

The transfer relation can be written as

b̆out [s] = Ξ̃ (s) b̆in [s]

with transfer matrix function

Ξ̃ (s) =

[

Ξ− (s) Ξ+ (s)

Ξ+ (s)
]

Ξ− (s)
]

]

.

Explicitly
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Ξ̃ (s) =

[

I2n − C̃
(

sI2m − Ã
)−1

C̃[

]

S̃ (14)

where S̃ = ∆ (S, 0), C̃ = ∆ (C−, C+) where C∓ =
[

C∓iα
]

,

Ã = − 1
2 C̃[C̃ − iΩ̃ where Ω̃ = ∆ (Ω−,Ω+) with Ω∓ =

[

ω∓αβ

]

.

A. Analysis of the Spectrum

In addition to the fields b [s] in (11) we also define past-
field transforms

c [s] ,

∫ 0

−∞

e−stb (t) dt (15)

We remark that for input process as arguments, the fields
b [s] and b∗ [s] commute with the fields c [s′] and c∗ [s′] for
all parameters s, s′ since they involve integrals over future
and past input fields respectively.

The Fourier transform of a field b is then defined to be

b̂ (ω) =
1√
2π

∫ ∞

−∞

eiωtb (t) dt

≡ 1√
2π

b
[

0+ − iω
]

+
1√
2π

c
[

0− − iω
]

.

The canonical commutation relations (4) then imply

that
[

b̂in,i (ω) , b̂in,j (ω′)
∗
]

= δijδ (ω − ω′). In the vacuum

state we have

〈bin,i

[

0+ − iω
]

b∗in,j

[

0+ − iω′
]

〉 = δijζ+ (ω + ω′) ,

〈cin,i

[

0− − iω
]

c∗in,j

[

0− − iω′
]

〉 = δijζ− (ω + ω′) ,

where the Heitler functions are

ζ+ (ω) =

∫ ∞

0

eiωtdt, ζ− (ω) =

∫ 0

−∞

eiωtdt,

or

ζ± (ω) = πδ (ω)± iPV
1

ω
.

In practice we shall only encounter the combination ζ+ +
ζ− = 2πδ when calculating physical correlations, and not
encounter the principle value contribution. In particular,

〈b̂in,i (ω) b̂∗in,j (ω′)〉 = δijδ (ω − ω′) , (16)

as we have the sum of 1
2π
〈bin,i [0+ − iω] b∗in,j [0+ + iω′]〉

and 1
2π
〈cin,i [0− − iω] c∗in,j [0− + iω′]〉. Likewise

〈b̂∗in,i (ω) b̂in,j (ω′)〉 = 〈b̂in,i (ω) b̂in,j (ω′)〉
= 〈b̂∗in,i (ω) b̂∗in,j (ω′)〉 = 0.

Ignoring the contribution from the initial value of the
internal mode, the input-output relations for the past
fields takes a similar form to (13) namely

cout,i [s] = Ξ−ij (s) cin,j [s] + Ξ+
ij (s) c∗in,j [s],

the only essential difference in the calculation being the
sign change. Let us introduce the matrices

S−ij (ω) = Ξ−ij (−iω) , S+
ij (ω) = Ξ+

ij (−iω) (17)

then

b̂out,i (ω) = S−ij (ω) b̂in,j (ω) + S+
ij (ω) b̂in,j (−ω)

∗
. (18)

We may therefore determine the correlation functions
from the transfer functions given that the input is in the
vacuum state:

〈

b̂∗out,i (ω) b̂out,j (ω′)
〉

= Nij (ω) δ (ω − ω′) ,
〈

b̂out,i (ω) b̂out,j (ω′)
〉

= Mij (ω) δ (ω + ω′) , (19)

where

Nij (ω) = S+
ik (ω)

∗ S+
jk (ω) , Mij (ω) = S−ik (ω)S+

jk (−ω) .

(20)
We note the straightforward identities

Nij (ω)
∗

= Nji (ω) , Mij (ω)
∗

=Mji (−ω) .

We remark that

Ξ̃ (−iω) ≡ ∆ (S− (ω) ,S+ (ω))

and that this defines a Bogoliubov matrix for each real ω
where it is well-defined, see [18] subsection V.C. In par-
ticular, this ensures that the transformation from inputs
to outputs is canonical, and the Fourier transform of the
outputs satisfy a similar relation to (16). We see directly

from (14) that lim|ω|→∞ Ξ̃ (−iω) = ∆(S, 0), or

lim
|ω|→∞

S− (ω) = S, lim
|ω|→∞

S+ (ω) = 0. (21)

Definition: We say that a component is capable of

spectral squeezing if the matrix M (ω) is non zero for

certain frequencies ω. In particular, given a vacuum in-

put, we say that the ith mode is spectrally squeezed if

Mii (ω) 6= 0 for some ω.

In the single input situation, the S∓ (ω) are complex-
valued functions satisfying |S− (ω) |2 − |S+ (ω) |2 = 1.
We then define the spectral squeezing function r (ω) by
|S− (ω) | = cosh r (ω), that is

r (ω) =
1

2
ln
|S− (ω) |+ |S+ (ω) |
|S− (ω) | − |S+ (ω) |

≡ ln {|S− (ω) |+ |S+ (ω) |} . (22)
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B. Power Spectrum Density

We define output quadratures by

qout,i (t, θ) = eiθbout,i (t) + e−iθbout,i (t)
∗
, (23)

for fixed phases θ ∈ [0, 2π). The integrated processes

Qout,i (t, θ) =
∫ t

0
qout,i (t′, θ) dt′ are self-commuting for

fixed θ and different times t and indices i, and correspond
to classical diffusion processes with Itō differentials sat-
isfying

dQout,i (t, θ) dQout,j (t, θ) = δijdt. (24)

Following Barchielli and Gregoratti [32], we set

Pij(ω, θ, T ) =
1

T
〈
∫ T

0

eiωt1qout,i (t1, θ) dt1

×
∫ T

0

e−iωt2qout,i (t2, θ) dt2〉,

Pel
ij(ω, θ, T ) =

1

T
〈
∫ T

0

eiωt1qout,i (t1, θ) dt1〉

×〈
∫ T

0

e−iωt2qout,i (t2, θ) dt2〉,

P inel
ij (ω, θ, T ) = Pij(ω, θ, T )− Pel

ij(ω, θ, T ),

and define the power spectral density matrix to be

Pij(ω, θ) = lim
T→∞

Pij(ω, θ, T ), (25)

whenever the limits exist, along with the elastic and
inelastic components Pel

ij(ω, θ) = limT→∞ Pel
ij(ω, θ, T ),

P inel
ij (ω, θ) = limT→∞ P inel

ij (ω, θ, T ) respectively.
The Itō rule (24) implies that

P inel
ij (ω, θ) = δij , (26)

and this may be interpreted by saying that the squeezing
in the dynamic model comes entirely from the elastic
component, and that there is no inelastic squeezing.

The Fourier transform is then q̂out,i (ω, θ) =

eiθ b̂out,i (ω) + e−iθ b̂out,i (−ω)
∗

and it is readily verified
that, for vacuum input,

〈q̂out,i (ω, θ) q̂out,j (ω′, θ)〉 = Pij (ω, θ) δ (ω + ω′) (27)

where we obtain the explicit expression

Pij (ω, θ) = δij +Nij (−ω) +Nji (ω)

+ e2iθMji (ω) + e−2iθMij (−ω)
∗
. (28)

C. Idealized Static Squeezing Components

A static squeezing device is an idealized static compo-
nent with input-output relation of the form (either in the
time or transform domain)

bout,i = S−ijbin,j + S+
ijb
∗
in,j (29)

where S∓ =
[

S∓ij
]

∈ C
n×n are constant coefficients such

that S̃ = ∆ (S−, S+) is a Bogoliubov matrix. The out-
puts are then a symplectic transformation of the inputs
and therefore satisfy the canonical commutation rela-
tions.

In practice, such a device is realized approximately by a
dynamical component, in a limiting regime. Specifically,
we would require in the Fourier domain that the coeffi-
cients S∓ij (ω) in (18) are approximately constant over a
wide range of frequencies.

Definition: We say that a sequence of models

converges pointwise in transfer function if we have

limk→∞ Ξ̃k (ω) = Ξ̃ (ω).

If the limit is a Bogoliubov matrix S̃ = ∆(S−, S+) in-
dependent of s, then we obtain a static device. In this
case, if S+ = 0 then S− is unitary and the limit corre-
sponds to a beam splitter with S = S−. The situation
S+ 6= 0 can however arise as such limits, the DPA is an
example, and we refer to such idealized components as
static squeezing devices. This notion of convergence is
weak since there is no quantum stochastic limit model
for which we could obtain S+ 6= 0, specifically we would
violate the requirement (21) common to all dynamical
models considered up to this point.

For the case of a single input (n = 1), the S∓ are
scalars with the constraint |S−|2 − |S+|2 = 1,which en-
sures preservation of the canonical commutation rela-
tions. The parameter r = cosh |S−| is referred to as
the squeezing parameter. We then have |S−| = cosh r,
|S+| = sinh r, and we find that the extremal squeezing
ratios of quadratures by the device are e±r.

We should remark that the canonical transformation in
equation (29) is a Bogoliubov transformation for a quan-
tum field. There is a strict condition on when Bogoliubov
transformations are unitarily implemented for infinite di-
mensional systems (Shale’s Theorem, [31]) which are not
met in this particular case.

IV. THE DEGENERATE PARAMETRIC

AMPLIFIER

We now treat the specific example of a degenerate
parametric amplifier.

A. Lossy DPA, Open Loop

We consider n = 2 input field processes driving a single
(m = 1) mode with

S =

[

1 0
0 1

]

, L =

[ √
κa√
γa

]

and H = HDPA as in (1). Here C− =

[ √
κ√
γ

]

,

C+ = 0, Ω− = 0 and Ω+ = ε
2 . Therefore Ã =



6

− 1
2

[

κ + γ −ε
−ε κ + γ

]

, and we see that the system is Hur-

witz stable (that is, Ã has all eigenvalues in the negative
half plane) if

κ + γ > ε. (30)

We obtain the following expressions for Ξ∓ (s) =
[

Ξ∓ij (s)
]

:

Ξ− (s) =

1

P (s)

[

s2 + γs + γ2−κ2−ε2

4 −√κγ
(

s + κ+γ
2

)

−√κγ
(

s + κ+γ
2

)

s2 + κs + κ2−γ2−ε2

4

]

,

Ξ+ (s) = − ε

2P (s)

[

κ
√

κγ√
κγ γ

]

, (31)

where

P (s) =

(

s +
κ + γ

2
+

ε

2

)(

s +
κ + γ

2
− ε

2

)

. (32)

This gives the transfer function for the component in
FIG.3 prior to feedback connection.

B. Lossy DPA, Closed Loop

Let us take for definiteness the beam splitter matrix to
be

T (α) =

[

α β
β −α

]

, (33)

where 0 < α < 1 and β =
√

1− α2. Following our discus-
sions in the previous section, the actual situation mod-
eled in FIG.3 is then given by replacing L1 by

L1 (α) = β (1− ν) L1 ≡
√

κ (α)a (34)

where κ (α) = 1−α
1+α

κ in accordance with (3). The trans-
fer function is therefore of the same form as derived in
(31, 32) but with κ now replaced by κ (α).

C. Spectrum of the DPA Output

We are interested in the input-output relation between
bin,1 and bout,1. Here, displaying the dependence on α,
we compute

N11 (ω, α) =
ε2κ(α) (κ(α) + γ)

4D(ω, α)
, M11 (ω, α) =

εκ(α)

2D(ω, α)

[

ω2 +

(

κ(α) + γ

2

)2

+
(ε

2

)2
]

(35)

with

D(ω, α) = |P (−iω, α) |2 =

[

ω2 +

(

κ(α) + γ + ε

2

)2
][

ω2 +

(

κ(α) + γ − ε

2

)2
]

. (36)

Note that in the lossless situation γ = 0, we have
|S−11 (ω, α) |2−|S+

11 (ω, α) |2 = 1 and therefore the identity
|M11(ω, α)|2 = (N11(ω, α) + 1)N11(ω, α). In particular,
we compute that the spectral squeezing function is

r (ω, α) =
1

2
ln

ω2 +
(

κ(α)+ε
2

)2

ω2 +
(

κ(α)−ε
2

)2 . (37)

In this case we find that we find that the power spectral
density P11 (ω, θ) is

[

ω2 + κ(α)2+ε2

4

]2

+ κ(α)2ε2

4 + εκ(α)
[

ω2 + κ(α)2+ε2

4

]

cos 2θ

D (ω, α)
,

with the maximum squeezing at θ = 0, P11 (ω, 0) =
e2r(α,ω) and minimum squeezing at θ = π

2 , P11

(

ω, π
2

)

=

e−2r(α,ω).

D. The Static Limit of the DPA

We consider a sequence of DPA models described by
the parameters (κk, εk, γk)k≥1 with

κk = kκ, εk = kε, γk = kγ,

and consider the singular limit k → ∞. We note that

Ξ
(k)
∓ (s) ≡ Ξ∓ (s/k) so the limit is equivalent to the low

frequency limit. The limit transfer functions are inde-
pendent of the transform variable s:

S− = lim
k→∞

Ξ
(k)
− (s)

=
1

(κ + γ)
2 − ε2

[

γ2 − κ2 − ε2 −2
√

κγ (κ + γ)
−2
√

κγ (κ + γ) κ2 − γ2 − ε2

]

,

S+ = lim
k→∞

Ξ
(k)
+ (s) =

−2ε

(κ + γ)
2 − ε2

[

κ
√

κγ√
κγ γ

]

.
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In particular, S̃ = ∆(S−, S+) is a Bogoliubov matrix.
The squeezing parameter for the limit Bogoliubov trans-
formation is then

r = ln

(

κ + ε

κ− ε

)

,

or equivalently r (0) in (22). This is of course the equa-
tion (2).

The central issue here is that the asymptotic limit
|ω| → ∞ and the transfer function convergence limit
k →∞ do not commute: denoting the spectral squeezing
functions for the sequence of models as r(k) (ω) we have
limk→∞ r(k) (ω) = r for all ω, while lim|ω|→∞ r(k) (ω) = 0
for all k.

We likewise find that the inelastic contribution to the
power spectrum of the limit output quadratures is given
by (θ = 0)

P inel (θ = 0) =
(κ + γ + ε)

2

[

(κ + γ)
2 − ε2

]2×

[

(κ + γ)2 + ε2 − 2ε(γ − κ) 4
√

κγε
4
√

κγε (κ + γ)2 + ε2 + 2ε(γ − κ)

]

(38)

which has eigenvalues unity and (κ+γ+ε)4

[(κ+γ)2−ε2]
2 and is there-

fore positive definite as required. The matrix for θ = π
2 is

obtained by replacing ε by −ε. We have seen that for the
dynamic approximation we always have P inel

k (ω, θ) = I,
the identity matrix, for finite k. The limit situation on
the contrary now has purely inelastic squeezing.

V. FEEDBACK-ENHANCED SQUEEZING

For an idealized static description of a lossless DPA
when placed in loop as in FIG.3, we find that the squeez-
ing parameter is modified to

rα = ln

(

κ (α) + ε

κ (α)− ε

)

,

with κ (α) = 1−α
1+α

κ. We observe that the critical value of
the reflectivity α is

αcrit =
κ− ε

κ + ε
. (39)

Here κ (αcrit) = ε, and the squeezing parameter diverges.
The approximating dynamical model has spectral squeez-
ing function

r (ω, αcrit) =
1

2
ln

ω2 + ε2

ω2
. (40)

which possesses a logarithmic singularity at ω = 0 for
the critical situation. The open-loop system is stable if
and only if κ > ε, while for the closed-loop system this

is modified to κ (α) > ε. Therefore the infinite squeezing
situation implies the onset of instability of the closed-loop
amplifier.

It is instructive to look at the lossy (γ > 0) closed-
loop situation. The relevant description is then given by
(35) and (36). Hurwitz stability requires κ (α) + γ > ε.
We assume that the dissipation is below the threshold
value (γ < ε) and that the open-loop system is stable
(κ + γ > ε), then the closed loop system is stable for α ∈
(0, αcrit), where the critical value is now

αcrit =
κ− ε + γ

κ + ε− γ
. (41)

Here the critical value solves κ (αcrit) = ε − γ, and we
have

N11 (ω, αcrit) =
ε3 [ε− γ]

4 [ω2 + ε2]ω2
, (42)

M11 (ω, αcrit) =
ε [ε− γ]

[

ω2 +
(

ε
2

)2
]

2 [ω2 + ε2]ω2
. (43)

which are finite for ω 6= 0. Both expressions diverge in
the limit k →∞, however, when we replace the parame-
ters by (κk, εk, γk).

VI. CONCLUSION

Coherent quantum feedback control offers an intrigu-
ing potential to engineer physically interesting states,
and achieve high performance for quantum devices. The
feedback approach based on quantum measurement is
limited to time scales set by the measurement apparatus,
the computer estimating (filtering) the quantum state of
the system based on the measurements, and the imple-
mentation of the controls by the actuator based on the
filtered state. In contrast, coherent control is limited by
the time delays associated in light traversing the loop.

We have shown that coherent feedback control can en-
hance the capability of a device to squeeze quadratures by
using an optical network involving a beam-splitter loop.
Conversely, squeezing could be suppressed by altering the
beam splitter, for instance, by reversing the sign of α,
though there would arguably only enhancement would
be desirable.

By tuning the beam-splitter reflectivity, we can modify
the effective damping of an in-loop degenerate parametric
amplifier while leaving the amplifier The situation where
the squeezing becomes infinite corresponds to the thresh-
old value of the damping as discussed by Gardiner [28],
however, we observe that this
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