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Feature Selection for Aiding Glass Forensic

Evidence Analysis

Richard Jensen∗and Qiang Shen
{rkj, qqs}@aber.ac.uk

Department of Computer Science, Aberystwyth University, Wales, UK

Abstract

The evaluation of glass evidence in forensic science is an important
issue. Traditionally, this has depended on the comparison of the physical
and chemical attributes of an unknown fragment with a control fragment.
A high degree of discrimination between glass fragments is now achievable
due to advances in analytical capabilities. A random effects model using
two levels of hierarchical nesting is applied to the calculation of a likelihood
ratio (LR) as a solution to the problem of comparison between two sets of
replicated continuous observations where it is unknown whether the sets
of measurements shared a common origin. Replicate measurements from
a population of such measurements allow the calculation of both within-
group and between-group variances. Univariate normal kernel estimation
procedures have been used for this, where the between-group distribution
is considered to be non-normal. However, the choice of variable for use
in LR estimation is critical to the quality of LR produced. This paper
investigates the use of feature selection for the purpose of selecting the
variable for estimation without the need for expert knowledge. Results
are recorded for several selectors using normal, exponential, adaptive and
biweight kernel estimation techniques. Misclassification rates for the LR
estimators are used to measure performance. The experiments performed
reveal the capability of the proposed approach for this task.
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1 Introduction

One of the less obvious, but frequent, sources of forensic evidence are traces of

glass. This is regularly encountered at crime scenes, particularly those involving

motor vehicle accidents, car theft and burglaries. Windows are a common point

of entry into buildings for burglars and large quantities of broken glass are

produced in traffic accidents. Such glass fragments may remain for a long time

(depending on the type of crime) and do not degrade like biological evidence. In

addition fragments may also be transferred to anyone present during the glass

breakage, or even to someone having secondary contact with the offender.

The forensic scientist’s role in analysing glass is to clearly and unambigu-

ously determine the origin of the sample. Variation in the manufacture of glass

allows considerable discrimination even with very small fragments. Consider

the scenario where a crime has been committed involving the breakage of glass.

It is likely that fragments will remain at the location of the offence (referred to

as control fragments). Fragments may also have been transferred to the clothes

and footwear of the offender. A suspect may be identified and, on subsequent

examination, found to have glass fragments on their person (referred to as re-

covered fragments as their source is not known). In this case, the purpose of

fragment analysis is to evaluate the evidence for comparison of the proposition

that the glass associated with the suspect is from the same source as the frag-

ments from the crime scene with the proposition that the glass associated with

the suspect is not from the same source as the fragments from the crime scene.

The first stage of the examination of this kind of evidence is the recovery of
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glass fragments from the suspect. This is most frequently achieved through shak-

ing and/or brushing garments. The resulting debris is observed under an opti-

cal microscope and glass fragments separated manually. The physico-chemical

properties of the resulting fragments are then determined, often through the

GRIM (Glass Refractive Index Measurements) method and instrumental meth-

ods of elemental assay (e.g. µ-XRF, LA-ICP-MS, SEM-EDX). The comparison

between recovered and control glass fragments is then made on the basis of the

analytical results.

The increasing ability to collect and store data relevant for identification in a

forensic context has led to a corresponding increase in methods for the numerical

evaluation of evidence associated with particular evidence types. The compar-

ison of two sets of glass fragments by numerical methods requires careful at-

tention to the following considerations. Firstly, the similarity of recovered glass

fragment(s) to a control sample must be taken into account. Secondly, infor-

mation must be considered about the rarity of the determined physico-chemical

characteristics (e.g. elemental concentrations) for control and recovered samples

in the relevant population. Thirdly, the level of association between different

characteristics where more than one characteristic has been measured should

be accounted for. Fourthly, other possible sources of variation should be con-

sidered, including the variation of measurements of characteristics within the

control items, within recovered items, and between control and recovered items.

Significance tests are often used for this purpose. However, these only take

into account information concerning within-source variation and item similar-
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ity. This is a comparison of the samples based purely on their physico-chemical

properties. From a forensic viewpoint, knowledge concerning the sources of

variability and rarity of the measured properties should also be considered to

produce a more definitive evaluation. This motivates the use of two-level uni-

variate models that can incorporate such information effectively [1].

As discussed in [2], problems are encountered when dealing with multivariate

forensic data. When modelling multivariate databases, there is a lack of back-

ground data from which to estimate the parameters of the assumed distributions

such as means, variances and covariances. For example, when glass samples are

described by seven variables then it is necessary to estimate, reliably, seven

means, seven variances and 21 covariances for both within-group objects, and

between-group objects. This requires far more analytical data than is accessible

in many forensic databases, and observation of more variables, which in applied

forensic contexts may be required, would necessitate the estimation of an expo-

nentially larger number of means, variances, and covariances. The calculation

of a full model is simply not practical.

As a result of these issues, a single informative variable is usually selected

by an expert for use in the univariate model. This is the method followed by

the work in [3], where modeling takes place once one feature has been chosen

by the domain expert. The choice of such a variable is obviously a critical

factor in the resulting quality of evidence evaluation. Unfortunately, it is not

always known which single feature will provide the most information for this

purpose. There are also situations where many competing variables co-exist;
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manual selection of which variable to use may result in subsequent analysis being

too subjective. Through the use of feature selection methods, this important

decision can be made without expert knowledge. Indeed, experts may not be

available for making such decisions. The opposing side in a court case could

argue that, by selecting features, there is a loss of information. However, it is

often the case that datasets contain many features that are purely redundant.

The inclusion of such features will degrade the resulting quality of analysis. It

is useful in this case to remove these or at least recommend these for potential

removal to the forensic scientist.

This paper investigates and compares the effectiveness of different feature

selection methods and likelihood ratio estimation procedures for the glass foren-

sic evidence analysis domain. The rest of this paper is structured as follows.

The second section describes the recently developed fuzzy-rough set-based fea-

ture selection metric in addition to the current leading measures in the field.

Section three outlines the new two-level univariate estimation techniques. Sec-

tion four describes the application of the present work to glass analysis, and the

fifth section details the experimentation carried out and shows the results of

applying the techniques to this domain. The final section concludes the paper,

and proposes further work in this area.

2 Feature selection

The main aim of feature selection is to determine a minimal feature subset from

a problem domain while retaining a suitably high accuracy in representing the
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original features. In many real world problems feature selection is a must due

to the abundance of noisy, irrelevant or misleading features. For instance, by

removing these factors, learning from data techniques can benefit greatly. A

detailed review of feature selection techniques devised for classification tasks

and statistical methods can be found in [10, 17, 25].

2.1 Fuzzy-rough feature selection

Rough set theory (RST) [4, 27] can be used as such a tool to discover data

dependencies and to reduce the number of attributes contained in a dataset

using the data alone, requiring no additional information [15]. Over recent years,

RST has indeed become a topic of great interest to researchers and has been

applied to many domains. Given a dataset with discretized attribute values,

it is possible to find a subset (termed a reduct) of the original attributes using

RST that are the most informative; all other attributes can be removed from

the dataset with very little information loss.

The rough set-based selection process described in [5] can only operate ef-

fectively with datasets containing discrete values. Additionally, there is no way

of handling noisy data. As most datasets contain real-valued attributes, it is

necessary to perform a discretization step beforehand [24]. This can be imple-

mented by standard fuzzification techniques [30], enabling linguistic labels to

be associated with attribute values. It also aids the modelling of uncertainty

in data by allowing the possibility of the membership of a value to more than

one fuzzy label. However, membership degrees of attribute values to fuzzy sets

are not exploited in the process of dimensionality reduction. By using fuzzy-
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rough sets [8], it is possible to use this information to better guide attribute

selection. Here, real-valued attributes are still used, but are augmented with

corresponding fuzzy set definitions.

2.1.1 Fuzzy equivalence classes

In crisp rough set theory, equivalence classes (obtained through an indiscerni-

bility relation) are used to approximate concepts. Two objects are indiscernible

(according to some subset of features) if their values are identical for this subset.

In the same way that these equivalence classes are central to crisp rough sets

[27], fuzzy equivalence classes are central to the fuzzy-rough set approach [8].

For typical applications, this means that the decision values and the conditional

values may all be fuzzy. The family of normal fuzzy sets produced by a fuzzy

partitioning of the universe of discourse can play the role of fuzzy equivalence

classes [8].

2.1.2 Fuzzy lower and upper approximations

The fuzzy lower and upper approximations are fuzzy extensions of their crisp

counterparts. Informally, in crisp rough set theory, the lower approximation

of a set contains those objects that belong to it with certainty. The upper

approximation of a set contains the objects that possibly belong. The definitions

given in [8] diverge a little from the crisp upper and lower approximations, as

the memberships of individual objects to the approximations are not explicitly

available. As a result of this, the fuzzy lower and upper approximations are

redefined as:
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µPX(x) = sup
F∈U/P

min(µF (x), inf
y∈U

max{1− µF (y), µX(y)}) (1)

µPX(x) = sup
F∈U/P

min(µF (x), sup
y∈U

min{µF (y), µX(y)}) (2)

where µF (x) is the degree of membership of x to fuzzy equivalence class F , and

µX(x) is the degree of membership of x to the decision concept X. The tuple

〈PX,PX〉 is called a fuzzy-rough set.

For an individual feature, a, the partition of the universe by {a} (denoted

U/IND({a})) is considered to be the set of those fuzzy equivalence classes for

that feature. For subsets of feature, the following is used:

U/P = ⊗{a ∈ P : U/IND({a})} (3)

Each set in U/P denotes an equivalence class. The extent to which an

object belongs to such an equivalence class is therefore calculated by using the

conjunction of constituent fuzzy equivalence classes, say Fi, i = 1, 2, ..., n:

µF1∩...∩Fn(x) = min(µF1(x), µF2(x), ..., µFn(x)) (4)

2.1.3 Fuzzy-rough reduction process

Fuzzy-Rough Feature selection (FRFS) [15] builds on the notion of the fuzzy

lower approximation to enable reduction of datasets containing real-valued fea-

tures. The process becomes identical to the crisp approach when dealing with

nominal well-defined features.
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The crisp positive region in the standard RST is defined as the union of the

lower approximations. By the extension principle, the membership of an object

x ∈ U, belonging to the fuzzy positive region can be defined by

µPOSP (Q)(x) = sup
X∈U/Q

µPX(x) (5)

Using the definition of the fuzzy positive region, a new dependency function

between a set of features Q and another set P can be defined as follows:

γ′P (Q) =
|µPOSP (Q)(x)|

|U|
=
∑
x∈U µPOSP (Q)(x)

|U|
(6)

As with crisp rough sets, the dependency of Q on P is the proportion of

objects that are discernible out of the entire dataset. In the present approach,

this corresponds to determining the fuzzy cardinality of µPOSP (Q)(x) divided

by the total number of objects in the universe. This function can be used to

evaluate individual features to generate rankings, or can be used to guide subset

search as part of a feature selection process. When requiring feature selection

rather than individual feature evaluation, a greedy hill-climbing algorithm is

typically used [5].

2.2 Fuzzy entropy measure

Again, let I = (U,A) be a decision system, where U is a non-empty set of finite

objects. A = {C ∪D} is a non-empty finite set of attributes, where C is the set

of input features and D is the set of decision features. An attribute a ∈ A has

corresponding fuzzy subsets F1, F2, ..., Fn. The fuzzy entropy for a fuzzy subset
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Fi can be defined as:

H(D|Fi) =
∑

Q∈U/D

−p(Q|Fi) log2p(Q|Fi) (7)

where, p(Q|Fi) is the relative frequency of the fuzzy subset Fi of attribute a

with respect to the decision Q, and is defined:

p(Q|Fi) =
|Q ∩ Fi|
|Fi|

(8)

The cardinality of a fuzzy set is denoted by | · |. Based on these definitions, the

fuzzy entropy for an attribute subset R is defined as follows:

E(D|R) =
∑

Fi∈U/R

|Fi|∑
Yi∈U/R |Yi|

H(D|Fi) (9)

This fuzzy entropy can be used to gauge the utility of attribute subsets in

a similar way to that of the fuzzy-rough measure. However, the fuzzy entropy

measure decreases with increasing subset utility, whereas the fuzzy-rough de-

pendency measure increases.

2.3 Further metrics

Other leading feature significance measures in this field are presented here, for

use in the application. Information gain, gain ratio, χ2 and symmetrical uncer-

tainty are used to evaluate individual features. Relief-F and OneR incorporate

feature evaluation as part of their overall feature selection process. Further de-

tails concerning the operation of these methods can be found in the associated

references.
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2.3.1 Information gain

The Information Gain (IG) [13] is the expected reduction in (crisp) entropy

resulting from partitioning the dataset objects according to a particular feature.

The entropy of a labelled collection of objects S is defined as:

Entropy(S) =
c∑
i=1

−pilog2pi (10)

where pi is the proportion of S belonging to class i. Based on this, the Infor-

mation Gain metric is:

IG(S,A) = Entropy(S)−
∑

v∈values(A)

|Sv|
|S|

Entropy(Sv) (11)

where values(A) is the set of values for feature A, S the set of training examples,

Sv the set of training objects where A has the value v. This metric is the one

used in ID3 [29] for selecting the best feature to partition the data.

2.3.2 Gain ratio

One limitation of the IG measure is that it favours features with many values.

The Gain Ratio (GR) seeks to avoid this bias by incorporating another term,

split information, that is sensitive to how broadly and uniformly the attribute

splits the considered data:

Split(S,A) = −
∑

v∈values(A)

|Sv|
|S|

log2
|Sv|
|S|

(12)

where each Sv is the subset of training objects where A has value v. The Gain

Ratio is then defined as follows:
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GR(S,A) =
IG(S,A)
Split(S,A)

(13)

2.3.3 χ2 measure

In the χ2 method [23], features are individually evaluated according to their χ2

statistic with respect to the classes. For a numeric attribute, the method first

requires its range to be discretized into several intervals. The χ2 value of an

attribute (assuming interval and class independence) is defined as:

χ2 =
m∑
i=1

c∑
j=1

(Aij − Eij)2

Eij
(14)

where m is the number of intervals or nominal values, c the number of classes,

Aij the number of samples in the ith interval, jth class, Ri the number of

objects in the ith interval, Cj the number of objects in the jth class, N the

total number of objects, and Eij the expected frequency of Aij (Eij = Ri *

Cj/N). The larger the χ2 value, the more important the feature.

2.3.4 Symmetrical uncertainty

The Symmetrical Uncertainty [28] (SU) criterion compensates for the inherent

bias of IG by dividing it by the sum of the entropies of X and Y :

SU(X,Y ) = 2× Entropy(X)− Entropy(X|Y )
Entropy(X) + Entropy(Y )

(15)

Due to the correction factor, SU takes values which are normalised to the

range [0, 1]. A value of 0 indicates that X and Y are uncorrelated, and 1 means
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that the knowledge of one attribute completely predicts the other. Similarly to

GR, SU is biased toward features with fewer values.

2.3.5 Relief-F

Relief [18] evaluates the worth of an attribute by repeatedly sampling an instance

and considering the value of the given attribute for the nearest instance of

the same class (termed near hit, H) and different class (termed near miss,

M). Relief-F extends this idea to dealing with multi-class problems as well as

handling noisy and incomplete data. Instead of finding one near miss M , the

Relief-F algorithm finds the near miss for each different class M(C) and averages

their contribution for updating feature weights as follows:

W [A] = W [A]− d(A,R,H)
m

+
∑

C 6=class(R)

P (C)× d(A,R,M(C))
m

(16)

where d(A,R,X) is the distance between instance R and instance X for at-

tribute A, P (C) is the prior probability of class C, and m is a normalizing term

corresponding to the total number of iterations of the algorithm.

2.3.6 OneR

The OneR classifier [12] learns a one-level decision tree, i.e. it generates a set of

rules that test one particular attribute. One branch is assigned for every value

of a feature; each branch is assigned the most frequent class. The error rate is

then defined as the proportion of instances that do not belong to the majority

class of their corresponding branch.

Although OneR is used for classification, it can also be used for evaluating

individual features. Features with higher classification rates are considered to
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be more significant than those resulting in lower accuracies, and so individual

features can be ranked based on this.

3 Estimation of likelihood ratio

Commonly used significance tests, like the Student-t test for univariate data, and

Hotelling’s T 2 [19, 20], take into account only information about within-source

variation and the similarity of the compared items. Thus, the tests provide

information on the similarity of items on the basis of their physico-chemical

properties. From the forensic point of view, this is inadequate. What is required

is information concerning the value of the evidence of these measurements with

relation to the proposition that the two samples of glass fragments did, or did

not, come from the same source. This requires knowledge about the sources

of variability and the rarity of the measured physico-chemical properties in

the relevant population. For instance, one would expect refractive index (RI)

values from different locations on the same glass object to be very similar.

However, equally similar RI values could well be observed from different glass

items. Without a wider context it is not possible to ascribe meaning to the

observed similarity. Therefore inferences about the source of glass fragments

made purely on the basis of similarity of measurements are incomplete. This

section outlines several techniques for the estimation of likelihood ratios that

attempt to account for the variability and rarity issues through two-level models.

Further details are given in [3].
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3.1 Exponential model

Consider a two-level random effects model for a random variable X such that

(Xij | µ, σ2) ∼ N(µ, σ2) and (µ | α) ∼ Exp(α) with probability density function

f(µ | α) = α exp(−αµ).

Let {xij , i = 1, . . . ,m, j = 1, . . . , k} be a random sample from this model of

k observations from each of m groups. In the glass fragment analysis domain,

a group corresponds to a set of k measurements from a single source, such

as from a single window. Denote the m group means by x̄1, . . . , x̄m where

x̄i =
∑k
j=1 xij/k. The overall mean is denoted x̄. with x̄. =

∑m
i=1

∑k
j=1 xij/km.

Data y1 = {y1j , j = 1, . . . , nc} of nc observations from one group from a

crime scene (control data) and data y2 = {y2j , j = 1, . . . , ns} of ns observations

from a group associated with a suspect (recovered data) are obtained. The

value, V , of the evidence of these data is to be determined.

The value of evidence E in comparing the probabilities of the truth of two

propositions, Hp for the prosecution and Hd for the defence say, is taken to

be the factor which converts the odds in favour of Hp, relative to Hd, prior to

consideration of E, to the odds in favour of Hp, relative to Hd, posterior to

consideration of E. From the odds form of Bayes’ Theorem, the value of the

evidence can be seen to be the likelihood ratio

V =
Pr(E | Hp)
Pr(E | Hd)

The exponential distribution is investigated as it is not easy to transform
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to a normal distribution and because a theoretical value for the likelihood ratio

may be obtained against which various estimative procedures may be compared.

Some intermediate calculations and notation are required.

Let ȳ1 =
∑nc

j=1 y1j/nc and ȳ2 =
∑ns

j=1 y2j/ns denote the means of the crime

and suspect data, respectively. Let s2y1 =
∑nc

j=1(y1j − ȳ1)2/(nc − 1) and s2y2 =∑ns

j=1(y2j − ȳ2)2/(ns − 1) denote the variances of the crime and suspect data,

respectively.

The within-group variance σ2 of the underlying population is assumed known.

Its value is taken to be s2w =
∑m
i=1

∑k
j=1(xij − x̄i)2/(mk −m). The between-

group variance of the underlying population is also assumed known. Its value

is taken to be s2b =
∑m
i=1(x̄i − x̄.)2/(m− 1)− s2w/k.

The expectation of µ, an exponentially distributed random variable, is 1/α.

The parameter α is estimated by (x̄)−1. The variance of µ is 1/α2.

The value of the evidence (y1,y2) is given by

V =
∫
f(y1,y2 | µ, σ2)f(µ | α)dµ∫

f(y1 | µ, σ2)f(µ | α)dµ
∫
f(y2 | µ, σ2)f(µ | α)dµ

=
∫
f(y1 | µ, σ2)f(y2 | µ, σ2)f(µ | α)dµ∫

f(y1 | µ, σ2)f(µ | α)dµ
∫
f(y2 | µ, σ2)f(µ | α)dµ

.

This is the likelihood ratio, where Hp is assumed to be true for the numerator

(i.e. the suspect was at the crime scene, so y1,y2 are from the same source)

and Hd is assumed to be true for the denominator (i.e. the two samples are

assumed to be from different sources, so y1,y2 are independent). When y1

and y2 come from the same source, as is assumed in the numerator, they are
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dependent within the marginal distribution. Following the argument in [22],

y1 and y2 can be transformed to independent statistics (ȳ1...ȳ2, w), with unit

Jacobian. The numerator becomes f(ȳ1 − ȳ2)
∫
f(w | µ)f(µ | α)dµ. The value

V of the evidence is then (after simplification):

V =
1

α σ12

√
2π

exp
[
− 1

2σ2
12

(
ȳ1−ȳ2

)2+
α

2

{
2(ȳ1+ȳ2−w)+ασ2

3−ασ2
( 1
nc

+
1
ns

)}]
.

(17)

where

σ2
12 = σ2

( 1
nc

+
1
ns

)
;

σ2
3 =

σ2

nc + ns
+

1
α2

;

w = (ncȳ1 + nsȳ2)/(nc + ns).

Further information regarding the derivation of V can be found in [3]. For

estimations, the parameters α and σ2 are replaced by their estimates from the

population data {xij , i = 1, . . . ,m; j = 1, . . . , k}, namely, (x̄)−1 and s2w, respec-

tively. If the between-group distribution is assumed to be exponential then an

estimate of the value of evidence in a particular case with crime data y1 and

suspect data y2 may be obtained with substitution of the appropriate numerical

values for ȳ1 and ȳ2 in (17).

3.2 Biweight kernel estimation

The use of a kernel density estimate based on the normal distribution is difficult

when there is an achievable lower bound to the range of the variable being

modelled and the data are highly positively skewed so that much of the data
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are close to the lower bound. In the example to be discussed here, the lower

bound is zero and a kernel based on a normal distribution is very inaccurate

close to this lower bound. A more appropriate approach for modelling a highly

positively skewed distribution is the use of a biweight kernel [33] with a boundary

kernel for use when the kernel comes close to the lower bound of the range of

the random variable, in this case zero. The biweight kernel K(z) is defined as

K(z) =
15
16

(1− z2)2; | z |< 1. (18)

This kernel is used to model the between-group distribution using the sample

means {x̄1, . . . , x̄m}. A general biweight kernel, with smoothing parameter h,

and with a between-group variance of τ2 is given by

1
hτ
K
(µ− x̄

hτ

)
=

15
16hτ

{
1−

(µ− x̄
hτ

)2}2

; x̄− hτ < µ < x̄+ hτ. (19)

There are two candidates for the estimation of the between-group variance,

(i) s2b =
∑m
i=1(x̄i − x̄.)2/(m− 1)− s2w/k,

(ii) 1/(x̄)2,

the least-squares estimate and the method of moments estimate, respectively,

of τ2, the between-group variance.

The problem of a fixed lower bound at zero is tackled with a boundary

kernel. When an observation, x̄, is close to zero, a different kernel, known as

the boundary kernel [33], is used. Closeness is defined as x̄ < hτ . For x̄ > hτ ,

the biweight kernel (19) is used. For x̄ < hτ , a boundary kernel

Kh(z) =
ν2 − ν1z
ν0ν2 − ν2

1

K(z) (20)
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is used where K(z) is as given in (18). For ease of notation, denote hτ by δ.

The terms ν0, ν1 and ν2 are constants, functions of δ. For the kernel (18) these

are defined as

νt =
∫ δ

−1

ztK(z)dz, t = 0, 1, 2,

where the dependency in ν on δ is suppressed. They can be shown to be

ν2 =
1
14
{

1 +
1
8
δ3(35− 42δ2 + 15δ4)

}
,

ν1 =
5
32
{
δ2(3− 3δ2 + δ4)− 1

}
,

ν0 =
1
2

+
15
16

(δ − 2
3
δ3 +

1
5
δ5).

In practice, the factor (ν2 − ν1z)/(ν0ν2 − ν2
1) is close to 1.

An optimal value of the smoothing parameter h is given by

hopt =
(1

7

)− 2
5
(15

21

) 1
5
{∫

f ′′(x)2dx
}− 1

5
m−

1
5

[31]. Then, it can be shown that, when f(x) = α exp{−αx},

hopt =
(70
m

) 1
5
α−1

which can be estimated by

hopt =
(70
m

) 1
5
x̄.

3.3 Likelihood ratio with biweight and boundary kernels

Recall that the likelihood ratio is defined as

V =
Pr(E | Hp)
Pr(E | Hd)

=
f(ȳ1 − ȳ2)

∫
f(w | µ)f(µ | α)dµ∫

f(y1 | µ, σ2)f(µ | α)dµ
∫
f(y2 | µ, σ2)f(µ | α)dµ
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First, consider the denominator and the factor which is associated with the

crime sample {y1i, i = 1, . . . , nc}. Denote this as Dc. This may be written as

Dc =
∫
f(y11, . . . , y1nc

| µ, σ2)f(µ | α)dµ.

The factor associated with the suspect sample may be derived analogously and

denote this as Ds. The first term, Dc, in the denominator, with the biweight

kernel (19) used for f(µ | α), is given by

Dc =
∫
f(ȳ1 | µ, σ2)f(µ | α)dµ

=
√
nc

σ
√

2π

∫
exp

{
− nc

2σ2
(ȳ1 − µ)2

}[ 15
16 m h τ

m∑
i=1

{
1−

(µ− x̄i
h τ

)2}2]
dµ

=
15
√
nc

16 m σ
√

2π

m∑
i=1

∫ 1

−1

(1− z2
i )2 exp

{
− nc

2σ2
(ȳ1 − (x̄i + h τ zi))2

}
dzi.

Similarly, the second term, Ds, in the denominator, with the biweight kernel

(19) used for f(µ | α), is given by

Ds =
∫
f(ȳ2 | µ, σ2)f(µ | α)dµ

=
15
√
ns

16 m σ
√

2π

m∑
i=1

∫ 1

−1

(1− z2
i )2 exp

{
− ns

2σ2
(ȳ2 − (x̄i + h τ zi))2

}
dzi.

The numerator, N , is given by

N = f(ȳ1 − ȳ2)
∫
f(w | µ)f(µ | α)dµ

=
1

σ12

√
2π

exp
{
− 1

2σ2
12

(ȳ1 − ȳ2)2
} 15

16 m σ3

√
2π

m∑
i=1

∫ 1

−1

(1− z2
i )2 exp

[
− 1

2σ2
3

{
w − (x̄i + h τ zi)

}2
]
dzi.

It can be shown that the likelihood ratio is given by the ratio of N to the

product of Dc and Ds. Numerical evaluation of the likelihood ratio may then
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be made with the substitution of σ by sw, τ by sb and h by its optimal value

(70/m)1/5x̄.

There is a boundary effect when an (x̄i, i = 1, . . . ,m) is within hτ of zero.

For these x̄i, the kernel expression

{
1−

(µ− x̄i
hτ

)2}2

=
{

1− z2
i

}2

has to be adjusted with the factor (ν2−ν1z)/(ν0ν2−ν2
1), where zi = (µ−x̄i)/(hτ)

and ν0, ν1, ν2 are as in (20), to give

(ν2 − ν1zi)
ν0ν2 − ν2

1)

{
1− z2

i

}2

which can be written as

(a− bzi)
{

1− z2
i

}2

where a = ν2/(ν0ν2 − ν2
1) and b = ν1/(ν0ν2 − ν2

1). Define an indicator function

γ(zi) such that

γ(zi) = 1 if xi ≥ hτ,

= (a− bzi) if xi < hτ.

Then the likelihood ratio N/(DcDs) can be adapted to account for boundary

effects to give a value for the evidence of

1
σ12

√
2π

exp
{
− 1

2σ2
12

(ȳ1 − ȳ2)2
} 15

16 m σ3

√
2π
×

m∑
i=1

∫ 1

−1

γ(zi)(1− z2
i )2 exp

[
− 1

2σ2
3

{
w − (x̄i + h τ zi)

}2
]
dzi.

divided by the product of
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15
√
nc

16 m σ
√

2π

m∑
i=1

∫ 1

−1

γ(zi)(1− z2
i )2 exp

{
− nc

2σ2
(ȳ1 − (x̄i + h τ zi))2

}
dzi

and

15
√
ns

16 m σ
√

2π

m∑
i=1

∫ 1

−1

γ(zi)(1− z2
i )2 exp

{
− ns

2σ2
(ȳ2 − (x̄i + h τ zi))2

}
dzi.

3.4 Adaptive kernel

The value of the evidence, when the between-group distribution is taken to be

non-normal and is estimated by a normal kernel function as described in [1],

equation (10.12), is adapted to allow for the correlation between the control

and recovered data ȳ1 and ȳ2 if they are assumed, as in the numerator, to come

from the same source. This expression is then extended to an adaptive kernel,

where the smoothing parameter is dependent on xi and is thus denoted hi.

The numerator for equation (10.12) is

1
m

(2π)−1{(nc + ns
nc ns

)σ2}−1/2{τ2 +
σ2

nc + ns
}−1/2(h2

i τ
2)−1/2

{(τ2 +
σ2

nc + ns
)−1 + (h2

i τ
2)−1}−1/2 exp{−1

2
(ȳ1 − ȳ2)2[(

nc + ns
nc ns

)σ2]−1}

m∑
i=1

exp{−1
2

(w − x̄i)2(τ2 +
σ2

nc + ns
+ h2

i τ
2)−1}.

The first term in the denominator of equation (10.12) is

1
m

(2π)−1/2{τ2 +
σ2

nc
}−1/2(hi2 τ2)−1/2
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{(τ2 +
σ2

nc
)−1 + (h2

i τ
2)−1}−1/2

m∑
i=1

exp{−1
2

(ȳ1 − x̄i)2(τ2 +
σ2

nc
+ h2

i τ
2)−1}.

The second term in the denominator of equation (10.12) is

1
m

(2π)−1/2{τ2 +
σ2

ns
}−1/2(h2

i τ
2)−1/2

{(τ2 +
σ2

ns
)−1 + (h2

i τ
2)−1}−1/2

m∑
i=1

exp{−1
2

(ȳ2 − x̄i)2(τ2 +
σ2

ns
+ h2

i τ
2)−1}.

The constant term in the ratio is then:

m
{
ncτ

2(h2
i + 1) + σ2

}1/2{
nsτ

2(h2
i + 1) + σ2

}1/2

σ
{

(nc + ns)τ2(h2
i + 1) + σ2

}1/2
.

The remaining term, that involving ȳ1, ȳ2 and x̄i, is the ratio of

exp{−1
2

(ȳ1−ȳ2)2(σ2(
1
nc

+
1
ns

))−1}
m∑
i=1

exp{−1
2

(w−x̄i)2(τ2+
σ2

nc + ns
+h2

i τ
2)−1}

to

m∑
i=1

exp{−1
2

(ȳ1−x̄i)2(τ2+
σ2

nc
+h2

i τ
2)−1}

m∑
i=1

exp{−1
2

(ȳ2−x̄i)2(τ2+
σ2

ns
+h2

i τ
2)−1}.

3.4.1 Adaptive smoothing parameter

The adaptive smoothing parameter hi is estimated using the procedure outlined

in [31].

23



First, find a pilot estimate f̃(x) that satisfies f̃(xi) > 0 for all i. This

is achieved by standard kernel density estimation with Gaussian kernels [31].

Then define the smoothing parameter hi by

hi =
{
f̃(xi)/g

}−β
where g is the geometric mean of the f̃(xi):

log g = m−1
∑

log f̃(xi)

and β is a sensitivity parameter, a number satisfying 0 ≤ β ≤ 1.

4 Application

In order to evaluate the feature selection methods and LR estimators, a forensic

dataset was obtained from the Forensic Research Institute, Krakow, Poland. An

overview of the overall system can be found in Fig. 1.

One large piece of glass from each of 200 glass objects from various sources

(including float and container glass) was selected. Each of these 200 pieces was

wrapped in a sheet of grey paper and further fragmented. The fragments from

each piece were placed in a plastic Petri dish. Four glass fragments, of linear

dimension less than 0.5mm with surfaces as smooth and flat as possible, were

selected for examination with the use of an SMXX Carl Zeiss (Jena, Germany)

optical microscope (magnification 100×).
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4.1 Fragment elemental analysis

The four selected glass fragments were placed on self-adhesive carbon tabs on

an aluminium stub and then carbon coated using an SCD sputter (Bal-Tech,

Switzerland). The prepared stub was mounted in the sample chamber of a

scanning electron microscope. Analysis of the elemental content of each glass

fragment was carried out using a scanning electron microscope (JSM-5800 Jeol,

Japan), with an energy dispersive X-ray spectrometer (Link ISIS 300, Oxford

Instruments Ltd., United Kingdom).

Three replicate measurements were taken from different areas on each of the

four fragments, making twelve measurements from each glass object, but only

four independent measurements. The four means of the measurements were

used for the analysis. The measurement conditions were accelerating voltages

20kV , life time 50s, magnification 1000 - 2000×, and the calibration element

was cobalt. The SEMQuant option (part of the software LINK ISIS, Oxford

Instruments Ltd, United Kingdom) was used in the process of determining the

percentage of particular elements in a fragment. The option applied a ZAF

correction procedure, which takes into account corrections for the effects of

difference in the atomic number (Z), absorption (A) and X-ray fluorescence (F).

The selected analytical conditions allowed the determination of all elements

having an atomic number greater than 5 (Boron) when they were present at

levels greater than the detection limits. However, only the concentrations of

oxygen (O), sodium (Na), magnesium (Mg), aluminium (Al), silicon (Si), potas-

sium (K), calcium (Ca) and iron (Fe) are considered further in this paper as
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glass is essentially a silicon oxide with sodium and/or calcium added to cre-

ate a commonly produced glass, and potassium, magnesium, aluminium and

iron added to stabilise its structure and modify its physico-chemical properties.

Histograms of the distributions of the data can be found in Fig. 2.

4.2 Data preparation

As two of the feature selection algorithms require fuzzy sets to be defined for each

element in the dataset in order to maximise the use of information contained in

the real-valued variables, further processing is required. Note that the attributes

still take real values, and hence no discretization is performed. For this set of

experiments, five fuzzy sets per feature were derived automatically based on

the mean and standard deviation as seen in Fig. 3. The value λ was set at

0.7. There is no theoretical argument as to why five sets should be chosen,

although psychological research suggests that 5, 7 or 9 categories should be

used, mimicking human cognition [26]. To minimize computational effort, only

5 sets are defined for this application.

4.3 Feature selection

The feature selection methods outlined previously were applied to the processed

glass data in order to select a single attribute for use in the univariate LR

estimators. The dataset containing the full set of elements was processed by each

method, resulting in a ranking of these features. The top ranked feature/element

for each method was then selected, and the data reduced to this feature only.
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4.4 Estimators

The performance of four procedures for estimating the likelihood ratio is com-

pared. The procedures estimate the between-group distributions with a normal

distribution, an exponential distribution, a normal adaptive kernel and a bi-

weight kernel with a boundary condition.

5 Experimentation

This section presents the results of a comparison of both different feature se-

lection methods and different likelihood ratio estimation procedures, in order

to gauge the utility of both. In the experimentation, two situations need to

be considered; namely, when the control and recovered data are from the same

source and when they are from different sources. For same-source comparisons,

the control and recovered data are taken from the same group by splitting the

group into two equally-sized, non-overlapping halves (containing two measure-

ments each). For different-source comparisons, the control and recovered data

are entire groups selected from different sources.

5.1 Feature selection

Table 1 (summarized in table 2) presents the ordering of features as determined

by several leading measures of feature significance: fuzzy-rough feature selection

(FRFS), fuzzy entropy (FuzEnt), χ2, gain ratio (GR), information gain (IG),

OneR, Relief-F and symmetrical uncertainty (SU). It can be seen that FRFS,

IG and OneR select aluminium; FuzEnt and GR select sodium; χ2 and SU

select potassium; and Relief-F selects magnesium. Based on these selections
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and corresponding data reductions, the four estimators are applied.

5.2 Likelihood ratio estimation

There are 200 within-group comparisons of control and recovered data and

200 × 199/2 = 19, 900 between-group comparisons For the 200 within-group

comparisons, the likelihood ratio should be greater than 1 and for the 19,900

between-group comparisons, the likelihood ratio should be less than 1. Results

are recorded for a normal kernel estimation (nn), an exponential kernel esti-

mation (exp), an adaptive kernel estimation for β = 0, 0.1, 0.2 and 0.5 and a

biweight kernel estimation (b).

The results for the within-group and between-group estimations are shown

in tables 3 and 4 respectively. It can be seen that, overall, the results produced

using the aluminium data are superior than those generated using the other

considered elements. This is the element commonly chosen by domain experts

for univariate modelling [3]. The within-group estimation of likelihood ratio is

as good as or better than the others, and the between-group estimation is more

accurate. The results also indicate that magnesium is a very informative feature

for likelihood ratio estimation.

The level of false positives (important from a forensic viewpoint) is rather

high. This could be the result of several factors. The SEM-EDX method de-

livers information about the main elemental content of glass, thus differences

between glass objects are very small. Moreover, soda-lime-silica glass (the most

common) has a strict composition and production recipes, used in many facto-

ries, are very similar. Also, the data itself is created mostly from car windows
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and building windows, which have extremely similar elemental concentrations.

Sodium results are relatively bad as the concentration of Na is restricted by the

definition of Na-Ca-Si glass. Potassium results are also unsatisfactory because

it is only present in glass objects that have special optical properties, and so is

absent or undetectable in many objects (this may explain the poor performance

of the exponential model for this element). Aluminium and Magnesium results

are relatively superior as these elements are added to glass to create desired

features of glass objects and thus their content varies with glass properties.

For this dataset, the feature ranking methods FRFS, IG and OneR have

selected the best feature for likelihood estimation. This is in keeping with other

investigations that have shown the utility of FRFS, in particular, for this pur-

pose [16]. Although Relief-F selected an alternative feature, the results achieved

were almost as accurate. The results show that the normal kernel estimation

procedure is inadequate at modelling the underlying data distributions in gen-

eral. Excepting the case of sodium, it can be seen that even an exponential dis-

tribution is a better model as the resulting likelihood ratios are more accurate.

The eight methods of feature selection produced four different sets of results as

to the top-ranked feature. This illustrates the reason why an expert may be

needed to interpret the results. For example, Na, Si, and O are considered by

almost any expert to be the least useful elements for discriminating among glass

sources. As expected, Si and O do indeed rank as the worst elements. However,

the observations for Na are perhaps surprising, which may be as a result of Na

ion migration (a well-known problem with SEM-EDX measurements).
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The point of the analysis is not to say whether some fragment is likely to

have been derived from a glass object or not, but to make statements about

to what extent the observations (in this case, of elemental concentrations) lend

support to the proposition that the fragment came from the glass object in

question, or to the proposition that the fragment came from some other glass

object from the relevant population of objects. The likelihood ratio does not

provide a direct attribution of source - it provides a measure of the strength of

the evidence in support of one or other of the propositions in a case.

Small likelihood ratios would be regarded as very strong support that the

particular fragment from which the observations were made had come from some

source other than the broken glass object from the crime scene. However, this

value, whilst providing very strong support, may not be persuasive enough, one

way or the other, to affect the outcome of the case as a whole. The outcome is

dependent upon other evidence and court requirements.

6 Conclusion

As a type of evidence, glass can be very useful contact trace material in a wide

range of offences including burglaries and robberies, murders, assaults, criminal

damage and thefts of and from motor vehicles. In all of these situations, there

is the potential for glass fragment transfer, providing a link between suspect

and crime. Hence, the correct interpretation of glass evidence is critical in

establishing such connections.

Previous work has been based on the use of a normal kernel estimation
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procedure for evidence evaluation. However, this may be inadequate when the

data is positively skewed and an exponential distribution is thought to be a

better model [3]. Three techniques that attempt to alleviate this problem were

investigated and found to provide better likelihood ratio estimations.

In this paper, the role of feature selection as an aid to glass analysis was

investigated. As the two-level models used were univariate, the task of the se-

lection methods was to determine the most informative feature for use in the

models themselves. The results have shown that automated feature selection

techniques can indeed aid the choice of variable for further modelling. This

choice is a critical factor in the resulting quality of evidence evaluation. Sit-

uations are often encountered where many competing variables co-exist. The

manual selection of which variable to use may result in subsequent analysis be-

ing too subjective. Through the use of feature selection methods, this important

decision can be made without expert assistance.

Further work in the area of forensic glass analysis includes fragment iden-

tification. The classification of glass samples into their product/use type is

important, e.g. in corroborating or disproving an alibi or product tampering.

It is expected that not all features involved (in this case, chemicals) will be

useful for determining glass type, and hence feature selection methods could be

applied to remove this redundant, and possibly misleading, information. In [2],

log ratios of oxygen with the seven other variables are used as a standardization

procedure and as a transformation to normality. A similar approach could be

adopted for the work presented in this paper.
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Fig. 1: System overview.
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Fig. 2: Data distributions for the eight elements.
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Fig. 3: Fuzzy set construction.
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Table 1: Evaluation of features
Element FRFS IG OneR FuzEnt GR Relief-F χ2 SU

O 0.003929 0.267 52.50 1.839151 0.211 0.0364 368.4882 0.1615
Na 0.025909 0.597 55.75 1.581143 0.391 0.0894 968.2267 0.3345
Mg 0.025426 0.718 52.13 1.658684 0.367 0.1234 1010.738 0.3589
Al 0.025996 0.843 57.63 1.647498 0.275 0.0661 1167.625 0.3301
Si 0.009267 0.129 41.38 1.801163 0.127 0.0309 150.6826 0.0846
K 0.003118 0.825 55.75 1.582525 0.338 0.0928 1578.554 0.3682

Ca 0.008341 0.511 53.25 1.600595 0.312 0.0881 686.8860 0.2774
Fe 0.022455 0.191 45.50 1.741598 0.145 0.0453 174.0253 0.1136
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Table 2: Summary of feature evaluation, where A > B indicates that A is a
more informative feature than B, and A = B indicates identical ranking.

Selection method Feature ranking
FRFS Al>Na>Mg>Fe>Si>Ca>O>K

IG Al>K>Mg>Na>Ca>O>Si>Fe
OneR Al>Na=K>Ca>O>Mg>Fe>Si

FuzEnt Na>K>Ca>Al>Mg>Fe>Si>O
GR Na>Mg>K>Ca>Al>O>Fe>Si

Relief-F Mg>K>Na>Ca>Al>Fe>O>Si
χ2 K>Al>Mg>Na>Ca>O>Fe>Si
SU K>Mg>Na>Al>Ca>O>Fe>Si
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Table 3: Summary of likelihood ratios for within-group comparisons.

Likelihood ratio nn exp β b
range 0.0 0.1 0.2 0.5

Aluminium (Al) (chosen by FRFS, IG and OneR)

0− 1 4 4 4 4 4 4 4
1− 101 1 160 184 184 184 185 173

101 − 102 183 35 12 12 12 11 22
102 − 103 8 1 0 0 0 0 1
103 − 104 3 0 0 0 0 0 0
> 104 1 0 0 0 0 0 0

Misclassification 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%

Magnesium (Mg) data (chosen by Relief-F)

0− 1 6 6 6 6 6 6 6
1− 101 0 29 157 157 157 157 151

101 − 102 165 165 37 37 37 37 43
102 − 103 29 0 0 0 0 0 0
103 − 104 0 0 0 0 0 0 0
> 104 0 0 0 0 0 0 0

Misclassification 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0%

Potassium (K) data (chosen by χ2 and SU)

0− 1 4 43 4 4 4 4 4
1− 101 174 138 181 181 181 181 170

101 − 102 13 3 15 15 15 15 26
102 − 103 4 9 0 0 0 0 0
103 − 104 2 4 0 0 0 0 0
> 104 3 3 0 0 0 0 0

Misclassification 2.0% 21.5% 2.0% 2.0% 2.0% 2.0% 2.0%

Sodium (Na) data (chosen by FuzEnt and GR)

0− 1 5 3 7 7 7 7 4
1− 101 179 6 183 183 183 183 183

101 − 102 6 191 10 10 10 10 13
102 − 103 5 0 0 0 0 0 0
103 − 104 5 0 0 0 0 0 0
> 104 0 0 0 0 0 0 0

Misclassification 2.5% 1.5% 3.5% 3.5% 3.5% 3.5% 2.0%
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Table 4: Summary of likelihood ratios for between-group comparisons.

Likelihood ratio nn exp β b
range 0.0 0.1 0.2 0.5

Aluminium (Al) (chosen by FRFS, IG and OneR)

0− 1 10661 12548 12669 12662 12652 12518 13924
1− 101 2958 7031 7172 7180 7190 7319 5866

101 − 102 6243 320 59 58 58 63 120
102 − 103 34 1 0 0 0 0 0
103 − 104 4 0 0 0 0 0 0
> 104 0 0 0 0 0 0 0

Misclassification 46.4% 36.9% 36.3% 36.4% 36.4% 37.1% 30.0%

Magnesium (Mg) data (chosen by Relief-F)

0− 1 10955 11220 12020 12016 12003 11965 12408
1− 101 1673 2032 6969 6868 6707 5937 7169

101 − 102 6983 6648 911 1016 1190 1998 323
102 − 103 289 0 0 0 0 0 0
103 − 104 0 0 0 0 0 0 0
> 104 0 0 0 0 0 0 0

Misclassification 44.9% 43.6% 39.6% 39.6% 39.7% 39.9% 37.6%

Potassium (K) data (chosen by χ2 and SU)

0− 1 6463 7931 6989 6988 6986 6971 7861
1− 101 2722 11881 12869 12870 12872 12887 11960

101 − 102 10696 44 40 41 41 41 78
102 − 103 8 33 2 1 1 1 1
103 − 104 8 9 0 0 0 0 0
> 104 3 2 0 0 0 0 0

Misclassification 67.5% 60.1% 64.9% 64.9% 64.9% 65.0% 60.5%

Sodium (Na) data (chosen by FuzEnt and GR)

0− 1 8540 6543 9414 9414 9410 9345 7609
1− 101 11239 2879 10452 10451 10455 10519 6614

101 − 102 83 10478 34 35 35 36 5677
102 − 103 18 0 0 0 0 0 0
103 − 104 20 0 0 0 0 0 0
> 104 0 0 0 0 0 0 0

Misclassification 57.1% 67.1% 52.7% 52.7% 52.7% 53.0% 61.8%
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