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New Approaches to Fuzzy-Rough Feature Selection
Richard Jensen and Qiang Shen

Abstract— There has been great interest in developing method-
ologies which are capable of dealing with imprecision and
uncertainty. The large amount of research currently being carried
out in fuzzy and rough sets is representative of this. Many
deep relationships have been established and recent studies have
concluded at the complementary nature of the two methodologies.
Therefore, it is desirable to extend and hybridize the underlying
concepts to deal with additional aspects of data imperfection.
Such developments offer a high degree of flexibility and provide
robust solutions and advanced tools for data analysis. Fuzzy-
rough set-based feature selection has been shown to be highly
useful at reducing data dimensionality, but possesses several
problems that render it ineffective for large datasets. This
paper proposes three new approaches to fuzzy-rough feature
selection based on fuzzy similarity relations. In particular, a fuzzy
extension to crisp discernibility matrices is proposed and utilized.
Initial experimentation shows that the methods greatly reduce
dimensionality whilst preserving classification accuracy.

Index Terms— Dimensionality reduction; feature selection;
fuzzy-rough sets; fuzzy discernibility matrix; fuzzy positive re-
gion; fuzzy boundary region.

I. INTRODUCTION

FEATURE selection (FS) [7], [15] addresses the problem
of selecting those input features that are most predictive

of a given outcome; a problem encountered in many areas of
computational intelligence. Unlike other dimensionality reduc-
tion methods, feature selectors preserve the original meaning
of the features after reduction. This has found application
in tasks that involve datasets containing huge numbers of
features (in the order of tens of thousands) which, for some
learning algorithms, might be impossible to process further.
Recent examples include text processing and web content
classification [13].

There are often many features involved, and combinatorially
large numbers of feature combinations, to select from. Note
that the number of feature subset combinations with m features
from a collection of N total features is N !/[m!(N −m)!]. It
might be expected that the inclusion of an increasing number
of features would increase the likelihood of including enough
information to distinguish between classes. Unfortunately, this
is not necessarily true if the size of the training dataset does not
also increase rapidly with each additional feature included. A
high-dimensional dataset increases the chances that a learning
algorithm will find spurious patterns that are not valid in gen-
eral. More features may introduce more measurement noise,
and hence reduce performance (e.g. classification accuracy).
Most techniques employ some degree of reduction in order to
cope with large amounts of data, so an efficient and effective
reduction method is required.
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Lately there has been great interest in developing method-
ologies which are capable of dealing with imprecision and
uncertainty, and the resounding amount of research currently
being done in the areas related to fuzzy [43] and rough sets
[20] is representative of this. The success of rough set theory
is due in part to three aspects of the theory. Firstly, only
the facts hidden in data are analysed. Secondly, no additional
information about the data is required for data analysis such
as thresholds or expert knowledge on a particular domain.
Thirdly, it finds a minimal knowledge representation for data.
As rough set theory handles only one type of imperfection
found in data, it is complementary to other concepts for
the purpose, such as fuzzy set theory. The two fields may
be considered analogous in the sense that both can tolerate
inconsistency and uncertainty - the difference being the type of
uncertainty and their approach to it; fuzzy sets are concerned
with vagueness, rough sets are concerned with indiscernibility.
Many deep relationships have been established and more so,
most of the recent studies have concluded at this complemen-
tary nature of the two methodologies, especially in the context
of granular computing. Therefore, it is desirable to extend
and hybridize the underlying concepts to deal with additional
aspects of data imperfection. Such developments offer a high
degree of flexibility and provide robust solutions and advanced
tools for data analysis [16].

Fuzzy-rough feature selection (FRFS) provides a means by
which discrete or real-valued noisy data (or a mixture of both)
can be effectively reduced without the need for user-supplied
information. Additionally, this technique can be applied to data
with continuous or nominal decision attributes, and as such
can be applied to regression as well as classification datasets.
The only additional information required is in the form of
fuzzy partitions for each feature which can be automatically
derived from the data. However, there are several problems
with the approach from theoretical and practical viewpoints
that motivate further developments in this area. This paper
proposes three new methods for fuzzy-rough feature selection
that address these problems and provide robust strategies for
dimensionality reduction. In particular, the notion of the fuzzy
discernibility matrix is proposed for computing reductions.

This paper is structured as follows. The theoretical back-
ground is given in section II, providing necessary details
for crisp rough set theory, discernibility matrices and fuzzy-
rough concepts. In the third section, the new developments
for fuzzy-rough feature selection are presented: fuzzy lower
approximation-based, fuzzy boundary region-based and fuzzy
discernibility matrix-based approaches are discussed. Some
initial experimentation is provided in section IV. The paper
is concluded in section V.
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II. THEORETICAL BACKGROUND

Rough Set Attribute Reduction (RSAR) [5] provides a filter-
based tool by which knowledge may be extracted from a
domain in a concise way; retaining the information content
whilst reducing the amount of knowledge involved. The main
advantage that rough set analysis has is that it requires no
additional parameters to operate other than the supplied data
[10]. It works by making use of the granularity structure of
the data only. This is a major difference when compared with
Dempster-Shafer theory [25] and fuzzy set theory which re-
quire probability assignments and membership values respec-
tively. However, this does not mean that no model assumptions
are made. In fact by using only the given information, the
theory assumes that the data is a true and accurate reflection
of the real world (which may not be the case). The numerical
and other contextual aspects of the data are ignored which
may seem to be a significant omission, but keeps model
assumptions to a minimum.

An example dataset is given in table I to illustrate the
concepts involved. Here, the table consists of four conditional
features (a, b, c, d), one decision feature (e) and eight objects.

TABLE I
AN EXAMPLE DATASET

x ∈ U a b c d ⇒ e
0 S R T T R
1 R S S S T
2 T R R S S
3 S S R T T
4 S R T R S
5 T T R S S
6 T S S S T
7 R S S R S

A. Rough Set Feature Selection

Central to RSAR is the concept of indiscernibility. Let I =
(U,A) be an information system, where U is a non-empty
set of finite objects (the universe of discourse) and A is a
non-empty finite set of attributes such that a : U → Va for
every a ∈ A. Va is the set of values that attribute a may take.
With any P ⊆ A there is an associated equivalence relation
IND(P ):

IND(P ) = {(x, y) ∈ U2|∀a ∈ P, a(x) = a(y)} (1)

The partition of U, generated by IND(P) is denoted U/IND(P)
(or U/P for simplicity) and can be calculated as follows:

U/IND(P ) = ⊗{U/IND({a})|a ∈ P}, (2)

where ⊗ is specifically defined as follows for sets A and B:

A⊗B = {X ∩ Y |X ∈ A, Y ∈ B,X ∩ Y 6= ∅} (3)

If (x, y) ∈ IND(P ), then x and y are indiscernible
by attributes from P . The equivalence classes of the P -
indiscernibility relation are denoted [x]P . For the illustrative
example, if P = {b,c}, then objects 1, 6 and 7 are indiscernible;

as are objects 0 and 4. IND(P) creates the following partition
of U:

U/IND(P ) = U/IND({b})⊗ U/IND({c})
= {{0, 2, 4}, {1, 3, 6, 7}, {5}} ⊗
{{2, 3, 5}, {1, 6, 7}, {0, 4}}

= {{2}, {0, 4}, {3}, {1, 6, 7}, {5}}

Let X ⊆ U. X can be approximated using only the
information contained within P by constructing the P -lower
and P -upper approximations of X:

PX = {x ∈ U | [x]P ⊆ X} (4)

PX = {x ∈ U | [x]P ∩X 6= ∅} (5)

The tuple 〈PX,PX〉 is called a rough set. Let P and Q be
sets of attributes inducing equivalence relations over U, then
the positive, negative and boundary regions can be defined as:

POSP (Q) =
⋃
X∈U/Q PX

NEGP (Q) = U−
⋃
X∈U/Q PX

BNDP (Q) =
⋃
X∈U/Q PX −

⋃
X∈U/Q PX

The positive region contains all objects of U that can be
classified to classes of U/Q using the information in attributes
P. The boundary region, BNDP (Q), is the set of objects that
can possibly, but not certainly, be classified in this way. The
negative region, NEGP (Q), is the set of objects that cannot be
classified to classes of U/Q. For example, let P = {b,c} and
Q = {e}, then

POSP (Q) =
⋃
{∅, {2, 5}, {3}} = {2, 3, 5}

NEGP (Q) = U−
⋃
{{0, 4}, {2, 0, 4, 1, 6, 7, 5}, {3, 1, 6, 7}}

= ∅
BNDP (Q) = U− {2, 3, 5} = {0, 1, 4, 6, 7}

This means that objects 2, 3 and 5 can certainly be classified
as belonging to a class in attribute e, when considering
attributes b and c. The rest of the objects cannot be classified
as the information that would make them discernible is absent.

An important issue in data analysis is discovering depen-
dencies between attributes. Intuitively, a set of attributes Q
depends totally on a set of attributes P, denoted P ⇒ Q, if
all attribute values from Q are uniquely determined by values
of attributes from P. If there exists a functional dependency
between values of Q and P, then Q depends totally on P. In
rough set theory, dependency is defined in the following way:

For P, Q ⊂ A, it is said that Q depends on P in a degree k
(0 ≤ k ≤ 1), denoted P ⇒k Q, if

k = γP (Q) =
|POSP (Q)|
|U|

(6)

If k = 1, Q depends totally on P, if 0 < k < 1, Q depends
partially (in a degree k) on P, and if k = 0 then Q does not
depend on P . In the example, the degree of dependency of
attribute {e} on the attributes {b,c} is:

γ{b,c}({e}) =
|POS{b,c}({e})|

|U|
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=
|{2, 3, 5}|

|{0, 1, 2, 3, 4, 5, 6, 7}|
=

3
8

By calculating the change in dependency when an attribute
is removed from the set of considered conditional attributes,
a measure of the significance of the attribute can be obtained.
The higher the change in dependency, the more significant
the attribute is. If the significance is 0, then the attribute is
dispensable. More formally, given P,Q and an attribute a ∈ P,

σP (Q, a) = γP (Q)− γP−{a}(Q) (7)

1) Reduction Method: The reduction of attributes is
achieved by comparing equivalence relations generated by
sets of attributes. Attributes are removed so that the reduced
set provides the same predictive capability of the decision
attribute as the original. A reduct Rmin is defined as a minimal
subset R of the initial attribute set C such that for a given
set of attributes D, γR(D) = γC(D). From the literature, R
is a minimal subset if γR−{a}(D) 6= γR(D) for all a ∈ R.
This means that no attributes can be removed from the subset
without affecting the dependency degree. Hence, a minimal
subset by this definition may not be the global minimum (a
reduct of smallest cardinality). A given dataset may have many
reduct sets, and the collection of all reducts is denoted by

Rall = {X |X ⊆ C, γX(D) = γC(D);
γX−{a}(D) 6= γX(D), ∀a ∈ X} (8)

The intersection of all the sets in Rall is called the core,
the elements of which are those attributes that cannot be
eliminated without introducing more contradictions to the
representation of the dataset. For many tasks (for example,
feature selection [7]), a reduct of minimal cardinality is ideally
searched for. That is, an attempt is to be made to locate a single
element of the reduct set Rmin ⊆ Rall:

Rmin = {X |X ∈ Rall, ∀Y ∈ Rall, |X| ≤ |Y |} (9)

The intersection of all the reducts is called the core, the
elements of which are those attributes that cannot be elimi-
nated without introducing more contradictions to the dataset.
The goal of RSAR is to discover reducts.

Using the example, the dependencies for all possible subsets
of C can be calculated:

γ{a,b,c,d}({e}) = 8/8 γ{b,c}({e}) = 3/8
γ{a,b,c}({e}) = 4/8 γ{b,d}({e}) = 8/8
γ{a,b,d}({e}) = 8/8 γ{c,d}({e}) = 8/8
γ{a,c,d}({e}) = 8/8 γ{a}({e}) = 0/8
γ{b,c,d}({e}) = 8/8 γ{b}({e}) = 1/8
γ{a,b}({e}) = 4/8 γ{c}({e}) = 0/8
γ{a,c}({e}) = 4/8 γ{d}({e}) = 2/8
γ{a,d}({e}) = 3/8

Note that the given dataset is consistent since
γ{a,b,c,d}({e}) = 1. The set of minimal reducts for this
example is {{b, d}, {c, d}}.

The problem of finding a reduct of an information sys-
tem has been the subject of much research [1], [28]. The
QUICKREDUCT algorithm given in figure 1 (adapted from

[5]), attempts to calculate reducts without exhaustively gen-
erating all possible subsets. It starts off with an empty set
and adds in turn, one at a time, those attributes that result in
the greatest increase in the rough set dependency metric, until
this produces its maximum possible value for the dataset. The
heuristic used is based on equation (7), where σP∪a(Q, a) is
evaluated for each attribute, given reduct candidate P . Other
such techniques may be found in [21], [22].

QUICKREDUCT(C,D).
C, the set of all conditional attributes;
D, the set of decision attributes.

(1) R← {}
(2) do
(3) T ← R
(4) foreach x ∈ (C−R)
(5) if γR∪{x}(D) > γT (D)
(6) T ← R ∪ {x}
(7) R← T
(8) until γR(D) == γC(D)
(9) return R

Fig. 1. The QUICKREDUCT Algorithm

According to the QUICKREDUCT algorithm, the depen-
dency degree of the addition of each attribute to the current
reduct candidate (initially empty) is calculated, and the best
candidate chosen. This process continues until the dependency
of the subset equals the consistency of the dataset (1 if the
dataset is consistent). The generated reduct shows the way
of reducing the dimensionality of the original dataset by
eliminating those conditional attributes that do not appear in
the set.

Determining the consistency of the entire dataset is reason-
able for many datasets. However, it may be infeasible for very
large data, so alternative stopping criteria may have to be used.
One such criterion could be to terminate the search when there
is no further increase in the dependency measure [5].

This, however, is not guaranteed to find a true reduct, i.e.
one that is of minimal cardinality. Using the dependency
function to discriminate between candidates may lead the
search down a non-minimal path. It is impossible to predict
which combinations of attributes will lead to an optimal
reduct based on changes in dependency with the addition or
deletion of single attributes. It does result in a close-to-minimal
subset, though, which is still useful in greatly reducing dataset
dimensionality.

B. Discernibility Matrix Approach

Many applications of rough sets to feature selection make
use of discernibility matrices for finding reducts. A discerni-
bility matrix [14], [26] of a decision table D = (U,C∪D) is
a symmetric |U| × |U| matrix with entries defined:

cij = {a ∈ C|a(xi) 6= a(xj)} i, j = 1, ..., |U| (10)

Each cij contains those attributes that differ between objects i
and j. For finding reducts, the decision-relative discernibility
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matrix is of more interest. This only considers those object
discernibilities that occur when the corresponding decision
features differ. Returning to the example dataset, the decision-
relative discernibility matrix found in Table II is produced. For
example, it can be seen from Table I that objects 0 and 1 differ
in each attribute. Although some attributes in objects 1 and 3
differ, their corresponding decisions are the same so no entry
appears in the decision-relative matrix. Grouping all entries
containing single features forms the core of the dataset (those
features appearing in every reduct). Such entries imply that
at least two objects can only be distinguished by this feature
alone, and so must appear in all reducts. Here, the core of the
dataset is {d}.

From this, the discernibility function can be defined. This
is a concise notation of how each object within the dataset
may be distinguished from the others. A discernibility function
fD is a boolean function of m boolean variables a∗1, ..., a

∗
m

(corresponding to the attributes a1, ..., am) defined as below:

fD(a∗1, ..., a
∗
m) = ∧{∨c∗ij |1 ≤ j ≤ i ≤ |U|, cij 6= ∅} (11)

where c∗ij = {a∗|a ∈ cij}. By finding the set of all prime
implicants [26] of the discernibility function, all the minimal
reducts of a system may be determined.

From table II, the decision-relative discernibility function is
(with duplicates removed):

fD(a, b, c, d) = {a ∨ b ∨ c ∨ d} ∧ {a ∨ c ∨ d} ∧ {b ∨ c}
∧{d} ∧ {a ∨ b ∨ c} ∧ {a ∨ b ∨ d}
∧{b ∨ c ∨ d} ∧ {a ∨ d}

Further simplification can be performed by removing those
sets that are supersets of others:

fD(a, b, c, d) = {b ∨ c} ∧ {d}
The reducts of the dataset may be obtained by converting the

above expression from conjunctive normal form to disjunctive
normal form (without negations). Hence, the minimal reducts
are {b, d} and {c, d}. Although this is guaranteed to discover
all minimal subsets, it is a costly operation rendering the
method impractical for even medium-sized datasets.

For certain applications, a single minimal subset is all that
is required for data reduction. For example, dimensionality
reduction within text classification tends to use only one
subset to remove unnecessary keywords [11]. This has led
to approaches that consider finding individual shortest prime
implicants from the discernibility function. A common method
is to incrementally add those attributes that occur with the most
frequency in the function, removing any clauses containing the
attributes, until all clauses are eliminated [17], [32]. However,
even this does not ensure that a minimal subset is found - the
search can proceed down non-minimal paths.

C. Fuzzy-Rough Feature Selection

The RSAR process described previously can only operate
effectively with datasets containing discrete values. Addition-
ally, there is no way of handling noisy data. As most datasets
contain real-valued attributes, it is necessary to perform a
discretization step beforehand. This is typically implemented
by standard fuzzification techniques [24], enabling linguistic
labels to be associated with attribute values. It also aids the

modelling of uncertainty in data by allowing the possibility of
the membership of a value to more than one linguistic label.
However, membership degrees of attribute values to fuzzy sets
are not exploited in the process of dimensionality reduction.
By using fuzzy-rough sets [9], [19], it is possible to use this
information to better guide feature selection [13].

1) Fuzzy Equivalence Classes: In the same way that crisp
equivalence classes are central to rough sets, fuzzy equivalence
classes are central to the fuzzy-rough set approach [9], [29],
[39]. For typical applications, this means that the decision
values and the conditional values may all be fuzzy. The
concept of crisp equivalence classes can be extended by the
inclusion of a fuzzy similarity relation S on the universe,
which determines the extent to which two elements are similar
in S. The usual properties of reflexivity (µS(x, x) = 1),
symmetry (µS(x, y) = µS(y, x)) and T -transitivity (µS(x, z)
≥ µS(x, y) ∧T µS(y, z)) hold.

The family of normal fuzzy sets produced by a fuzzy
partitioning of the universe of discourse can play the role of
fuzzy equivalence classes [9]. Consider the crisp partitioning
of a universe of discourse, U, by the attributes in Q: U/Q
= {{1,3,6},{2,4,5}}. This contains two equivalence classes
({1,3,6} and {2,4,5}) that can be thought of as degenerated
fuzzy sets, with those elements belonging to the class possess-
ing a membership of one, zero otherwise. For the first class,
for instance, the objects 2, 4 and 5 have a membership of
zero. Extending this to the case of fuzzy equivalence classes is
straightforward: objects can be allowed to assume membership
values, with respect to any given class, in the interval [0,1].
U/Q is not restricted to crisp partitions only; fuzzy partitions
are equally acceptable. For the work presented here, a simple
fuzzification pre-processor is used to derive the fuzzy sets,
corresponding to fuzzy equivalence classes, via the use of the
statistical properties of the data.

2) Fuzzy-Rough Sets: There have been two main lines of
thought in the hybridization of fuzzy and rough sets, the
constructive approach and the axiomatic approach. A general
framework for the study of fuzzy-rough sets from both of
these viewpoints is presented in [42]. For the constructive
approach, generalized lower and upper approximations are
defined based on fuzzy relations. Initially, these were fuzzy
similarity/equivalence relations [9] but have since been ex-
tended to arbitrary fuzzy relations [42]. The axiomatic ap-
proach is primarily for the study of the mathematical properties
of fuzzy-rough sets [36]. Here, various classes of fuzzy-rough
approximation operators are characterized by different sets of
axioms that guarantee the existence of types of fuzzy relations
producing the same operators.

An original definition for fuzzy P -lower and P -upper
approximations was given as follows [9]:

µPX(Fi) = inf
x

max{1− µFi
(x), µX(x)} ∀i (12)

µPX(Fi) = sup
x

min{µFi(x), µX(x)} ∀i (13)

where Fi is a fuzzy equivalence class and X is the (fuzzy)
concept to be approximated. The tuple 〈PX,PX〉 is called
a fuzzy-rough set. These definitions diverge a little from the
crisp upper and lower approximations, as the memberships
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TABLE II
THE DECISION-RELATIVE DISCERNIBILITY MATRIX

0 1 2 3 4 5 6 7
0
1 {a, b, c, d}
2 {a, c, d} {a, b, c}
3 {b, c} {a, b, d}
4 {d} {a, b, c, d} {b, c, d}
5 {a, b, c, d} {a, b, c} {a, b, d}
6 {a, b, c, d} {b, c} {a, b, c, d} {b, c}
7 {a, b, c, d} {d} {a, c, d} {a, d}

of individual objects to the approximations are not explicitly
available. As a result of this, the fuzzy lower and upper
approximations are redefined as [12]:

µPX(x) = sup
F∈U/P

min(µF (x), inf
y∈U

max{1− µF (y), µX(y)})

(14)
µPX(x) = sup

F∈U/P
min(µF (x), sup

y∈U
min{µF (y), µX(y)})

(15)
It can be seen that these definitions degenerate to traditional
rough sets when all equivalence classes are crisp [11].

Also defined in the literature are rough-fuzzy sets [9],
which can be seen to be a particular case of fuzzy-rough
sets. A rough-fuzzy set is a generalization of a rough set,
derived from the approximation of a fuzzy set in a crisp
approximation space. In [38] it is argued that, to be consistent,
the approximation of a crisp set in a fuzzy approximation space
should be called a fuzzy-rough set, and the approximation of
a fuzzy set in a crisp approximation space should be called
a rough-fuzzy set, making the two models complementary. In
this framework, the approximation of a fuzzy set in a fuzzy
approximation space is considered to be a more general model,
unifying the two theories. However, most researchers consider
the traditional definition of fuzzy-rough sets in [9] as standard.

The specific use of min and max operators in the definitions
above is expanded in [23], where a broad family of fuzzy-
rough sets is constructed, each member represented by a
particular implicator and t-norm. The properties of three well-
known implicators (S-, R- and QL-implicators) are investi-
gated. Further investigations in this area can be found in [8],
[29], [37], [42].

3) Fuzzy-Rough Reduction Process: Fuzzy-rough set-based
feature selection builds on the notion of the fuzzy lower
approximation to enable reduction of datasets containing real-
valued attributes. As will be shown, the process becomes
identical to the crisp approach when dealing with nominal
well-defined attributes.

The crisp positive region in traditional rough set theory
is defined as the union of the lower approximations. By the
extension principle [44], the membership of an object x ∈ U,
belonging to the fuzzy positive region can be defined by

µPOSP (Q)(x) = sup
X∈U/Q

µPX(x) (16)

Object x will not belong to the positive region only if the
equivalence class it belongs to is not a constituent of the
positive region. This is equivalent to the crisp version where

objects belong to the positive region only if their underlying
equivalence class does so.

Using the definition of the fuzzy positive region, the fuzzy-
rough dependency function can be defined as follows:

γ′P (Q) =
|µPOSP (Q)(x)|

|U|
=

∑
x∈U µPOSP (Q)(x)

|U|
(17)

As with crisp rough sets, the dependency of Q on P
is the proportion of objects that are discernible out of the
entire dataset. In the present approach, this corresponds to
determining the fuzzy cardinality of µPOSP (Q)(x) divided by
the total number of objects in the universe.

If the fuzzy-rough reduction process is to be useful, it
must be able to deal with multiple attributes, finding the
dependency between various subsets of the original attribute
set. For example, it may be necessary to be able to determine
the degree of dependency of the decision attribute(s) with
respect to P = {a, b}. In the crisp case, U/P contains sets
of objects grouped together that are indiscernible according
to both attributes a and b. In the fuzzy case, objects may
belong to many equivalence classes, so the cartesian product
of U/IND({a}) and U/IND({b}) must be considered in
determining U/P . In general,

U/P = ⊗{U/IND({a})|a ∈ P}, (18)

where

A⊗B = {X ∩ Y |X ∈ A, Y ∈ B,X ∩ Y 6= ∅} (19)

Each set in U/P denotes an equivalence class. For example,
if P = {a, b}, U/IND({a}) = {Na, Za} and U/IND({b})
= {Nb, Zb}, then

U/P = {Na ∩Nb, Na ∩ Zb, Za ∩Nb, Za ∩ Zb}

The extent to which an object belongs to such an equivalence
class is therefore calculated by using the conjunction of
constituent fuzzy equivalence classes, say Fi, i = 1, 2, ..., n:

µF1∩...∩Fn
(x) = min(µF1(x), µF2(x), ..., µFn

(x)) (20)

4) Fuzzy-Rough QUICKREDUCT: A problem may arise
when this approach is compared to the crisp approach. In
conventional RSAR, a reduct is defined as a subset R of the
attributes which have the same information content as the full
attribute set A. In terms of the dependency function this means
that the values γ(R) and γ(A) are identical and equal to 1 if
the dataset is consistent. However, in the fuzzy-rough approach
this is not necessarily the case as the uncertainty encountered
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when objects belong to many fuzzy equivalence classes results
in a reduced total dependency.

FRQUICKREDUCT(C,D).
C, the set of all conditional attributes;
D, the set of decision attributes.

(1) R← {}; γ′best = 0; γ′prev = 0
(2) do
(3) T ← R
(4) γ′prev = γ′best
(5) foreach x ∈ (C−R)
(6) if γ′R∪{x}(D) > γ′T (D)
(7) T ← R ∪ {x}
(8) γ′best = γ′T (D)
(9) R← T
(10) until γ′best == γ′prev
(11) return R

Fig. 2. The fuzzy-rough QUICKREDUCT algorithm

With these issues in mind, a fuzzy-rough hill-climbing
search algorithm has been developed as given in Fig. 2. It
employs the fuzzy-rough dependency function γ′ to choose
which attributes to add to the current reduct candidate in a
manner similar to QUICKREDUCT. The algorithm terminates
when the addition of any remaining attribute does not increase
the dependency (such a criterion could be used with the
QUICKREDUCT algorithm). As this fuzzy-rough degree of
dependency measure is non-monotonic, it is possible that the
hill-climbing search terminates having reached only a local
optimum. The global optimum may lie elsewhere in the search
space. As with the original QUICKREDUCT algorithm, the
algorithm may return a super-reduct (i.e. a reduct containing
superfluous features) due to the non-optimality of the search
heuristic used [40].

Note that with the fuzzy-rough QUICKREDUCT algorithm,
for a dimensionality of n, (n2+n)/2 evaluations of the depen-
dency function may be performed for the worst-case dataset.
However, as FRFS is used for dimensionality reduction prior
to any involvement of the system which will employ those
attributes belonging to the resultant reduct, this operation has
no negative impact upon the run-time efficiency of the system.

5) Example: To illustrate the operation of FRFS, an exam-
ple dataset is given in Fig. 3. In crisp RSAR, the dataset would
be discretized using non-fuzzy sets. However, in the new
approach membership degrees are used in calculating the fuzzy
lower approximations and fuzzy positive regions. To begin
with, the fuzzy-rough QUICKREDUCT algorithm initializes the
potential reduct (i.e. the current best set of attributes) to the
empty set.

Using the fuzzy sets defined in Fig. 3 (for all conditional
attributes for illustrative simplicity), and setting A = {a},
B = {b}, C = {c} and Q = {q}, the following equivalence
classes are obtained:

U/A = {Na, Za}
U/B = {Nb, Zb}
U/C = {Nc, Zc}
U/Q = {{1, 3, 6}, {2, 4, 5}}

Object a b c q
1 -0.4 -0.3 -0.5 no
2 -0.4 0.2 -0.1 yes
3 -0.3 -0.4 -0.3 no
4 0.3 -0.3 0 yes
5 0.2 -0.3 0 yes
6 0.2 0 0 no

Fig. 3. Dataset and corresponding fuzzy sets

The first step is to calculate the lower approximations of
the decision concepts for the sets A, B and C. For straightfor-
wardness, only the calculations involving A are demonstrated
here; that is, using A to approximate Q. For the first decision
equivalence class X = {1,3,6}, µA{1,3,6}(x) is calculated:

µA{1,3,6}(x) = sup
F∈U/A

min(µF (x),

inf
y∈U

max{1− µF (y), µ{1,3,6}(y)})

Considering the first fuzzy equivalence class of A, Na:

min(µNa
(x), inf

y∈U
max{1− µNa

(y), µ{1,3,6}(y)})

For object 2 this can be calculated as follows:

min(0.8, inf{1, 0.2, 1, 1, 1, 1}) = 0.2

Similarly for Za

min(0.2, inf{1, 0.8, 1, 0.6, 0.4, 1} = 0.2

Thus,
µA{1,3,6}(2) = 0.2

Calculating the A-lower approximation of X = {1, 3, 6} for
every object gives

µA{1,3,6}(1) = 0.2 µA{1,3,6}(2) = 0.2
µA{1,3,6}(3) = 0.4 µA{1,3,6}(4) = 0.4
µA{1,3,6}(5) = 0.4 µA{1,3,6}(6) = 0.4

The corresponding values for X = {2, 4, 5} can also be
determined this way. Using these values, the fuzzy positive
region for each object can be calculated via using

µPOSA(Q)(x) = sup
X∈U/Q

µAX(x)

This results in:
µPOSA(Q)(1) = 0.2 µPOSA(Q)(2) = 0.2
µPOSA(Q)(3) = 0.4 µPOSA(Q)(4) = 0.4
µPOSA(Q)(5) = 0.4 µPOSA(Q)(6) = 0.4
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It is a coincidence here that µPOSA(Q)(x) = µA{1,3,6}(x) for
this example. The next step is to determine the degree of
dependency of Q on A:

γ′A(Q) =
∑
x∈U µPOSA(Q)(x)

|U|
= 2/6

Similarly, calculating for B and C gives:

γ′B(Q) =
2.4
6
, γ′C(Q) =

1.6
6

From this it can be seen that attribute b will cause the greatest
increase in dependency degree. This attribute is chosen and
added to the potential reduct. The process iterates and the two
dependency degrees calculated are

γ′{a,b}(Q) =
3.4
6
, γ′{b,c}(Q) =

3.2
6

Adding attribute a to the reduct candidate causes the larger
increase of dependency, so the new candidate becomes {a, b}.
Lastly, attribute c is added to the potential reduct:

γ′{a,b,c}(Q) =
3.4
6

As this causes no increase in dependency, the algorithm stops
and outputs the reduct {a, b}. The dataset can now be reduced
to only those attributes appearing in the reduct. When crisp
RSAR is performed on this dataset (after using the same
fuzzy sets to discretize the real-valued attributes), the reduct
generated is {a, b, c}, i.e. the full conditional attribute set.

D. Problems with FRFS

FRFS has been shown to be a highly useful technique in
reducing data dimensionality [13]. However, several problems
exist with the method. Firstly, the complexity of calculating
the Cartesian product of fuzzy equivalence classes becomes
prohibitively high for large feature subsets. If the number of
fuzzy sets per attribute is n, n|R| equivalence classes must be
considered per attribute for feature subset R. Optimizations
that attempt to alleviate this problem are given in [2], [13],
but the complexity is still too high. In [3], a compact compu-
tational domain is proposed to reduce the computational effort
required to calculate fuzzy lower approximations for large
datasets, based on some of the properties of fuzzy connectives.

Secondly, it was shown in [30] that in some situations, the
fuzzy lower approximation might not be a subset of the fuzzy
upper approximation. This is undesirable from a theoretical
viewpoint as it is meaningless for a lower approximation of
a concept to be larger than its upper approximation as this
suggests that there is more certainty in the upper than the
lower. It was also shown that the Cartesian product of fuzzy
equivalence classes might not result in a family of fuzzy
equivalence classes. These issues motivate the development
of the techniques proposed in this paper.

III. NEW FUZZY ROUGH FEATURE SELECTION

This section presents three new techniques for fuzzy-rough
feature selection, based on fuzzy similarity relations.

A. Fuzzy Lower Approximation-based FS

The previous method for fuzzy-rough feature selection used
a fuzzy partitioning of the input space in order to determine
fuzzy equivalence classes. Alternative definitions for the fuzzy
lower and upper approximations can be found in [23], where
a T -transitive fuzzy similarity relation is used to approximate
a fuzzy concept X:

µRPX(x) = inf
y∈U

I(µRP
(x, y), µX(y)) (21)

µRPX
(x) = sup

y∈U
T (µRP

(x, y), µX(y)) (22)

Here, I is a fuzzy implicator and T a t-norm. RP is the fuzzy
similarity relation induced by the subset of features P :

µRP
(x, y) =

⋂
a∈P
{µRa

(x, y)} (23)

µRa(x, y) is the degree to which objects x and y are similar for
feature a. Many fuzzy similarity relations can be constructed
for this purpose, for example:

µRa
(x, y) = 1− |a(x)− a(y)|

|amax − amin|
(24)

µRa(x, y) = exp(− (a(x)− a(y))2

2σa2
) (25)

µRa(x, y) = max(min(
(a(y)− (a(x)− σa))
(a(x)− (a(x)− σa))

,

((a(x) + σa)− a(y))
((a(x) + σa)− a(x))

, 0) (26)

where σa2 is the variance of feature a. As these relations do
not necessarily display T -transitivity, the fuzzy transitive clo-
sure must be computed for each attribute [8]. The combination
of feature relations in equation (23) has been shown to preserve
T -transitivity [31].

1) Reduction: In a similar way to the original FRFS ap-
proach, the fuzzy positive region can be defined as:

µPOSRP
(Q)(x) = sup

X∈U/Q
µRPX(x) (27)

The resulting degree of dependency is:

γ′P (Q) =

∑
x∈U

µPOSRP
(Q)(x)

|U|
(28)

A fuzzy-rough reduct R can be defined as a subset of
features that preserves the dependency degree of the entire
dataset, i.e. γ′R(D) = γ′C(D). Based on this, a new fuzzy-rough
QUICKREDUCT algorithm can be constructed that operates
in the same way as Fig. 2, but uses equation (28) to gauge
subset quality. A proof of the monotonicity of the dependency
function can be found in the appendix. Core features may be
determined by considering the change in dependency of the
full set of conditional features when individual attributes are
removed:

Core(C) = {a ∈ C|γ′C−{a}(Q) < γ′C(Q)} (29)
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2) Example: The fuzzy connectives chosen for this example
(and all others in this section) are the Łukasiewicz t-norm
(max(x + y − 1, 0)) and the Łukasiewicz fuzzy implicator
(min(1−x+ y, 1)). As recommended in [8], the Łukasiewicz
t-norm is used as this produces fuzzy T -equivalence relations
dual to that of a pseudo-metric. The use of the Łukasiewicz
fuzzy implicator is also recommended as it is both a residual
and S-implicator.

Using the fuzzy similarity measure defined in (26), the
resulting relations are as follows for each feature in the dataset:

Ra(x, y) =


1.0 1.0 0.699 0.0 0.0 0.0
1.0 1.0 0.699 0.0 0.0 0.0

0.699 0.699 1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.699 0.699
0.0 0.0 0.0 0.699 1.0 1.0
0.0 0.0 0.0 0.699 1.0 1.0



Rb(x, y) =


1.0 0.0 0.568 1.0 1.0 0.0
0.0 1.0 0.0 0.0 0.0 0.137

0.568 0.0 1.0 0.568 0.568 0.0
1.0 0.0 0.568 1.0 1.0 0.0
1.0 0.0 0.568 1.0 1.0 0.0
0.0 0.137 0.0 0.0 0.0 1.0



Rc(x, y) =


1.0 0.0 0.036 0.0 0.0 0.0
0.0 1.0 0.036 0.518 0.518 0.518

0.036 0.036 1.0 0.0 0.0 0.0
0.0 0.518 0.0 1.0 1.0 1.0
0.0 0.518 0.0 1.0 1.0 1.0
0.0 0.518 0.0 1.0 1.0 1.0


Again, the first step is to compute the lower approximations

of each concept for each feature. Considering feature a and
the decision concept {1,3,6} in the example dataset:

µRa{1,3,6}(x) = inf
y∈U

I(µRa(x, y), µ{1,3,6}(y))

For object 3, this is

µRa{1,3,6}(3) = inf
y∈U

I(µRa
(3, y), µ{1,3,6}(y))

= inf{I(0.699, 1), I(0.699, 0), I(1, 1),
I(0, 0), I(0, 0), I(0, 1)}

= 0.301

For the remaining objects, this is:

µRa{1,3,6}(1) = 0.0

µRa{1,3,6}(2) = 0.0

µRa{1,3,6}(4) = 0.0

µRa{1,3,6}(5) = 0.0

µRa{1,3,6}(6) = 0.0

For concept {2, 4, 5}, the lower approximations are:

µRa{2,4,5}(1) = 0.0

µRa{2,4,5}(2) = 0.0

µRa{2,4,5}(3) = 0.0

µRa{2,4,5}(4) = 0.301

µRa{2,4,5}(5) = 0.0

µRa{2,4,5}(6) = 0.0

Hence, the positive regions for each object are:

µPOSRa (Q)(1) = 0.0
µPOSRa (Q)(2) = 0.0
µPOSRa (Q)(3) = 0.301
µPOSRa (Q)(4) = 0.301
µPOSRa (Q)(5) = 0.0
µPOSRa (Q)(6) = 0.0

The resulting degree of dependency is therefore:

γ′{a}(Q) =

∑
x∈U

µPOSRa (Q)(x)

|U|

=
0.602

6
= 0.1003

Calculating the dependency degrees for the remaining fea-
tures results in

γ′{b}(Q) = 0.3597 γ′{c}(Q) = 0.4078

As feature c results in the largest increase in dependency de-
gree, this feature is selected and added to the reduct candidate.
The algorithm then evaluates the addition of all remaining fea-
tures to this candidate. Fuzzy similarity relations are combined
using (23). This produces the following evaluations:

γ′{a,c}(Q) = 0.5501 γ′{b,c}(Q) = 1.0

Feature subset {b, c} produces the maximum dependency
value for this dataset, and the algorithm terminates. The dataset
can now be reduced to these features only. The complexity of
the algorithm is the same as that of FRFS in terms of the
number of dependency evaluations. However, the explosive
growth of the number of considered fuzzy equivalence classes
is avoided through the use of fuzzy similarity relations and
(23). This ensures that for one subset, only one fuzzy similarity
relation is used to compute the fuzzy lower approximation.

B. Fuzzy Boundary Region-based FS

Most approaches to crisp rough set FS and all approaches
to fuzzy-rough FS use only the lower approximation for
the evaluation of feature subsets. The lower approximation
contains information regarding the extent of certainty of
object membership to a given concept. However, the upper
approximation contains information regarding the degree of
uncertainty of objects and hence this information can be used
to discriminate between subsets. For example, two subsets may
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result in the same lower approximation but one subset may
produce a smaller upper approximation. This subset will be
more useful as there is less uncertainty concerning objects
within the boundary region (the difference between upper and
lower approximations). The fuzzy-rough boundary region for
a fuzzy concept X may thus be defined:

µBNDRP
(X)(x) = µRPX

(x)− µRPX(x) (30)

The fuzzy-rough negative region for all decision concepts
can be defined as follows:

µNEGRP
(x) = N( sup

X∈U/Q
µRPX

(x)) (31)

In classical rough set theory, the negative region is always
empty for partitions [41]. It is interesting to note that the
fuzzy-rough negative region is also always empty when the
decisions are crisp. However, this is not necessarily the case
when decisions are fuzzy. Further details can be found in the
appendix.

1) Reduction: As the search for an optimal subset pro-
gresses, the object memberships to the boundary region for
each concept diminishes until a minimum is achieved. For
crisp rough set FS, the boundary region will be zero for each
concept when a reduct is found. This may not necessarily be
the case for fuzzy-rough FS due to the additional uncertainty
involved. The uncertainty for a concept X using features in
P can be calculated as follows:

UP (X) =

∑
x∈U

µBNDRP
(X)(x)

|U|
(32)

This is the average extent to which objects belong to the
fuzzy boundary region for the concept X . The total uncertainty
degree for all concepts, given a feature subset P is defined as:

λP (Q) =

∑
X∈U/Q

UP (X)

|U/Q|
(33)

This is related to the conditional entropy measure which
considers a combination of conditional probabilities H(Q|P )
in order to gauge the uncertainty present using features in P .
In the crisp case, the minimization of this measure can be
used to discover reducts: if the entropy for a feature subset P
is zero, then the subset is a reduct [12].

Again, a QUICKREDUCT-style algorithm can be constructed
for locating fuzzy-rough reducts based on this measure. Instead
of maximising the dependency degree, the task of the algo-
rithm is to minimize the total uncertainty degree. When this
reaches the minimum for the dataset, a fuzzy-rough reduct
has been found. A proof of the monotonicity of the total
uncertainty degree can be found in the appendix.

2) Example: To determine the fuzzy boundary region, the
lower and upper approximations of each concept for each
feature must be calculated. Considering feature a and concept
{1,3,6}:

µBNDRa ({1,3,6})(x) = µRa{1,3,6}(x)− µRa{1,3,6}(x)

For object 4, this is

µBNDRa ({1,3,6})(4) = sup
y∈U

T (µRa
(4, y), µ{1,3,6}(y))

− inf
y∈U

I(µRa
(4, y), µ{1,3,6}(y))

= 0.699− 0.0
= 0.699

For the remaining objects, this is:

µBNDRa ({1,3,6})(1) = 1.0
µBNDRa ({1,3,6})(2) = 1.0
µBNDRa ({1,3,6})(3) = 0.699
µBNDRa ({1,3,6})(5) = 1.0
µBNDRa ({1,3,6})(6) = 1.0

Hence, the uncertainty for concept {1,3,6} is:

Ua({1, 3, 6}) =

∑
x∈U

µBNDRa ({1,3,6})(x)

|U|

=
1.0 + 1.0 + 0.699 + 0.699 + 1.0 + 1.0

6
= 0.899

For concept {2, 4, 5}, the uncertainty is:

Ua({2, 4, 5}) =

∑
x∈U

µBNDRa ({2,4,5})(x)

|U|

=
1.0 + 1.0 + 0.699 + 0.699 + 1.0 + 1.0

6
= 0.899

From this, the total uncertainty for feature a is calculated as
follows:

λa(Q) =

∑
X∈U/Q

Ua(X)

|U/Q|

=
0.899 + 0.899

2
= 0.899 (34)

The values of the total uncertainty for the remaining features
are:

λ{b}(Q) = 0.640 λ{c}(Q) = 0.592

As feature c results in the smallest total uncertainty, it is
chosen and added to the reduct candidate. The algorithm then
considers the addition of the remaining features to the subset:

λ{a,c}(Q) = 0.500 λ{b,c}(Q) = 0.0

The subset {b, c} results in the minimal uncertainty for the
dataset, and the algorithm terminates. This is the same subset
as that chosen by the fuzzy lower approximation-based method
above. Again, the complexity of the algorithm is the same
as that of FRFS, but avoids the Cartesian product of fuzzy
equivalence classes. However, for each evaluation, both the
fuzzy lower and upper approximations are considered and
hence the calculation of the fuzzy boundary region is more
costly than that of the fuzzy lower approximation alone.
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C. Fuzzy Discernibility Matrix-based FS

As mentioned previously, there are two main branches of
research in crisp rough set-based FS: those based on the
dependency degree and those based on discernibility matrices.
The developments given above are solely concerned with the
extension of the dependency degree to the fuzzy-rough case.
Hence, methods constructed based on the crisp dependency
degree can be employed for fuzzy-rough FS.

By extending the discernibility matrix to the fuzzy case, it is
possible to employ approaches similar to those in crisp rough
set FS to determine fuzzy-rough reducts. A first step toward
this is presented in [30], [33] where a crisp discernibility
matrix is constructed for fuzzy-rough selection. A threshold
is used, breaking the rough set ideology, which determines
which features are to appear in the matrix entries. However,
information is lost in this process as membership degrees are
not considered. Search based on the crisp discernibility may
result in reducts that are not true fuzzy-rough reducts.

1) Fuzzy Discernibility: The approach presented here ex-
tends the crisp discernibility matrix by employing fuzzy
clauses. Each entry in the fuzzy discernibility matrix is a fuzzy
set, to which every feature belongs to a certain degree. The
extent to which a feature a belongs to the fuzzy clause Cij is
determined by the fuzzy discernibility measure:

µCij
(a) = N(µRa

(i, j)) (35)

where N denotes fuzzy negation and µRa
(i, j) is the fuzzy

similarity of objects i and j, and hence µCij (a) is a measure
of the fuzzy discernibility. For the crisp case, if µCij (a) = 1
then the two objects are distinct for this feature; if µCij

(a) = 0,
the two objects are identical. For fuzzy cases where µCij

(a) ∈
(0, 1), the objects are partly discernible. (The choice of fuzzy
similarity relation must be identical to that of the fuzzy-rough
dependency degree approach to find corresponding reducts.)
Each entry in the fuzzy indiscernibility matrix is then a set of
attributes and their corresponding memberships:

Cij = {ax|a ∈ C, x = N(µRa(i, j))} i, j = 1, ..., |U| (36)

For example, an entry Cij in the fuzzy discernibility matrix
might be:

Cij : {a0.4, b0.8, c0.2, d0.0}

This denotes that µCij (a) = 0.4, µCij (b) = 0.8, etc. In crisp
discernibility matrices, these values are either 0 or 1 as the
underlying relation is an equivalence relation. The example
clause can be viewed as indicating the value of each feature -
the extent to which the feature discriminates between the two
objects i and j. The core of the dataset is defined as:

Core(C) = {a ∈ C|∃Cij , µCij (a) > 0,
∀f ∈ {C− a}µCij (f) = 0} (37)

2) Fuzzy Discernibility Function: As with the crisp ap-
proach, the entries in the matrix can be used to construct the
fuzzy discernibility function:

fD(a∗1, ..., a
∗
m) = ∧{∨ C∗ij |1 ≤ j < i ≤ |U|} (38)

where C∗ij = {a∗x|ax ∈ Cij}. The function returns values in
[0, 1], which can be seen to be a measure of the extent to which
the function is satisfied for a given assignment of truth values
to variables. To discover reducts from the fuzzy discernibility
function, the task is to find the minimal assignment of the
value 1 to the variables such that the formula is maximally
satisfied. By setting all variables to 1, the maximal value
for the function can be obtained as this provides the most
discernibility between objects.

Crisp discernibility matrices can be simplified by removing
duplicate entries and clauses that are supersets of others. A
similar degree of simplification can be achieved for fuzzy
discernibility matrices. Duplicate clauses can be removed as a
subset that satisfies one clause to a certain degree will always
satisfy the other to the same degree.

3) Decision-relative Fuzzy Discernibility Matrix: As with
the crisp discernibility matrix, for a decision system the
decision feature must be taken into account for achieving
reductions; only those clauses with different decision values
are included in the crisp discernibility matrix. For the fuzzy
version, this is encoded as:

fD(a∗1, ..., a
∗
m) = {∧{{∨ C∗ij} ← qN(µRq (i,j))}|

1 ≤ j < i ≤ |U|} (39)

for decision feature q, where ← denotes fuzzy implication.
This construction allows the extent to which decision values
differ to affect the overall satisfiability of the clause. If µCij

(q)
= 1 then this clause provides maximum discernibility (i.e. the
two objects are maximally different according to the fuzzy
similarity measure). When the decision is crisp and crisp
equivalence is used, µCij (q) becomes 0 or 1.

4) Reduction: For the purposes of finding reducts, use of
the fuzzy intersection of all clauses in the fuzzy discernibility
function may not provide enough information for evaluating
subsets. Here, it may be more informative to consider the
individual satisfaction of each clause for a given set of features.
The degree of satisfaction of a clause Cij for a subset of
features P is defined as:

SATP (Cij) =
⋃
a∈P
{µCij

(a)} (40)

Returning to the example, if the subset P = {a, c} is
chosen, the resulting degree of satisfaction of the clause is

SATP (Cij) = {0.4 ∨ 0.2} = 0.6

using the Łukasiewicz t-conorm, min(1, x+ y).
For the decision-relative fuzzy indiscernibility matrix, the

decision feature q must be taken into account also:

SATP,q(Cij) = SATP (Cij)← µCij
(q) (41)

For the example clause, if the corresponding decision values
are crisp and are different, the degree of satisfaction of the
clause is

SATP,q(Cij) = SATP (Cij)← 1
= 0.6← 1
= 0.6
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For a subset P , the total satisfiability of all clauses can be
calculated as

SAT (P ) =

∑
i,j∈U,i6=j

SATP,q(Cij)∑
i,j∈U,i6=j

SATC,q(Cij)
(42)

where C is the full set of conditional attributes, and hence the
denominator is a normalizing factor. If this value reaches 1 for
a subset P , then the subset is a fuzzy-rough reduct. A proof
of the monotonicity of the function SAT (P ) can be found in
the appendix.

Many methods available from the literature for the purpose
of finding reducts for crisp discernibility matrices are appli-
cable here also. The Johnson Reducer [18] is extended and
used herein to illustrate the concepts involved. This is a simple
greedy heuristic algorithm that is often applied to discernibility
functions to find a single reduct. Subsets of features found by
this process have no guarantee of minimality, but are generally
of a size close to the minimal.

The algorithm begins by setting the current reduct candidate,
P , to the empty set. Then, each conditional feature appearing
in the discernibility function is evaluated according to the
heuristic measure used. For the standard Johnson algorithm,
this is typically a count of the number of appearances a feature
makes within clauses; features that appear more frequently
are considered to be more significant. The feature with the
highest heuristic value is added to the reduct candidate and
all clauses in the discernibility function containing this feature
are removed. As soon as all clauses have been removed, the
algorithm terminates and returns the subset P . P is assured
to be a fuzzy-rough reduct as all clauses contained within
the discernibility function have been addressed. However, as
with the other approaches, the subset may not necessarily have
minimal cardinality.

The complexity of the algorithm is the same as that of FRFS
in that O((n2 + n)/2) calculations of the evaluation function
(SAT (P )) are performed in the worst case. Additionally, this
approach requires the construction of the fuzzy discernibility
matrix, which has a complexity of O(a ∗ o2) for a dataset
containing a attributes and o objects.

5) Example: For the example dataset, the fuzzy discerni-
bility matrix needs to be constructed based on the fuzzy
discernibility given in equation (35) using the standard negator,
and fuzzy similarity in equation (26). For objects 2 and 3, the
resulting fuzzy clause is:

{a0.301 ∨ b1.0 ∨ c0.964} ← q1.0

where ← denotes fuzzy implication. The fuzzy discernibility
of objects 2 and 3 for attribute a is 0.301, indicating that the
objects are partly discernible for this feature. The objects are
fully discernible with respect to the decision feature, indicated
by q1.0. The full set of clauses is:

C12 : {a0.0 ∨ b1.0 ∨ c1.0} ← q1.0
C13 : {a0.301 ∨ b0.432 ∨ c0.964} ← q0.0
C14 : {a1.0 ∨ b0.0 ∨ c1.0} ← q1.0
C15 : {a1.0 ∨ b0.0 ∨ c1.0} ← q1.0
C16 : {a1.0 ∨ b1.0 ∨ c1.0} ← q0.0
C23 : {a0.301 ∨ b1.0 ∨ c0.964} ← q1.0
C24 : {a1.0 ∨ b1.0 ∨ c0.482} ← q0.0
C25 : {a1.0 ∨ b1.0 ∨ c0.482} ← q0.0
C26 : {a1.0 ∨ b0.863 ∨ c0.482} ← q1.0
C34 : {a1.0 ∨ b0.431 ∨ c1.0} ← q1.0
C35 : {a1.0 ∨ b0.431 ∨ c1.0} ← q1.0
C36 : {a1.0 ∨ b1.0 ∨ c1.0} ← q0.0
C45 : {a0.301 ∨ b0.0 ∨ c0.0} ← q0.0
C46 : {a0.301 ∨ b1.0 ∨ c0.0} ← q1.0
C56 : {a0.0 ∨ b1.0 ∨ c0.0} ← q1.0

The feature selection algorithm then proceeds in the follow-
ing way. Each individual feature is evaluated according to the
measure defined in equation (42). For feature a, this is:

SAT ({a}) =

∑
i,j∈U,i6=j

SAT{a},q(Cij)∑
i,j∈U,i6=j

SATC,q(Cij)

=
11.601

15
= 0.773

Similarly for the remaining features:

SAT ({b}) = 0.782 SAT ({c}) = 0.830

The feature that produces the largest increase in satisfiability
is c. This feature is added to the reduct candidate, and the
search continues:

SAT ({a, c}) = 0.887 SAT ({b, c}) = 1.0

The subset {b, c} is found to satisfy all clauses maximally,
and the algorithm terminates. This subset is a fuzzy-rough
reduct.

IV. EXPERIMENTATION

This section presents the initial experimental evaluation of
the selection methods for the task of pattern classification, over
nine benchmark datasets from [4] and [13] with two classifiers.

A. Experimental Setup

FRFS uses a pre-categorization step which generates as-
sociated fuzzy sets for a dataset. For the new fuzzy-rough
methods, the Łukasiewicz fuzzy connectives are used, with
fuzzy similarity defined in (26). After feature selection, the
datasets are reduced according to the discovered reducts. These
reduced datasets are then classified using the relevant classifier.
(Obviously, the feature selection step is not employed for the
unreduced dataset.)

Two classifiers were employed for the purpose of evaluating
the resulting subsets from the feature selection phase: JRip
[6] and PART [34], [35]. JRip learns propositional rules by
repeatedly growing rules and pruning them. During the growth
phase, features are added greedily until a termination condition
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TABLE III
REDUCT SIZE AND TIME TAKEN

Dataset Objects Features Reduct size Time taken (s)
FRFS B-FRFS L-FRFS FDM FRFS B-FRFS L-FRFS FDM setup FDM

Cleveland 297 14 11 9 9 9 24.11 8.78 3.32 8.75 1.93
Glass 214 10 9 9 10 9 1.61 3.30 1.53 4.28 0.60
Heart 270 14 11 8 8 8 11.84 3.61 2.17 7.31 1.46

Ionosphere 230 35 11 9 9 8 61.80 8.53 3.77 14.09 3.45
Olitos 120 26 10 6 6 6 11.20 1.29 0.72 3.61 0.46

Water 2 390 39 11 7 7 7 96.58 21.37 12.12 43.44 18.48
Water 3 390 39 12 7 7 7 158.73 27.36 13.44 44.43 16.95

Web 149 2557 24 20 21 18 5642.65 949.69 541.85 357.11 1425.58
Wine 178 14 10 6 6 6 1.42 1.69 0.97 4.16 0.44

is satisfied. Features are then pruned in the next phase subject
to a pruning metric. Once the ruleset is generated, a further op-
timization is performed where classification rules are evaluated
and deleted based on their performance on randomized data.
PART generates rules by means of repeatedly creating partial
decision trees from data. The algorithm adopts a divide-and-
conquer strategy such that it removes instances covered by the
current ruleset during processing. Essentially, a classification
rule is created by building a pruned tree for the current set of
instances; the leaf with the highest coverage is promoted to a
rule.

B. Experimental Results

Table III compares the reduct size and runtime data for
FRFS, fuzzy boundary region-based FS (B-FRFS), fuzzy lower
approximation-based FS (L-FRFS) and fuzzy discernibility
matrix-based FS (FDM). It can be seen that the new fuzzy-
rough methods find smaller subsets than FRFS in general. The
fuzzy boundary region-based method finds smaller or equally-
sized subsets than the L-FRFS. This is to be expected, as
B-FRFS includes fuzzy upper approximation information in
addition to that of the fuzzy lower approximation. Of all the
methods, the fuzzy discernibility matrix-based approach finds
the smallest fuzzy-rough reducts. It is often seen in crisp rough
set FS that discernibility matrix-based approaches find smaller
subsets on average than those that rely solely on dependency
degree information. This comes at the expense of setup time
as can be seen in the table. Fuzzy clauses must be generated
for every pair of objects in the dataset. The new fuzzy-rough
methods are also quicker in computing reducts than FRFS, due
mainly to the computation of the Cartesian product of fuzzy
equivalence classes that FRFS must perform.

FRFS has been experimentally evaluated with other leading
FS methods (such as Relief-F and entropy-based approaches
[12], [13]) and has been shown to outperform these in terms
of resulting classification performance. Hence, only compar-
isons to FRFS are given here. Table IV shows the average
classification accuracy as a percentage obtained using 10-fold
cross validation. The classification was initially performed
on the unreduced dataset, followed by the reduced datasets
which were obtained using the feature selection techniques.
All techniques perform similarly, with classification accuracy
improving or remaining the same for most datasets. FRFS
performs equally well, however this is at the cost of extra

features and extra time required to find reducts. The perfor-
mance of the FDM method is generally slightly worse than
the other methods. This can be attributed partly to the fact
that the method produces smaller subsets for data reduction.

V. CONCLUSIONS

This paper has presented three new techniques for fuzzy-
rough feature selection based on the use of fuzzy T -transitive
similarity relations, that alleviate problems encountered with
FRFS. The first development, based on fuzzy lower approx-
imations, uses the similarity relations to construct approxi-
mations of decision concepts and evaluates these through a
new measure of feature dependency. The second development
employs the information in the fuzzy boundary region to guide
the feature selection search process. When this is minimized, a
fuzzy-rough reduct has been obtained. The third development
extends the concept of the discernibility matrix to the fuzzy
case, allowing features to belong to entries to a certain degree.
An example FS algorithm is given to illustrate how reductions
may be achieved. Note that no user-defined thresholds are
required for any of the methods, although a choice must be
made regarding fuzzy similarity relations and connectives.

Further work in this area will include a more in-depth
experimental investigation of the proposed methods and the
impact of the choice of relations and connectives. Addition-
ally, the development of fuzzy discernibility matrices here
allows the extension of many existing crisp techniques for
the purposes of finding fuzzy-rough reducts. In particular, by
reformulating the reduction task in a propositional satisfiability
(SAT) framework, SAT solution techniques may be applied
that should be able to discover such subsets, guaranteeing
their minimality. The performance may also be improved
through simplifying the fuzzy discernibility function further.
This could be achieved by considering the properties of the
fuzzy connectives and removing clauses that are redundant in
the presence of others.
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TABLE IV
RESULTING CLASSIFICATION ACCURACIES (%)

Dataset JRip PART
Unred. FRFS B-FRFS L-FRFS FDM Unred. FRFS B-FRFS L-FRFS FDM

Cleveland 52.19 54.55 54.55 54.55 54.55 50.17 52.19 53.20 53.20 53.20
Glass 71.50 69.63 65.89 71.50 65.89 67.76 68.22 70.56 70.56 67.76
Heart 77.41 78.89 78.52 78.52 78.52 73.33 78.52 76.30 76.30 76.30

Ionosphere 86.52 87.83 88.26 88.26 86.96 88.26 91.30 86.09 86.09 85.23
Olitos 70.83 70.83 71.67 64.17 63.33 57.50 62.50 67.50 58.33 64.17

Water 2 83.85 84.36 85.64 85.64 82.82 83.08 82.31 84.62 84.62 78.97
Water 3 82.82 82.82 79.74 81.28 80.00 83.33 80.51 80.26 79.23 79.74

Web 58.39 58.39 43.62 55.03 44.97 42.95 63.09 52.35 57.72 44.97
Wine 92.70 89.33 95.50 95.50 88.20 93.82 93.82 94.38 94.38 94.38

APPENDIX

Theorem 1: L-FRFS monotonicity. Suppose that P ⊆ C, a
is an arbitrary conditional feature that belongs to the dataset
and Q is the set of decision features. Then γ′P∪{a}(Q) ≥
γ′P (Q).

Proof: The fuzzy lower approximation of a concept X
is

µRP∪{a}X(x) = inf
y∈U

I(µRP∪{a}(x, y), µX(y))

From (23), it can be seen that

µRP∪{a}(x, y) = µRa
(x, y) ∧ µRP

(x, y)

From the properties of t-norms, it can be seen that
µRP∪{a}(x, y) ≤ µRP

(x, y). Thus, I(µRP∪{a}(x, y), µX(y))
≥ I(µRP

(x, y), µX(y)),∀x, y ∈ U, X ∈ U/Q, and hence
µRP∪{a}X(x) ≥ µRPX(x). The fuzzy positive region of X
is

µPOSRP∪{a} (Q)(x) = sup
X∈U/Q

µRP∪{a}X(x)

so µPOSRP∪{a} (Q)(x) ≥ µPOSRP
(Q)(x) and therefore

γ′P∪{a}(Q) ≥ γ′P (Q).
Theorem 2: B-FRFS monotonicity. Suppose that P ⊆ C, a

is an arbitrary conditional feature that belongs to the dataset
and Q is the set of decision features. Then λP∪{a}(Q) ≤
λP (Q).

Proof: The fuzzy boundary region of a concept X for
an object x and set of features P ∪ {a} is defined as

µBNDRP∪{a} (X)(x) = µRP∪{a}X
(x)− µRP∪{a}X(x)

For the fuzzy upper approximation component of the fuzzy
boundary region:

µRP∪{a}X
(x) = sup

y∈U
T (µRP∪{a}(x, y), µX(y))

It is known from Theorem 1 that µRP∪{a}(x, y) ≤
µRP

(x, y), so µRP∪{a}X
(x) ≤ µRPX

(x). As µRP∪{a}X(x) ≥
µRPX(x), then µBNDRP∪{a} (X)(x) ≤ µBNDRP

(X)(x). Thus,
UP∪{a}(Q) ≤ UP (Q) and therefore λP∪{a}(Q) ≤ λP (Q).

Theorem 3: FDM monotonicity. Suppose that P ⊆ C, a
is an arbitrary conditional feature that belongs to the dataset
and Q is the set of decision features. Then SAT (P ∪ {a}) ≥
SAT (P ).

Proof: For a clause Cij , the degree of satisfaction for a
given set of features P ∪ {a} is:

SATP∪{a}(Cij) =
⋃

z∈P∪{a}

{µCij
(z)}

= SATP (Cij) ∪ µCij (a)

derived from the properties of the t-conorm. Thus,
SATP∪{a}(Cij) ≥ SATP (Cij) for all clauses. Hence
SATP∪{a},q(Cij) ≥ SATP,q(Cij). The overall degree of
satisfaction for subset P ∪ {a} is

SAT (P ∪ {a}) =

∑
i,j∈U,i6=j

SATP∪{a},q(Cij)∑
i,j∈U,i6=j

SATC,q(Cij)

The denominator is a normalizing factor and can be ignored.
As SATP∪{a},q(Cij) ≥ SATP,q(Cij) for all clauses, then∑
i,j∈U,i6=j

SATP∪{a},q(Cij) ≥
∑

i,j∈U,i6=j
SATP,q(Cij). There-

fore, SAT (P ∪ {a}) ≥ SAT (P ).
Theorem 4: FDM reducts are fuzzy-rough reducts. Suppose

that P ⊆ C, a is an arbitrary conditional feature that belongs
to the dataset and Q is the set of decision features. If P
maximally satisfies the fuzzy discernibility function then P
is a fuzzy-rough reduct.

Proof: The fuzzy positive region for a subset P is

µPOSRP
(Q)(x) = sup

X∈U/Q
inf
y∈U
{µRP

(x, y)→ µX(y)}

The dependency function is maximized when each x belongs
maximally to the fuzzy positive region. Hence,

inf
x∈U

sup
X∈U/Q

inf
y∈U
{µRP

(x, y)→ µX(y)}

is maximized only when P is a fuzzy-rough reduct. This can
be rewritten as the following:

inf
x,y∈U

{µRP
(x, y)→ µRq (x, y)}

when using a fuzzy similarity relation in the place of crisp
decision concepts, as µ[x]R = µR(x, y) [9]. Each µRP

(x, y)
is constructed from the t-norm of its constituent relations:

inf
x,y∈U

{Ta∈P (µRa
(x, y))→ µRq

(x, y)}

This may be reformulated as

inf
x,y∈U

{Sa∈P (µRa
(x, y)→ µRq

(x, y))} (43)
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Considering the fuzzy discernibility matrix approach, the
fuzzy discernibility function is maximally satisfied when

{∧{{∨ C∗xy} ← qN(µRq (x,y))}|1 ≤ y < x ≤ |U|}

is maximized. This can be rewritten as:

Tx,y∈U(Sa∈P (N(µRa
(x, y)))← N(µRq

(x, y)))

because each clause Cxy is generated by considering the fuzzy
similarity of values of each pair of objects x, y. Through the
properties of the fuzzy connectives, this may be rewritten as:

Tx,y∈U(Sa∈P (µRa
(x, y)→ µRq

(x, y))) (44)

When this is maximized, (43) is maximized and so the subset
P must be a fuzzy-rough reduct.

Theorem 5: Fuzzy-rough negative region is always empty
for crisp decisions. Suppose that P ⊆ C and Q is the set of
decision features. If Q is crisp, then the fuzzy-rough negative
region is empty.

Proof: The fuzzy-rough negative region for subset P is

µNEGRP
(x) = N( sup

X∈U/Q
µRPX

(x))

For the negative region to be empty, all object memberships
must be zero. Hence

∀x, sup
X∈U/Q

µRPX
(x) = N(0) = 1

Expanding this gives

∀x, sup
X∈U/Q

sup
y∈U

T (µRP
(x, y), µX(y)) = 1

For this to be maximized, there must be a suitable X and y
such that

∀x, ∃X,∃y, T (µRP
(x, y), µX(y)) = 1

Setting y = x, the above holds as the decisions are crisp,
so each x must belong fully to one decision X , µX(x) =
1. Therefore, the fuzzy-rough negative region is always
empty for crisp decisions. When the decisions are fuzzy and
supx∈X µX(x) < 1 then the fuzzy-rough negative region will
be non-empty.
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