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The Viscous Froth Model: steady states and the high-velogit
limit
By S.J. ®x !, D. WEAIRE 2, G. MISHURIS !

! Institute of Mathematics and Physics, Aberystwyth Unitser&berystwyth SY23 3BZ, UK
2 School of Physics, Trinity College, Dublin 2, Ireland

The steady-state solutions of the Viscous Froth Model fanfalynamics are analyzed, and shown to be of finite extent
or to asymptote to straight lines. In the high-velocity lirfie solutions consist of straight lines with isolated p®in
of infinite curvature. This analysis is helpful in the intesfation of observations of anomalous features of mobile
two-dimensional foams in channels. Further physical éfaeed to be adduced in order to fully account for these.

Keywords: foams, discrete microfluidics, interface motion

1. Introduction

Foams are widely used in traditional applications such asfihting and froth flotation [1, 2]. More recently they
have begun to find new applications in the emerging field afrdie microfluidics [3, 4], in which small volumes of
gas (or, equivalently, liquid) can be manipulated withimroa channels.

When monodisperse bubbles are confined in narrow chann#isawlow liquid fraction, they generally form
ordered structures [3, 5] — see figure 1. They may be readihipo&ated in networks of such channels. Such a system
is suggestive of a practical system of microfluidics [6], Be motion of the bubbles, when driven by a pressure, is
of practical as well as basic interest. The desire to predestructure and dynamics of such of a foam arises from
the requirement to design both chemical formulation andainar geometry with maximum efficiency, to perform
specific functions.

In a rectangular channel whose width is much greater thatejsh, the structure in question may be regarded as
essentially two-dimensional. That is, each bubble toutioéls of the bounding plates and the soap films that span
the gap are perpendicular to those plates. Accordingly a 2Det previously developed in the physics of foams [7]
has been used in this area. This “viscous froth” model is anprovisional or skeletal one (including in particular
linear relationships when power laws may be more realidtit) it has succeeded in shedding light on some observed
phenomena that are seen when the flow velocity is large entoudgpart from the quasistatic condition [7, 8, 9, 10].
However, it then appeared that significant qualitative ittetdf observed structures were apparently not compatible
with the model and it was not clear what needed to be addedThétpresent study, which explores the high velocity
limit, was stimulated in part by these anomalous structures

We review the model i§2 and find its steady-state solutions for single line§3nEven this apparently straight-
forward problem presents quite a wealth of mathematicalid&implicity is restored in the high velocity limit [10],
which is described if§4. Any of these steady-state solutions may be used to prpigdes of a more general solution
in which the lines meet &t20°, allowing comparison with experiment, as discussegbin

2. The viscous froth model

A static dry foam can be represented by the ideal 2D soap ftdihin which each film is a circular arc, and three arcs
meet at a vertex at equal anglesl@d®. The elastic force on each film, which is the product of curi@t and surface
(or line) tensiony, balances the pressure differentg across it according to the Laplace lalyy = v«. The Viscous
Froth Model (VFM) extends the ideal soap froth to predictdiyaamics of such structures at finite deformation rate.
See figure 2. In the VFNhreeforces act on each element and sum to zero, since inertiglisated. They are due to
surface tension, pressure difference and a drag force wegists motion normal to the film.

Consider a point on a soap film: a force balance in the direaifathe normal leads to the following evolution
equation:

Ap — vk = )\vg (2.1)
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Figure 1. A 211 (or staircase or hex-2) structure in statiglgagium.

@ ()

Motion

Figure 2. Factors determining the local balance of forcekerstatic case and in the VFM. In the VFM, a viscous drag f@ce
included. The pressure differenceds = p2 — p1

where) is the drag coefficient and, the normal velocity. The exponeftis usually set to unity (the linear VFM, as
considered here) to speed up the numerical algorithm anichiaif/ analytical theory [7].

Note that thel20° rule for internal vertex angles is an essential feature efrttodel, since three equal surface
tension forces, and no others, act on a point.

3. Steady-state motion

This analysis is concerned with steady-state motion wittstamt velocity. It generalizes earlier treatments ofcbtea
state solutions of curvature-driven growth (the VFM withi@eressure difference), reviewed in [12], and soap film
motion in channels [9]. Here we state the key results, réilegaerivations and details to the Appendix.

We look for solutions of the VFM for motion at a constant vélpof magnitudeV. We use Cartesian axes and
seek curves that translate in the positivdirection by writing eq. (2.1) in the following form [13]:

Tyy B AV

wherez, is the derivative ofc, etc. We normalize the andy coordinates by the length-scale

~

Lo = ) (3.2)
and write A
_Ap
o= N (3.3)
(cf. the mobility parametet of [10, eq. (18)]) to give
ap—w 1 (3.4)

(a2 (1+a2) 72

There are three classes of solutions, the details of whielgaen in the Appendix. Note that, given the form
of (3.1), we may choose each curve to originate at (0,0). Hreyclassified according to their shape at the origin,
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The Viscous Froth Model: steady states and the high-veltioiit 3

(a) (b)

X X X

Figure 3. Examples of steady-state solutions of the VFM fofanm translation in ther direction at velocityl’. These consist of
either straight lines, curves that asymptote to straigigslior curves of finite extent, and have (a) linea= 0.5), (b) square-root
(a = -0.5 (short dashes), 0.5 (solid line), 1.5 (long dashesftquadratic & = -1.5 (dotted line), -0.5 (short dashes), 0.5 (solid
line), 1.5 (long dashes)) behaviour at the origin respebtivihe parametety, defined by (3.3) , represents the ratio of driving
pressure to the drag. For more detail see figure 4.

illustrated schematically in figure 3; for giventhere may be more than one solution, distinguished by thgetatrat
the origin.

The most straightforward steady states are simply stréiiggg (in which the middle term of eq. (3.4) is zero) with
slope

d—y:i\a—2—1|*1/2, (3.5)
dzx
as in figure 3(a). These solutions are found onlyjfdr< 1; for o« = 0 (i.e. no pressure difference) they are parallel to
thexz—axis while fora = £1 they are parallel to thg—axis.

In addition there are curves that evolve from the origin witk +-+/2, asz — 0. For0 < « < 1 they asymptote to
the above straight lines (eq. (3.5)). Otherwise they readgimn of zero slope at which we terminate our calculation
to leave curves of finite extent with accessible endpoineefigure 4(a). The details of the envelopes, which are the
locus of the endpoints, are presented in the Appendix.

Finally, there are solutions with ~ +z2 at the origin, shown in figure 4(b). For positivethese lie above
the z-axis, and changing the sign afresults in a reflection in this axis. Fo&| < 1 they again asymptote to the
above straight lines (eq. (3.5)). As for the previous casefollow the curves up to the point at which the respective
derivatives tend to infinity, and the corresponding poi®h essentially the same envelope.

The coincidence of the envelopes can be seen by appealirgute f8: each curve of finite extent in figure 3(b),
with square-root behaviour at the origin, approaches tlrelepe as a parabola. Thus it is also represented in figure
3(c), i.e. it is one of the curves with quadratic behaviouthat origin, albeit with a shift and possible change of
orientation. For example, the dashed curvedos —0.5 in the quadrant > 0,y > 0 in figure 3(b) can be translated
to its (dashed) equivalent in the quadrant 0,y < 0 in figure 3(c).

Each curve of finite extent can also be extended with any ableition for the same value ef. For example,
the curve fora = 1.5 in the quadrant > 0,y > 0 in figure 3(c) can be continued by the curve for= 1.5 in the
quadrant: < 0,y > 0 in figure 3(b). This is elaborated upon below, in figure 5.

As the velocity increases, the extent of the finite, curvetyt®ons tends to zero, while the straight line solutions
remain invariant. The other solutions of infinite extentdéoward piece-wise straight-line forms, as discussedwelo

Before proceeding, we first illustrate the use of the stedate solutions with the example of a single bubble
confined within a channel and attached to a moving side wadhvs in figure 5. The ends of the interface enclosing
the bubble are fixed to the wall gt= 0 a distance L apart, and the wall is moved in the positivedirection with
speedl/. We use a Surface Evolver-based implementation [8, 14] ieegbe VFM to find the bubble shape, with
parametersy = A\ = 1, L = 1/+/2, time stepAt = 1 x 10~° andcirca 60 line segments. The pressysen the
bubble is varied to enforce a constraint of fixed atég,= L2 /2, although for the values df considered herg
never differs greatly fromy/ L. Figure 5(a) shows bubble shapes for differéntwhich cease to be physical wh&h
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Figure 4. Detailed results for steady-state solutions®MRM for uniform translation with velocity” in thex direction and given
pressure differencép, completing the sketch of figure 3. (a) Square-root behaadthe originia = Ap/(AV) increases from
-2 to 2 in steps of 0.25. Mullins’ solution (the “grim reapefor grain-growth (i.e. the VFM without pressure differesg [15]
corresponds to the case= 0, while the caser = 1 is a vertical line. A second numerical calculation givesghape of the limiting
boundary (envelope). The solutions are completed by réeflpat the liney = 0 and, in the case of solutions of infinite extent
(o € [0, 1], shown with thicker lines) taking the asymptotic slope. Qjadratic behaviour at the origin:increases from 0 (the
x-axis) to 2 in steps of 0.25. Solutions for negativean be found by reflecting in the line= 0. Solutions of semi-infinite extent,
for a € [0, 1], are shown with thicker lines. Each curve (or part therebfjnite extent can be obtained from (a) by reflection and
translation, and the limiting boundary is a reflection of time in (a). The solutions may be normalized according t9 (3.2

-1
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The Viscous Froth Model: steady states and the high-veltioiit 5

is sufficiently large that the angle between the trailingeedgd the wall goes to zero. We find this critical velocity to
beV = 2.3 (figure 5(b)): the angles at the leading and trailing edgequal only at low velocity, and as the velocity
increases, the angle at trailing edge decreases more guickl

We show in figure 5(c) how the solutions of figure 4 can be useatedict the bubble shape. In the cdse=
v/L = /2, the parametet is equal to one. Thus the shape of the leading edge is giveatypfthe curve fory = 1
in figure 4(b). Since the pressure difference acts in the sigpdirection on the trailing edge, the latter’s shape is
given by part of the curve farr = —1 in figure 4(a). The two are joined at the point where the slgpeettical, and
truncated to give two endpoints the required distance aphetsimulation result is clearly consistent with the dediv
steady-state solutions (figure 5(c)).

4. High velocity limit

Here we examine more carefully the forms that emerg® dends to infinity, by reference to figures 3 and 4. It is
easiest to consider to be constant which, in an experiment, would imply that is increased in proportion to,
according to (3.3), (i.e. fixinge whilst varying the pressure difference [9]) whikeis kept constant. This analysis
builds upon the results of Grassia et al. [10], who showetittigacurvature is pushed towards the side walls and gave
approximate expressions for the film shape there.

The only effect of increasingy to a high value is then to uniformly shrink the curves progredy wherever they
have finite curvature. The normalized infinite (or semi-it@nsolutions have significant curvature only close to the
origin. The curvature here is of ordéfr ~ «/ Lo (= Ap/+), and the curvature is concentrated within a distance of
the origin that is of order. Now consider the evolution of the curve as the velocity goasfinity. The curved parts
become ever sharper, agoes to zero.

In the limit V' — oo, the solutions therefore consist entirely of straightdin€onsider, for example, the solution
that we have referred to as “square-raot= 0.5” in figure 3(b). In this case, the limiting high-velocity stion
consists of a pair of straight lines inclined &80° to the z-axis and joined at the origin, where the curvature is
infinite. The case that is referred to as “quadratic= 0.5” in figure 3(c) consists of just a single line, also inclined
at 30°. All other solutions or parts of solutions vanish in the lifii — oo, so we are left with essentially a single
possibility consisting of straight lines, arising from tteee cases of figure 3.

(8 Applying the high-velocity solutions

In appropriate cases, we would hope to use these simpleaswudirectly. Note that we may cut any piece of the
infinite curves of figure 3 to fit certain boundary conditiovie may also use such pieces to construct high-velocity
solutions with vertices, for structures such as the one ofdid..

The main subtlety in doing so relates to the infinite cunatatrthe kink of the solution in figures 3(b) and (c).
If a solution is excised that has this as an endpoint, theetatngt the rear end of this curve is not well-defined. By
reference to figures 3 and 4, we see that the direction of tigeetet may be taken to lie anywhere in a broad range of
angles.

To demonstrate these results, we first perform represeatdEM calculations on a single film.

(b) Single film with moving endpoints

Consider a single film (or line) which experiences a presgifferenceAp and whose endpoints, located a distance
2L apartin they direction, move at constant velocityin thez-direction. We solve the VFM numerically, as described
above, to determine the steady-state shape of the film ic#sis, for fixedv andy = A = L = 1. Figure 6(a) shows
the convergence towards the predicted shape as the vef{aniypressure difference) increasesdos 0.5. In the
special caser = 0, the films consist of segments of Mullins’ solution.

(c) Single film between parallel walls

Now consider a single film which experiences a pressurerdiffeeAp that pushes it along a straight channel of
width 2. In addition to the drag on the bounding plates, with dradgfement A, we introduce a further drag on the
side walls of the channel proportional to velocity, with ffméent \,,. There is then a new evolution equation for the
points of the film at the side walls:

Asw¥ = ycos b (4.1)
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Figure 5. The shape of a bubble attached to a moving side (@aBhapes for different velocitids, with the endpoints a distance
2L = /2 apart.V increases from 0 to 2 in steps of 0.5. (b) The angle betweefilthend the wall for different velocities. (c)
Comparison between the shape found in a numerical simolafithe VFM and the curves of figure 4 in the cdge= 1.43.

wheref is the angle between the film and the wall.

The numerical implementation of the VFM described abovesieduo find the shape and velocity of the film for
given pressure differenc&p and drag coefficienk,,, = 0.01. For these parameter values we find that the velocity
increases in direct proportion fop, givinga & 1. Figure 6(b) shows the convergence with increasing veldawards
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1 T T 1 ~ -Centre-line of channel
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Figure 6. (a) Examples of numerical solutions for the stestdye shape of a single film between two endpoints which ntmve
the right with velocityV'. The applied pressure difference is chosen to give, in @see = 0.5. For the highest velocity shown
(V' = 100), the curve consists essentially of a pair of inclined lif@sed by a short arc, as predicted. Note then the difficulty
in defining the included angle gt= 0. (b) Examples of numerical solutions for the steady-sthtms of a single film within a
channel with side wall drag and an imposed pressure gradigntollowing [10]. As Ap increases, the steady velocity of the film
increases in proportion, so that the film converges to thdigtexd shape forv = 1 consisting of a straight line with curvature
concentrated at the wall.

the film shape expected from figure 4 for this valuexofrhat is, the film becomes vertical away from the wall and the
angled decreases to zero.

(d) Staircase structure

We next consider the extended array of bubbles depictedundfity; in order to mimic experiments [3] we choose
to find the steady-state shape of this 211 or staircase steuat finite flow-rate, with sidewall drag as in (4.1).

To avoid end-effects, we use a sample that is periodic in:théirection, in a channel of widtAL = 7/4 with
bubble ared/3/4. A pressure gradient is applied by invoking an additionaltdbution of Ap* to the pressure differ-
ence across each film. (This results in a dropAp* between adjacent bubbles on the same side of the channel.) Fo
sufficiently highAp*, the anglé) goes to zero and the system becomes unstable. In what follevgball concentrate
on the configuration close to this unstable limit, denoting tritical values of pressure and velocity Ay ;, and
Veriy respectively.

Applying the arguments of the previous sections leads uggedt the limiting structure at high velocity to take a
surprising form: it returns to the original static or lowlweity form of figure 1. This is consistent with what we find
(figure 7): note that curvature is here concentrated at tiregpof contact with the side walls, so that a contact angle
consistent with the drag at the side walls is maintained.

There is an apparent approximate scaling for the criticlalory and pressure difference in the high velocity limit:

A ) , (4.2)

sw

V;:rit ~0.1 7 ) Apzrit ~ 005"/ <

sw

which, with the exception of the pre-factors, can be derivech (2.1) and (4.1) in the limit in whicld — 0. This
scaling forV,,;; is in agreement with the results in [10] for a single film @#4.c).

5. Discussion

We are therefore able to distinguish two important casescése«| < 1 consists of solutions that asymptote to a
straight-line solution, while fofa| > 1 they do not. In the former case, we find the “inverted wing” &mel“hockey
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Figure 7. (a) The critical velocity and twice the pressurféedénce of the 211 structure as functions of the ratio ofdraeffi-
cientsA\/Asw. The ratio2Ap?.;, /Verit = 2 tends to one as the velocity tends to infinity. The 211 stnecat steady-state with
Asw = 0.002 and (b)Ap?,;; = 11.0 and (c)Apg,;, = 50.0, each superimposed on the static structure of figure 1 showrely.

It is clear that the structure is returning to the low-vetpdorm in the limit of high velocity, which is consistent withe argu-
ments given here: those films separating bubbles on opmidis of the channel have a slopete$0° (as predicted by (3.5) with

«a = 0.5) while those separating neighbouring bubbles on the satieec§ithe channel, which experience a pressure difference of
2Ap*, become vertical (the cage= 1 in figure 4).

stick” shown in figure 3. In the latter, all solutions are oftirextent. For any given system, with fixed drag coefficient
A, Vincreases with\p (not necessarily in proportion) so thatdoes not vary much [10]. i is sufficiently small in
magnitude, then ag or Ap tends to infinity any curved region shrinks as its curvataceliecomes infinite.

The analysis of the previous sections has proved usefuldenstanding the way in which the results of numerical
simulations vary with/. But can they, in the end, shed light on the existing expeamtadeesults which provoked this
study? These we show in figure 8; they may be summarized asvill

e the lines are almost straight.
e internal vertex angles clearly deviate frd20°.

The first result is entirely consistent with the kind of higélocity solutions that we have described. At first sight, it
might seem that the existence of undefined tangents at eamdpsithe source of the anomalous internal angles, but
a careful application of the rules that follow frod shows this to be impossible. That is, deviations fromith@®
angle rulecannotbe explained by the present model. We may ask valdaitional effects might be responsible for
them. Although we have no definite evidence as yet, a primdidate is the effect of a drag force acting at the vertex,

Article submitted to Royal Society
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Figure 8. Snapshot of an experiment in which a 211 strucgipedpelled rapidly to the right along a rectangular charfwélth
w =~ 5mm, depthh ~ 1mm) by an imposed pressure [3]. A dry foam in steady plug floabiserved, that is, all elements of the
structure move with the same velocityof the order of centimetres per second.

which is in reality a junction of finite extent. One may engea vertex correction in the form of a force acting at the
vertex point. Such forces have been posited before, bubwithny experimental support.

If such a connection is considered, we find that the anglesroed in figure 8 (notwithstanding the difficulty of
measuring such an angle from an image of a foam) are suchthatquired vertex force must act in the direction of
the velocity, rather than opposing it. Thiegativedrag on a vertex seems unphysical at first. However, it maghent
to represent thehangein the local drag as finite vertex (attached to a finite transverse Plateau borderplagced
by the point vertex of the present model. There is no reasgnthfinite vertex should not suffer a lesser drag force.
Further experiments are required to test this suggestidnraé@rpretation.

Experiments on single films in micro-channels [16, 17] shawilar shapes to those found in figure 6(a), and
further analysis of those experiments may be useful in ¢gryinobserve the curvature of the films close to the wall. In
addition, the solutions derived here may be combined iredfiit ways to shed light on, for example, the motion of
single bubbles in channels.

The present appreciation of the properties of the model is@fsrward in modelling microfluidic networks, but
we would not wish to underestimate the further factors thay mome into play in due course, particularly when
shearing states are considered. They include at least figttlsing (Marangoni etc.) effects, finite Plateau borders,
flow in Plateau borders, surface viscosity and nonlineag taevs. For example, the VFM as originally formulated
included a power-law form for the velocity, in order to accondate the Bretherton-type analysis of bubble motion
in tubes [18], and Grasskt al. [10] find that for3 < 1 there is an increase in the width of the region in which the
curvature is concentrated at steady-state. Neverthdiegsresent model provides an adequate platform to begin to
investigate designs of networks and their components Xjpetemental testing.

We thank W. Drenckhan for stimulating discussion and thevipion of experimental results. Financial support from (Difve
European Space Agency (MAP AO-99-108: C14914/02/NL/SHRO-99-075: C14308/00/NL/SH), (GSM) the Wales Institute
of Mathematical and Computational Sciences, and (SJC) ERER/D048397/1, EP/D071127/1) is gratefully acknowletge
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Appendix A. Derivation of steady-state solutions

It is apparent that the VFM is closely related to motion byalozurvature [19]. Indeed, it was designed to be so in the
limit in which pressure differences between cells go to zbtotion by mean curvature [20, 12], also known as the
curve-shortening problem and described by the eikonalature equation, is often invoked to describe the motion of
grain boundaries in crystals. Mullins [15] gave steadyestmlutions in this limit (i.e. eq. (2.1) withp set to zero)
for translation, rotation and expansion. Here, we genagdlie solutions for translation to the case of the VFM.

We classify the solutions of (3.4) with respect to their habiar at origin (since we can se{0) = 0 without loss
of generality). We conclude that

z(y) = ay® + O(y=*e), y— 0+,

where the following three cases can be distinguished:

11—«
w=2, a= 5 —00 < a < 00,
‘/1_ 2
w=1, a=+>""% _1<a<i, (A1)
«
2
w=1/2, a=4/—, a>0.
«

There are in fact no other cases. A further condition on thizak@/e at the origin is required to distinguish the difat
branches of the solution.
Solutions in the caser = 1 are straight-lines given by (3.5), found only far] < 1.
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(a) Casew =2
To seek further, curved, steady-state solutions, we re\8itl) with the substitutiortan { = z,:

Y= / S0 g, (A2)

cos( — «
In the casev = 2 we adopt the following boundary conditions:
2(0) =0, ,(0)=0. (A3)

Depending on the value of the parameiethree different families of solutions with finite gradiemegossible (see
figure 4(a)): finite length solutions fer < 0 anda > 1 and infinite length solutions far < o < 1 that tend to the
respective straight-line solutions discussed above. Matethe limiting cases are the well-known Mullins solution
(a = 0) or a line parallel to the axis when = 1.

This behaviour, as well as the shape of the envelope, canrferned by an analysis of the corresponding differ-
ential equation (A 2). Under the conditions (A 3), this takesform

t
B . _ cos(
y=Glan(@). 6= [ =Foa (a%)
with argument restricted to the interv@l, cos~*(«)). G(t) itself takes the following form [9], depending on the value
of a:
t+ 2270[tam’1 ( a+1tan (E)) laf > 1,
G(t) = a?—1 a—1 2 (A5)

t— la] <1,

! 1 — Btan(t/2)
Va2 8 1+6tan(t/2)‘

wheref = /(14 «)/(1 — ). For anya < 0, G(t) is a positive increasing and bounded function in the interva
[0, 7/2]. Then the solution to (3.4) under the conditions (A 3) takesform:

z(y) = /0?! tan (G_l(t))dt, 0 <y <y.la)=G(r/2), (A6)

whereG~! is the inverse to the functiof. In the casex > 1, the functionG(t) decreases in the intervl, /2],
and the solution takes the same form (A 6) but nefy) < 0 for y > 0. In both of these cases the curves are of
finite extent and we can compute their envelope, consistitigeopoints(y.., z(y.)), from (A 6). On the other hand,

it follows from (A 4) thatz,(y) — oo asy — y. for any fixedar < 0 or & > 1. As the point(y., z(y.)) can be
always shifted to the origin of a new coordinate system, itiegins that the end of any curve for a given value of
(satisfying conditions (A 3)) can be continued by anothawedrom the remaining class of solutions, which satisfy
slightly different conditions (A7), described below. Ndkeat the solutions obtained can be extended to negatias

x € C?[0,y.). In fact, due to the symmetry in (3.4)(—y) = x(y).

(b) Casew =1/2

The third case of (A 1) = 1/2, cannot satisfy the conditions (A 3) sineg(y) is in the intervalcos ™! («), 7/2]
(cf. (A 2) and (A 4)). This solution has infinite derivativethe origin, and we therefore apply the conditions

y(0) =0, y,(0)=0. (A7)
The corresponding equation for the derivatiyecan be evaluated in a similar way to (3.4), to give:

TR T G (A9)

Note that the case = 0 gives the trivial solutiony(x) = 0 and is excluded from the following analysis. The solutions
to (A 8) are invariant with respect to changing the signs dhlcanda together; thus solutions for negatiwemay be
found by reflecting those for the corresponding positiveigalf« in the x axis.
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We now havean ¢ = y, and hence

tan™ (y2) ‘ " 1, _
a::—/ .cosC d(:—log'bm(tan Yz oz|. (A9)
0 sin¢ — « ||
This can be re-written in the form ( )
a(l —e ™™
(L) = ) A 10
Ya () N T (A10)
with the following solution fofia| < 1 andz such thafe™* — 1| < |a|71:
L _ 1+a2(e™® = 1)+ V1 —a2y/1—a%(e* —1)2
z) =sin"! (a(e”™® = 1)) + e lo All
Then, from (A 10), the following asymptotic formula holds fny || < 1:
lm gy = ———o (A12)

oo T T ol

Thatis, ast — oo all curves again asymptote to straight lines, with the sdoyesas before (eq. (3.5)).

(c) Envelope

Finally, we note that the non-zero points where the gradignis zero ¢o = 2) or infinite (w = 1/2) coincide,
since they both correspond to a limit of integration in (AtR)t from different sides (i.e. one can either integrate from
the point at whichy,, = 0 to the point at whichy,, — oo, or alternatively fromy, — oo to ¢, = 0). Thus, we can give
an expression for the envelope. In parametric form, for teee = 1/2 (figure 4(b)), itis

() T a 1 1+V1—a? 1 « l<a<l
(xh) == — o , xy=10 , a <1,
v 2w i vVi-a? 1+a
iy « ™ ._11 « A1l3
s (L x = T — = — | *:1 <07 >17 ( )
Yu(T4) 5 2m<2 sin oz) x 8T, «
m o 1 o
() =4 ——— (74 2tan — ), z.=1lo >0, a>1.
() 2 2\/042—1< a2—1) a1

For negativex one needs to change the sigmf It is possible to eliminate the parameteto have explicit repre-
sentations in cartesian coordinates, but we deliberatajysith the parametric form since it shows clearly the value
of the physical parameter for every point on the curve.
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