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Calculations of the minimal perimeter forN deformable
bubbles of equal area confined to the surface of a sphere
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Abstract

Candidates to the least perimeter partition of the surface of a sphere intoN planar con-
nected regions are calculated forN ≤ 32. A search procedure based upon random shuffling
and combinatorial enumeration is used. It is conjectured that the optimal configuration for
eachN > 13 consists of 12 pentagons andN−12 hexagons.

1 Introduction

The surface energy of a two-dimensional foam is simply its perimeter multiplied by surface tension
(Weaire and Hutzler, 1999). A foam attains a local minimum ofthis perimeter, subject to the
constraint of fixed bubble volumes. Here, we seek the arrangement of bubbles that gives the global
minimum.

The local structure of perimeter-minimizing bubble clusters is well defined: perimeter mini-
mization implies Plateau’s rules (Plateau, 1873; Taylor, 1976): three and only three edges meet
at a point at 120◦. The Laplace Law relating pressure difference and curvatures gives the further
condition that each edge is a circular arc.

For bubbles tiling the plane, the hexagonal honeycomb givesthe least perimeter (Hales, 2001).
Here, we tackle the problem of tiling the sphere, for which, because of the curvature, non-hexagonal
bubbles must be introduced. We assume that each bubble is connected (Morgan, 2000) and seek the
least perimeter partition of the sphere intoN cells of equal area, equivalent to the energetic ground-
state forN monodisperse bubbles or the optimal packing of equal-area objects. We examine values
of N up to 32 and record the least perimeter and the configuration that realizes it.

2 Results

We consider a sphere of radiusR = 1, centred at the origin, and tile it withN bubbles of area
A= 4πR2/N. We use the Surface Evolver (Brakke, 1992), in a “spherical arc mode” that represents
each edge as an arc of a great circle, to minimize the total perimeterP.

We commence by covering the sphere with curvilinear triangles that have their base on the
equator and their apices at one of the poles. By sequentiallyallowing neighbour switching topo-
logical changes on short edges (Weaire and Rivier, 1984), and converging to a local equilibrium
after each one, the perimeter of the pattern is reduced. We continue this process until the perime-
ter ceases to decrease, and then introduce further topological changes at random to search the
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Figure 1: Candidate solutions for the least line length configuration ofN bubbles on the surface
of a sphere of unit radius, for 2≤ N ≤ 32. The representation is based upon a Gauss map of the
sphere surface to the plane (see text).
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nearby energy “landscape”. We record the perimeter and the pattern of the topology with the least
perimeter.

For smallN many of the candidates are as expected. ForN = 2 there are two hemispheres.
For N = 3 there are three identical strips joining the poles.N = 4 has tetrahedral symmetry, and
N = 6 cubic.N = 5 consists of a pair of triangles covering the poles joined by3 quadrilaterals, and
N = 7 consists of a pair of pentagons covering the poles joined by5 quadrilaterals.N = 10 has
quadrilaterals at the poles and two rows of four pentagons.N = 12 is based upon the pentagonal
dodecahdron. ForN = 13 it is not possible to insert just one hexagon, so this is thehighestN for
which a quadrilateral bubble appears; in fact, it has the same topology as the Matzke cell, one of
the most common types of bubble in 3D monodisperse foams (Matzke, 1946; Kraynik et al., 2003).

ForN≥14 it is apparent that all candidates found consist of 12 pentagons andN−12 hexagons.
These are fullerenes, now well known from carbon chemistry.We therefore introduced a further
refinement: the software CaGe (Brinkmann et al., 1997) was used to enumerateall tilings of the
sphere by hexagons and pentagons. Each of these was importedinto the Surface Evolver and its
equilibrium perimeter found. This showed that the random search procedure above was in general
only finding optimal candidates forN ≤ 20. and culminated in the confirmation that forN = 32
the optimal candidate is theC60 fullerene, in which each pentagon is separated from the other
pentagons by hexagons. Thus forN ≥ 14 we conjecture that the best candidate can be found by
finding the optimal location of the 12 pentagons in a partition that otherwise consists of hexagons.

Candidate configurations are shown in figure 1, and the perimeters are tabulated in Table 1.
The images are obtained by projecting the vertices and edgesto the plane according to

x′ =

(

1
2

π+ tan−1
(

z
x2 +y2

))

cos(tan−1
(y

x

)

) (1)

y′ =

(

1
2

π+ tan−1
(

z
x2 +y2

))

sin(tan−1
(y

x

)

) (2)

z′ = −1. (3)

3 Conclusion

We have found candidates to the minimal perimeter of partitions of a sphere intoN regions of
equal area. Equivalently, we have found the global energetic groundstate of a two-dimensional
foam confined to the surface of a sphere.

For N ≥ 14 all candidates are fullerenes. Thus, we conjecture that finding the least perimeter
partition of the sphere for largeN is equivalent to the problem of finding the fullerene with the
largest spacing between pentagonal faces.
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N P/R Topology
1 0.000000 −

2 6.283185 12

3 9.424777 23

4 11.463799 34

5 13.451848 3243

6 14.771513 46
7 16.360476 4552

8 17.710843 4454

9 18.867143 4356

10 20.015199 4258

11 21.162841 425861

12 21.891830 512

13 23.111641 4151062

14 23.964333 51262

15 24.890808 51263

16 25.735884 51264

N P/R Topology
17 26.648955 51265
18 27.478297 51266
19 28.290079 51267

20 29.015432 51268

21 29.792431 51269

22 30.528181 512610

23 31.246108 512611

24 31.932606 512612

25 32.639238 512613

26 33.289733 512614

27 33.918489 512615
28 34.574601 512616

29 35.230303 512617

30 35.843586 512618

31 36.416686 512619

32 36.951330 512620

Table 1: PerimeterP/R and topology of the minimal candidates found here.
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