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In common with other Mars exploration missions, human supervision of Europe’s
ExoMars Rover will be mostly indirect via orbital relay spacecraft and thus far from imme-
diate. The gap between issuing commands and witnessing the results of the consequent
rover actions will typically be on the order of several hours or even sols. In addition,
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it will not be possible to observe the external environment at the time of action execution.
This lengthens the time required to carry out scientific exploration and limits the mission’s
ability to respond quickly to favorable science events. To increase potential science return
for such missions, it will be necessary to deploy autonomous systems that include science
target selection and active data acquisition. In this work, we have developed and inte-
grated technologies that we explored in previous studies and used the resulting test bed
to demonstrate an autonomous, opportunistic science concept on a representative robotic
platform. In addition to progressing the system design approach and individual auton-
omy components, we have introduced a methodology for autonomous science assessment
based on terrestrial field science practice. C© 2009 Wiley Periodicals, Inc.

1. INTRODUCTION

The forthcoming ExoMars Rover mission scheduled
for launch in 2016 is the European Space Agency’s
(ESA) first attempt to deploy a mobile robotic plat-
form on the surface of Mars. The mission has an
exobiology focus and will be used by scientists to
search for signs of extinct or extant life on Mars (Van
Winnendael, Baglioni, & Vago, 2005). The six-
wheeled mobile platform will weigh on the order of
200 kg (Figure 1) and will have a dedicated science
payload known as Pasteur, which will incorporate a
range of panoramic, contact, and analytical labora-
tory instruments. This will include a drill to gather
subsurface samples, ground-penetrating radar, wide-
angle and close-up imaging capabilities, and a robotic

Figure 1. ESA’s ExoMars rover deployed on the surface:
artist’s impression.

arm to deploy contact instruments. The nominal
180-sol (a Martian solar day equal to 24 h, 39 min)
science plan for ExoMars is to visit and investigate a
number of primary sites that are on the order of 500 m
apart and gather samples for analysis through succes-
sive and iterative sample assessment. The same basic
process will apply at each site, i.e., broad site assess-
ment, multiple target selection for deeper analysis,
target assessment, continued refinement of the target
selection, and analysis through the range of position
and imaging scales leading to eventual sample selec-
tion and characterization.

At the time of writing it is expected that commu-
nication to the rover will be established mainly via a
NASA Orbiter, and possibly a low-bandwidth direct-
to-earth (DTE)/direct-from-earth (DFE) link will also
be available. Consequently, there will be a lag be-
tween data acquisition and delivery to the science
and engineering teams for assessment, which will
inevitably introduce delays in the operations pro-
cess. The volumes of data required for science assess-
ment and planning are significant and will strain the
available bandwidth. It may therefore take a num-
ber of link sessions to deliver all the data required
for assessment and planning, which will lengthen the
duration of the assessment and response cycle. The
nominal science operations plan described above has
a number of discrete ground decision points (GDPs)
at which the science team must be involved, e.g., in
selecting a small number of candidate targets in a
wide-angle camera (WAC) image for further analy-
sis. This entire planning cycle of acquire data, de-
layed delivery, assessment, planning response with
delayed delivery of commands, execution, and as-
sessment of command execution back on the ground
is inherently inefficient. Maintaining this science plan
will be a challenge given the disjoint nature of the
communications path and the natural uncertainties
associated with robot–Mars terrain interaction. As
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the open-loop planning and response process is slow,
any approach that can improve response times or re-
duce the need for Earth-based assessment is clearly
attractive.

One way of trying to maintain the proposed sci-
ence schedule is to consider migrating some of the
assessment and planning tasks carried out by opera-
tions teams to the space segment in order to decrease
decision-making response times. This of course im-
plies greater onboard autonomy. By carrying out au-
tonomous science assessment and response planning
on the robotic platform itself, the bottleneck associ-
ated with ground-based decision making would be
greatly reduced. However, it was clear prior to the
commencement of this study that the technology re-
quired to support this concept is not sufficiently ma-
ture. It is too early therefore to consider replacing
GDPs with an autonomous equivalent. There was,
however, sufficient justification to evaluate the use
of this approach for opportunistic field science, i.e.,
respond proactively to the immediate science envi-
ronment without requiring the slower Earth-based
assessment and response. Such an approach could
also offer support in the form of lower order and
automated data-gathering functions, particularly
when anomalies occur. For example, an onboard as-
sessment of acquired data could be used to quickly
schedule a retry if the initial acquisition was cor-
rupted or unsatisfactory for some reason. This could
rectify a tactical planning problem in minutes rather
than sols. The overall goal therefore is to develop an
approach that would increase the science return per
time spent on the surface for such a mission.

2. RATIONALE AND OBJECTIVES

The basic ExoMars science exploration model of re-
peated analysis at reasonably well-separated sites
is well disposed toward opportunistic science, as
Figure 2 shows. The terrain intervals between sites
will be traversed “blind” from a (Earth-based) science
perspective in order to maintain the primary science
schedule. Of course images will be gathered (e.g., for
navigation or in a preprogrammed way) en route,
and these could be used to alter (by Earth-based ops
teams) primary plans if a target of sufficient interest
presents itself.

A significant enhancement would be to equip the
platform with the ability to autonomously assess the
terrain with respect to science goals and if necessary
plan a response that provides deeper analysis of some

candidate target. This would allow science to be ob-
tained more selectively without having a great impact
on the nominal site visit schedule.

Focusing on an opportunistic approach serves
three purposes. First, the technology requirements for
the science assessment that apply in this mode are
less stringent than those associated with replacing the
current GDPs as the intent is to improve on “unin-
telligent” data capture. The GDPs are on the critical
path so the required classification performance must
be excellent in order to maintain the mission sched-
ule. Opportunistic acts are by contrast to be used in
periods mainly when spare resources such as time
and power are available. As long as tactical resource
allocation and replanning functions are available on-
board, the risk to the nominal operations is negligi-
ble as resource prioritization will be considered at the
appropriate level. It is also configurable in the sense
that autonomous responses to assessment decisions
can be constrained by mission operators in advance.

Second, the solutions we develop for these prob-
lems will build a capability that could be used to aug-
ment or possibly replace the current set of GDPs over
the longer term for future missions. Third, it is envis-
aged that low-level autonomous science selection and
response replanning could play an important part in
recovering from certain anomalies during the nomi-
nal science schedule and prioritizing data for down-
load. It is envisaged that this work will help develop
capability that supports this concept.

2.1. Related Work

Autonomous systems for planetary exploration are
currently very topical and include studies in rock
detection and target prioritization (Castaño et al.,
2006, 2007; Pedersen, 2000), feature detection (Gulick,
Morris, Ruzon, & Roush, 2001; Thompson, Smith,
& Wettergreen, 2005), novelty detection (Thompson,
Smith, & Wettergreen, 2006), compositional eval-
uation (Gazis & Roush, 2001), and life detection
(Wettergreen et al., 2005). These studies often focus
on isolated or float rocks as potential science targets
with the aim of assigning basic scientific parameters
to them such as albedo and basic texture and color
and in some cases consider analytical input such as
spectral signature and fluorescence indicators. Re-
sults can be used to detect targets of interest and un-
expected objects and characterize the exploration site.
Some employ techniques common to navigation and
locomotion work in which landscape features such as
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Figure 2. Outline of basic ExoMars exploration cycle showing the potential for opportunistic science activities. The main
objective is to traverse from a previously explored site (A) and progress toward the next site at B, where detailed sample
assessment will be carried out. The intention is to visit seven sites over the nominal 180-sol period. Opportunistic science is
clearly possible during the traverse phase and could be used to improve the robustness of data acquisition and prioritization
during the measurement cycle.

rocks and slopes are considered “obstacles,” thereby
requiring some detailed autonomous assessment of
physical parameters such as shape and size.

Like those of many colleagues working in the dis-
cipline, our approach to scientific autonomy is based
on fundamental human geological field practice. The
evaluation of complex geological features is achieved
by recognizing, classifying, and associating individ-
ual elements that make up the feature and reevaluat-
ing the assessment with scale.

A unique aspect of this work is that the geological
remit is broader as we are interested in understand-
ing how geologists actively bring wider knowledge
to bear when identifying regions of interest in a com-
plex scene. Autonomous target identification is pur-
sued with the active (and autonomous) acquisition

and analysis of additional data describing the tar-
get and host scene at different scales, reflecting tech-
niques employed in human field practice. In common
with other approaches, we also consider the need to
incorporate mission objectives into our scientific as-
sessments in order to influence what is more (or less)
relevant at any particular mission phase or locality.
Research by others in this area has sought to isolate or
detect discrete targets of interest in unstructured and
complex terrain. For example, the work of Pedersen
(2000) focuses on discriminating meteorites from
terrestrial rocks, the primary objective being to find
meteorites. Our approach is intended to extend the
geological scope and flexibility of the final system
by considering what is important at the time (i.e.,
evidence of layering, hydrated minerals, fossilized
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biosignatures, etc.) and incorporating this deeper
knowledge into our assessment of the target area.
This requires a broader geological “knowledge” and
a broader sense of prioritization across a number
of subdisciplines within geology. Detecting individ-
ual rocks remains important in target selection, but
our focus extends to geological features of poten-
tially higher value across the scale range from large
stratigraphic sequences to microscopic signatures of
life. This is supported by another unique aspect
of our work, which is to incorporate instrument
(and tool) placement and positioning into the au-
tonomous science activity. This emulates the essen-
tial human traits of observation, interpretation, and
physical interaction. In the long term, we are ulti-
mately aiming to emulate a field exploration geol-
ogist who would perform at a higher level than a
meteorite hunter or someone performing similarly fo-
cused tasks. An introduction to the methodology that
will form the basis for future development and rep-
resents our first steps in this regard is presented in
Section 4.1.

In addition to autonomous science target iden-
tification, our research has focused upon the prob-
lems associated with autonomous arm placement,
i.e., given a target rock, the operation of moving
and contacting an instrument against the science
target using autonomous arm control methods. A
large body of work has been undertaken in this
area (Backes, Diaz-Calderon, Robinson, Bajracharya,
& Helmick, 2005; Huntsberger, Cheng, Stroupe, &
Aghazarian, 2005; Pedersen et al., 2006) and comes
under the acronyms of SCIP (single-cycle instrument
placement) or SCAIP (single command approach and
instrument placement). The main drive for this work
has been the desire to maximize the science data
return rate by limiting the number of required com-
mand cycles for each individual instrument place-
ment operation. An added benefit is to minimize
the ground-based operator workload. Amortized pri-
mary mission NASA Mars Exploration Rover (MER)
operations have been reported to cost approximately
$4 million to $4.5 million per day and require
240 operators working 24/7 (Pedersen, Deans, Lees,
Rajagoplan, & Smith, 2005). The SCIP goal is to
autonomously approach and place an instrument
on multiple features of scientific interest in a single
command sequence uplink (Pedersen et al., 2006).
Vision-based target tracking techniques are key to
the general SCIP approach, and two-dimensional
(2D) feature–based visual servoing has been used to

keep a rover’s navigation cameras foveated onto a
science target and command the rover directly to-
ward the given target. However, results have shown
that whereas 2D appearance–based techniques can
be computationally inexpensive, for visual servoing,
they are insufficient as they can drift and are not ro-
bust to changes in a target’s appearance as the rover’s
traverse is executed. Three-dimensional (3D) shape
information is required, and stereo-based shape
tracking techniques have been employed with good
results (e.g., 10-m-distant target and up to 10-mm
tracking and handoff accuracy). Such techniques are
robust to image noise and changing lighting condi-
tions, but they are sensitive to calibration parame-
ters and can be computationally expensive. It should
be noted that with the current SCIP work, it is a
ground-based scientist(s) who identifies and selects
the desired science target from a previously captured
panoramic camera (pancam) image.

Our approach has been to integrate the desire
for autonomous opportunistic science target identifi-
cation with that of autonomous arm placement and
hence lay the groundwork for autonomous science
data acquisition. Our work therefore draws upon
the results obtained from previous autonomous sci-
ence and SCIP-based research. In particular we have
based our autonomous opportunistic science target
identification work on 2D appearance–based tech-
niques because an opportunistic approach must be
real time and cannot be computationally expensive.
However, our autonomous arm placement work has
been based on stereo-based techniques and 3D shape
information. Although such techniques can be com-
putationally expensive, we argue that this would be
acceptable (within reason) given the clear benefits
when actual science target contact is required and
given the fact that the rover would not be executing a
traverse with all the inherent additional demands of
real-time collision detection and avoidance.

The main aim of our work was to prototype
methods that are applicable to an ExoMars-like op-
erations scenario, which has its own unique at-
tributes and constraints, and to contribute to the long-
term development of science autonomy techniques.
The objective was not to implement flight-ready au-
tonomous science for the actual ExoMars mission.
As such it was part of the U.K. STFC CREST initia-
tive, which has sought to promote the development
of technologies that will be of benefit to ExoMars-like
missions. This work of course may be complementary
to wider research in this area.
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2.2. Objectives

The objectives for this work were as follows:

• establish an initial scientific methodology for
the automation of science assessment and
planning based on terrestrial field practice

• prototype a system architecture that can sup-
port the concept of autonomous opportunistic
science

• prototype elements of the methodology pro-
vided by the science team in order to establish
the feasibility of this approach

• demonstrate the prototype system in a repre-
sentative “Mars Yard” environment

• use the forthcoming ESA ExoMars mission as
a target and source of operations and science
requirements

Our primary task was to demonstrate oppor-
tunistic science in a representative ExoMars environ-
ment. A reference scenario was outlined in the early
phases of the study, which provided a baseline for
our work. The objective was to demonstrate that the
mobile platform could traverse a rock field en route
to a target destination and both detect and respond
to targets of scientific interest that it encountered
en route. The response was to occur at two levels:
first to authorize close-up or high-resolution imag-
ing of a target detected in a WAC image and sec-
ond to plan and place a robotic arm if the target
was sufficiently interesting. This required a number
of key components including science assessment and
response, replanning and resource monitoring, and
robotic arm approach and placement. In addition we
required a basic system to support this scenario, in-
cluding ground-based planning and onboard soft-
ware elements such as time line or plan execution.

In previous ESA-sponsored work an autonomous
science assessment capability developed for a
Martian aerobot prototype was used as the starting
point for the autonomous science aspect of this work
(Woods et al., 2008). However, the requirements for a
rover-based assessment system are very different, so
a new approach has been developed. The study team
includes a planetary geologist, and a key feature
of this work is our attempt to define a framework
from which to build a hierarchical scoring system for
scientific evaluation based on fundamental geolog-
ical features. Although ExoMars is the initial target
mission for this work, the framework approach is

generic and could be used by any surface element.
The intent is to base this model on terrestrial geo-
logical field practice (Stow, 2003) while considering
the constraints associated with robotic exploration
(Pullan et al., 2008). The framework is used in turn as
a basis for our autonomous science assessment and
response models.

In another ESA-sponsored activity, artificial intel-
ligence (AI) planning and scheduling-based tactical
replanning software called time line validation and
control (TVCR) has been developed to support goal-
based arbitration and time line replanning to sup-
port opportunistic science (Woods et al., 2006). Recent
work at Aberystwyth University (AU) provided both
the test environment or “Mars Yard” and a half-scale
model of the ExoMars chassis E concept with a simple
assembly representing a robotic arm.

3. TEST BED FRAMEWORK

TVCR is at the heart of the autonomous science con-
cept and will be used to reason about the suitabil-
ity of servicing science operations requests generated
by the onboard science component. The robotic arm
agent will provide the basis for an autonomous im-
plementation for more detailed science assessment
requests by supporting deployment of the robotic
arm. The basic operations or usage model for the sys-
tem is as follows:

• Nominal exploration time lines or plans are
uplinked from the off-board mission planning
element.

• The rover executes the planned sequence,
which is mainly a traverse action between
designated waypoints.

• At selected points the imagery collected
during the traverse is assessed for science
interest.

• If sufficient interest is detected, the science as-
sessment and response agent (SARA) will re-
quest new data acquisition and time for itself
to perform a more detailed analysis via the
executive and TVCR.

• TVCR will assess the current plan, resource
state, and mission priorities before recom-
mending a go/no-go for the new opportunis-
tic science request.

• The request may involve a close-up image ac-
tivity or an actual arm placement on a target
object such as a rock or outcrop.

Journal of Field Robotics DOI 10.1002/rob
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Figure 3. CREST system architecture.

Each of the primary components, namely science
(SARA), planning (TVCR), and the arm agent (AAPI),
is discussed in more detail in the following sections.

Figure 3 shows the architecture we have devel-
oped for the CREST demonstrator system, consisting
of an autonomous science assessment component,
closed-loop robotic arm approach and placement
(arm agent and perception interface), and an onboard
planner and scheduler TVCR.

4. SCIENCE ASSESSMENT AND RESPONSE

The SARA component is based on the underlying sci-
entific scoring framework summarized below.

4.1. Science Assessment Framework

Geological features often appear complex and are in-
fluenced by a huge number of variables. In the field,
human geologists mentally deconstruct what they see
and draw on broader contextual input (the bigger
picture) to help classify geological materials and the
processes that act on them. Observations made in
the field, aided by effective use of a hammer and a
hand lens, provide an assessment of structure, tex-

ture, and composition, the basic ingredients for in-
terpretation. This should also be the objective of a
robot undertaking planetary geological fieldwork. In
either case, interpretation relies on iteration because
features seen from afar often look very different when
viewed close up (sometimes unexpectedly so). This
emphasizes both the importance of detailed close-up
observations (payloads must be equipped with ap-
propriate deployable instruments and tools for in situ
work) and the need to incorporate reevaluation into
the onboard autonomous routines.

For the purpose of this study, the following
were considered necessary to establish a framework
for a first-generation system based on autonomous
science:

• definition of the fundamental attributes ap-
plicable to geological features

• mechanism for assigning scientific value to
these attributes

• methodology for constraining scientific value
due to external factors (i.e., context)

• requirements for rule-based algorithms
• facility for testing and evaluating the concept

Journal of Field Robotics DOI 10.1002/rob
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As mentioned previously, the basic attributes used
in field classification of geological features are struc-
ture (defined by parameters such as geometric shape,
scale, orientation, and form), texture (parameters fab-
ric, luster, relief, grain size, shape, and sorting),
and composition (parameters color, albedo, specular-
ity, and mineralogy). All these attribute parameters
can be expressed as discrete constants or modeled as
multivalued functions to reflect a variety of the real-
world situations (“vitreous luster”) and consequent
uncertainty.

For this study, a feature database of commonly
used parameters in terrestrial field geology was com-
piled for each basic attribute, with each assigned an
arbitrary science value score (SVS) based on relative
geological significance. Each target could be assessed
and described using the elements from a set of possi-
ble parameters for each attribute. Once the appropri-
ate parameters were identified for each target, their
scores, defined in the database, could be used to build
up a cumulative score for each attribute. At the at-
tribute level, therefore, the accumulated scores repre-
sent indicators of “feature richness.” The overall SVS
of a science target is derived by combining all the fea-
tures observed/measured, expressed as parameters
for each attribute, and making adjustments based on
data quality and context (knowledge of the geological
environment in which the robot explores). At the start
of the mission, a contextual model would be primed
using prelanding data (regional geology from orbital
mapping) and mission objective criteria (search for
signatures of life). Following landing, the contextual
model would be enhanced using ground truth from
panoramic landing site surveys and in situ analytical
measurements.

In general terms the total SVS of the target is a
function of a number of derived parameters:

SVS = f (As, At, Ac, Ax,Q,B),

where As is the overall structural attribute score, At
is the overall textural attribute score, Ac is the over-
all compositional attribute score, Ax is the composite
attribute score, Q is a quality factor, and B is a bias
factor.

A simple method of calculating total SVS could
be expressed as follows:

SVS =
(∑

As +
∑

At +
∑

Ac + Ax
)

· Q · B. (1)

The composite score (Ax) is applied when certain,
identified attribute parameters occur in combination.
Note that the quality and bias factors Q and B are
intended to enhance or diminish the overall score in
much the same way a human geologist may apply
these criteria in the field. Q will eventually be de-
rived from the recognition algorithms and instrument
parameters such as focus, resolution, and illumina-
tion. B will be derived from the contextual model
and currently provides a simple means of weighting
the significance of certain features with respect to the
current environment.

Because this study was heavily constrained in
both time and manpower for this topic, it was im-
portant to demonstrate a mechanism by which this
could be achieved for a variety of situations us-
ing the most basic parameters and a simple scoring
system. Consequently only As and Ac were imple-
mented in SARA and restricted to only layering/no-
layering and dark-toned/light-toned, respectively, at
this time. Future versions of SARA will replace sim-
ple arithmetic weighting [Eq. (1)] with a more appro-
priate scoring system based on objectivist Bayesian
probability as used by others (Pedersen, 2000).

Table I lists some examples of how one could de-
rive a SVS for a target using the simple arithmetic
method described. The interpretation assigned to
each observation (feature classification derived from
particular configurations of attribute parameters) is
compared to table entries within a simple contextual
model in order to assign the appropriate bias factor.
How the observation maps to the interpretation will
be the subject of further study into the general prob-
lem of modeling the impact of context.

Table I illustrates some interesting potential out-
comes using this methodology. Low-level attribute
parameters such as structure.signature and texture.size,
if detected by the feature recognition algorithms,
are assigned predefined scores as specified in pro-
grammable attribute lookup tables. These scores and
the occurrence of certain attribute.parameter config-
urations (indicated in boldface in Table I) lead to
feature classifications (column 1 in Table I) and the
assignment of a composite score in some cases,
which elevates the importance of the observation.
Example 1 (cross-bedded sandstone) has a pre-
dictably high SVS of 1,245 due to its compound fea-
ture set and distinctiveness. Example 2 (salt deposit)
has fewer features and would normally have an SVS
of 210. In this case, however, a bias factor of 10 is cur-
rently assigned in the contextual model to detection
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Table I. Examples of composite features.

Feature classification
(derived) Axa Attributes (As, At , Ac)b and attribute parameters Quality Bias SVSc

Cross-bedded 1,000 structure.signature = “distinct” = 25 1 1 1,245
sandstone structure.extent = “continuous” = 20

structure.form = “planar” = 10
structure.orientation = “multiple” = 50
texture.matrix = “clastic” = 20
texture.roundness = “subrounded” = 20
texture.size = “medium sand” = 10
texture.sorting = “well sorted” = 40
composition.mineralogy = “quartz” = 50

Subtotal SVS = 245

Salt deposit 0 structure.signature = “none” = 0 1 10 2,100
texture.extent = “homogeneous” = 10
composition.albedo = “high” = 100
composition.color = “white” = 100

Subtotal SVS = 210

Carbonate 0 structure.signature = “none” = 0 0.25 1 2,501
texture.signature = “indistinct” = 5
composition.mineralogy = “dolomite” = 9,999

Subtotal SVS = 10,004

Vesicular basalt 0 texture.relief = “vesiculated” = 10 1 1 65
composition.signature = “distinct” = 50
composition.petrology = “basalt” = 5

Subtotal SVS = 65
aComposite score Ax due to combination of attributes highlighted in bold.

bParameters and assignments derived from the feature database (i.e., As, At and Ac data tables).
cFinal (modified) SVS [see Eq. (1)].

of “salt deposits” as these have yet to be found but
are expected at the landing site. Thus the salt deposit
scores higher than the cross-bedded sandstone. Ex-
ample 3 (carbonate) is not expected at the landing site
so has a bias factor of one. However, the detection of
carbonate overrides the previous two examples even
though the data quality is poor. This is due entirely
to the high SVS assigned to the carbonate composi-
tion (i.e., 9,999). Example 4 (vesicular basalt) scores
lower than all previous examples even with an un-
ambiguous petrological interpretation. This is due to
a combination of uniqueness and feature richness of
the previous examples.

4.2. Science Agent

The concepts outlined above have been used to cre-
ate the basic SARA architecture outlined in Figure 4.

The structure of the architecture is built around three
levels of processing: candidate target area extraction,
geological attribute analysis, and finally the fusion of
results factoring in geological context. Our analysis
was closely tied to the scale at which the image data
were retrieved.

For geological fieldwork, activities can be classi-
fied on the basis of three practical working distances
between observer and target: proximal (∼100 cm),
macroscopic (∼10 cm), and microscopic (∼1 cm). This
range can be considered to be synonymous with the
immediate radial “working zone” of a stationary hu-
man field geologist who is suitably equipped with
tools of the trade (hammer, field lens, portable ana-
lyzers, samplers, etc.), and these terms are adopted
to distinguish from activities beyond the physical
reach of the observer (i.e., “remote” sensing) that
require mobility to reach. In the planetary context, the
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Figure 4. SARA architecture: Target assessment is built up through the analysis of individual attributes and the parameters
that define them. Context information is used to further qualify the final target score.

analogy applies equally to static planetary landers or
stationed mobile vehicles equipped with robotically
deployed scientific payloads.

This study considered only proximal and macro-
scopic working distances. How the images are actu-
ally analyzed depends on the scale at which the input
image was taken. For example, initial images taken
at the proximal distance provide macroscopic detail
(standoff image scale) and are assessed for target rock
features on the basis of general morphology, whereas
a more detailed analysis of grain and bedding macro-
scopic features is applied to high-resolution images
(close-up image scale). The same basic process flow
applies in each mode, i.e., segmentation, analysis,
and fusion, but the algorithms used in the analy-
sis in particular differ. This approach supports the
hierarchical analysis characteristics of field practice,
in which analysis starts off light and grows in rigor
and usually narrows in focus in a series of discrete
stages.

In this instantiation we focused on developing
algorithms that could detect a variety of bedding
types and basic morphological analysis in order to
assess the target structure. For composition we con-

sidered albedo and reflectivity, and for the texture we
sought to detect granules. We restricted use of the ar-
chitecture to “standoff” and “close-up” image scales.
Standoff is represented by the immediate, proximal,
terrain view available in the WAC images. In effect
this captures all objects 1 m from the front section of
the rover at medium resolution. Close-up is a more
detailed view of a macroscopic rock or outcrop fea-
tures provided by a high-resolution close-up image.

Given the timescale of the work, we did not
model context in a sophisticated way, so the final
SVS for each candidate target was simply a weighted
fusion of a limited number of individual attribute
scores. Learning techniques were developed but test-
ing was limited to processing stand-alone image
groups from MER images as time constraints pre-
vented evaluation in the final field trials.

In the standoff phase the input images are pre-
processed in order to detect likely target candidates,
i.e., rocks or outcrops. To achieve this we relied on
a number of basic image processing techniques and
applied them in the following way: initially the im-
age was smoothed using a morphological [Eq. (2)]
and Gaussian smoothing algorithm; the results were
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Figure 5. Standoff image processing sequence: (a) original WAC image, (b) feature extraction image, (c) result from
smoothing and segmentation, and (d) result from the combination of (b) and (c) and the detection of an interesting tar-
get (the segmented area around the target is reduced to remove boundary artifacts). During standoff analysis the contex-
tual model is used to denote “what” is interesting using a reduced SVS parameter set. The feature vector shown in (b) is
compared with expected values and assessed for terrain “roughness” characteristics. During the trials this was set at a
roughness value of 0.3 relating to the rock ridge and channel feature density (potential bedding) and albedo range. If the
predetermined thresholds are breeched, a positive request for further analysis will be issued. Note that this thresholding of
the derived feature vectors does not use the SVS function derived in Eq. (1), which is used only in level 2 close-up analysis
in this instantiation of the system.

analyzed using a graph-based, region-growing al-
gorithm (Felzenszwalb & Huttenlocher, 2004), and
by applying a threshold it was possible to identify
the rocks from the soil. The original color image
was then gray-scaled ready for feature classification
(Shaw & Barnes, 2003) using a double differential
method [Eq. (3)]. Targets of interest were identified
by combining the outputs from both processes, the
segmented regions being used as a mask on the fea-
ture image. This method of analysis and identifica-
tion proved adequate for our target environment and
the subsequent integration trials (see Figure 5) and
also images of Mars obtained from previous missions
(see Figures 20–23 later in this paper). Robust rock
and outcrop detection under a variety of conditions is
of course not trivial and has been the subject of work
by other groups (Thompson & Castano, 2007).

Once regions of interest have been defined, the
next step is to carry out an attribute analysis:

IF = IO
(i,j ) • m = (({[(

IO
(i,j ) � m

) ⊕ m
] ⊕ m

} � m
))
. (2)

Equation (2) is the calculation for the morphological
smoothing. The mask (m) is applied to each pixel in
the original image performing and opening followed
by a closing operation (Gonzalez & Woods, 1992). The
opening operation removes small light details, leav-
ing the overall gray levels relatively unchanged, and

closing removes dark details from the image, again
leaving the overall gray level the same.
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Equation (3) is the calculation of the feature density,
using the radius of curvature at a point that is cal-
culated as a function of the double differential along
the x, y, xy, and yx axes. The value and sign of the
components denote the direction of a curve allowing
feature determination.

Figure 4 indicates that attribute analysis is depen-
dent on the detection and classification of primary
features such as color, texture, and structure. The de-
tection and classification of these features is complex
and will require a long-term effort to build up an
extensive capability.

This study concentrated on the detection and
analysis of bedding and to some extent granularity
and albedo in the close-up analysis. This process also
started with morphological and Gaussian smoothing,
followed by a combined Sobel edge detection and
morphological gradient detection [Eq. (4)]. The de-
tected lines were binarized and thinned before be-
ing analyzed for direction and length. The profile of
the direction and length of the lines was then exam-
ined in order to determine whether any bedding was
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Figure 6. Close-up images processing sequence: (a) original zoom image, (b) gray-scaled and smoothed image, (c) Sobel
edge detection and morphological gradient combination, (d) line filtering and thinning, and (e) line direction and length
classification superimposed onto the original image.

present and also its type and direction (see Figure 6).

IF = IO
(i,j ) • m = (

IO
i,j ⊕ m

) = (
IO
i,j � m

)
. (4)

Equation (4) is the calculation for the morphological
gradient. The mask (m) is applied to each pixel in the
original image performing a dilation and erosion on
the image pixels (Gonzalez & Woods, 1992).

A similar technique is used to search for gran-
ules, in which the image is processed with a Gaussian
smoothing and morphological gradient technique be-
fore an incremental threshold procedure is applied.
The result is then analyzed for granules of various
sizes; the profile of their size and distributions is in-
terpreted to give a result.

As the color cameras had been calibrated only
for distortion and not for color correction and re-
flectance, only an approximation of the albedo val-
ues of the rocks could be generated; this was achieved
by gray scaling the original image and taking the av-
erage gray intensity value for the rock. As the ac-
tual lighting conditions varied between the tests, the
albedo was measured but the value was used only to
identify objects that were “unique.”

All the methods implemented could be config-
ured through a parameter script to allow the adaption
of the analysis and emphasis of the object attributes.
Clearly, the attribute classification will be improved if
more feature identification methods are included in
the processing repertoire. Figures 5 and 6 show the

intermediate results from processing at both standoff
and close-up positions.

5. REPLANNING AGENT

Classically, in AI planning, replanning is defined as
the task of taking an existing plan, together with new
goals, and constructing a new plan that achieves both
the original and new goals. This problem is as hard,
in general, as planning from scratch to achieve all the
goals (Nebel & Koehler, 1995). In the context of the
autonomous scientist, the replanning problem differs
from this classical definition in several ways. First,
a characteristic of the task-oriented behaviors that
drive the science missions is that it is natural to de-
scribe goals not in terms of the states that must be
achieved but in terms of the actions that must be ex-
ecuted. This is because the science-gathering actions
have only one purpose, which is to acquire the sci-
ence that is the true objective of the mission, so it is
natural to specify the goals of a scenario by specifying
the actions that must be executed. Second, there are
typically few choices in the actions from which the
plans are to be constructed, but more choices about
the ordering of the critical science-gathering actions.
This makes the problem more like a scheduling prob-
lem than a classical planning problem. However, the
order in which science-gathering actions are executed
determines precisely which supporting actions must
be executed, and in what order, to link these activities
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into a coherent sequence, and it is these actions that
give the problem a planning character. Third, the
most important constraint on the achievement of a
successful replan is not the achievement of the goals,
but the management of the limited resources.

These three factors contribute to shaping the re-
planning strategy in TVCR and in making a re-
planning strategy more efficient than planning from
scratch. In the autonomous scientist’s work, only the
replanning functionality of TVCR is of significant in-
terest: the other functions, including monitoring the
execution of the time line, remain active but are not
central to the focus of the research (Woods et al.,
2006). To perform its replanning, TVCR reasons with
a model of the activities that are available in the do-
main. This model is an action-centric model, provid-
ing declarative descriptions of the actions that the
executive can be called on to perform. The model
is written in planning domain description language
(PDDL) (Fox & Long, 2003). The benefits of such a
model are that it is relatively easy to extend with new
actions, or to modify the descriptions of existing ac-
tions, in a form that closely corresponds to intuitions
about the behaviors. Furthermore, PDDL is a widely
used language, so its use offers access to a wide se-
lection of existing planning and plan-manipulation
tools. PDDL allows actions to be described in terms
of their preconditions and effects. The action mod-
els used for this application include the primitives for
traverse, approach target and for each of the basic sci-
ence operations that can be performed.

The most important functionality on which
TVCR depends is plan validation (Fox, Howey, &
Long, 2005). This allows TVCR to take a time line de-
scription, either supplied from the ground or partly
constructed onboard, and validate it. The validation
process identifies predicted flaws in the execution, in-
dicating where in the time line they occur and what
their cause is.

In the context of the current work, a request to
replan arrives at TVCR in the form of a fragment
of a plan (a connected sequence of actions, but typ-
ically with unsupported preconditions) that is to be
inserted into the time line. This is because the re-
planning request is triggered by the recognition, in
the science agent, that there is a previously unrecog-
nized opportunity to gather scientific data. The frag-
ment has an associated priority value reflecting its es-
timated relative science value in comparison with the
fragments that form the current time line. TVCR han-
dles the request by inserting it into a plausible slot

in the time line, identified by selecting the point at
which the rover is located most closely to the site at
which the fragment is to be executed, following other
activities at the same site. Usually, this attempted in-
sertion will generate plan flaws due to interactions
between the newly inserted actions and the actions
that were already on the time line.

TVCR has a series of strategies available to it to
handle the flaws that can arise. These include remov-
ing low-priority actions when there is a shortage of
resources such as power or data storage, delaying ac-
tions when there is a conflict between demands on
fixed resources (such as instruments), and adding in
support actions to ensure the coherence of the execu-
tion trace of the time line. TVCR applies these strate-
gies in a fixed order. The resolution of some flaws can
create new ones, and these are handled alongside the
others. If the process of resolution fails to generate a
valid time line within a fixed number of iterations,
TVCR falls back on a fail-safe strategy of stripping
down the original time line until the activities that re-
main fit within the resource envelope available and
represent an executable plan. In this way, TVCR can
ensure that there is always a valid time line awaiting
execution (although it might be empty) and can add
opportunistic plan fragments to the time line as they
arise, while respecting the constraints on resource use
and on correct execution of the plan. TVCR is delib-
erately designed not to attempt to perform full plan-
ning. Its behavior is precisely limited by the priori-
ties that govern the order in which fragments may be
included in or excluded from the plan. Further, it is
restricted in the degree of search it may perform to
find a repair. These constraints allow TVCR to op-
erate within tight operational bounds on its perfor-
mance: it does not build a large search space to ex-
plore alternative choices. They also ensure that TVCR
respects decisions made by an external human agent
about the order in which activities should be consid-
ered. This gives us significant power over the choices
TVCR will consider, without being burdened with the
need to model all of the constraints that lead to the
development and ordering of those choices.

The use of plan fragments as an organizational
structure for activities that are linked in the construc-
tion of plans makes the models TVCR uses simi-
lar to a single-layer hierarchical task network (HTN)
(Erol, Nau, & Hendler, 1994). The expansion of a frag-
ment replaces it with the body, which is always a
uniquely specified collection of actions in a partial or-
der. In contrast to HTNs, each fragment has only one
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expansion. The expansion allows actions to be in-
corporated into the plan, together with constraints
on their relative positions. Another contrast to HTN
planning is that the plan can be modified by the ad-
dition of individual primitive actions (or even se-
quences of actions) that act as bridges between the
plan fragments, ensuring that the state of the system
is correctly prepared, ready for the execution of the
next plan fragment.

The example in Figure 7 is a very simple illustra-
tion of the process of plan repair. In this case, the orig-
inal plan consists of two fragments, each containing a
traverse, a panoramic camera imaging action, and a
standoff or level 1 science analysis action. If, follow-
ing the first level 1 analysis, the science agent deter-
mines that an opportunity is available to perform a
new science data gathering task, the new fragment
shown in Figure 7 will be created. TVCR is then in-
voked in order to attempt to insert the fragment into
the plan. TVCR recognizes that the precondition of
this fragment includes the need to be at the appro-
priate science target site and will insert a minor tra-
verse action (in stand-alone TVCR tests only not in
final trials) to adjust the position to meet that precon-
dition. It identifies that the best place to insert the op-
portunity is immediately, because this is the point at
which it is closest to the target. The remainder of the
plan is moved to make time for the opportunity to be
inserted.

Several issues might affect this process. First, if
the rover is committed to other activities in the same
location, then TVCR might choose to insert the oppor-
tunity after one or more of these activities. Second,
TVCR considers the overall constraints for the plan,
in terms of time, memory, and energy. If the insertion
of the opportunity would cause the new plan to ex-
ceed any of the limits on these resources, then TVCR
will remove fragments from the modified plan, start-
ing with the lowest priority fragment that has not yet
been executed. Typically, opportunities will be given
lower priority than the original plan fragments, but
this need not be the case. Thus, if the second frag-
ment were lower priority than the opportunity, TVCR
could remove it in order to free sufficient resources
to allow the opportunity to execute. TVCR will take
into account the additional resource requirements of
the supporting activities, such as the additional mi-
nor traverse in this case.

Planning and plan modification acts at a differ-
ent level to the function of control languages such
as TDL (Simmons & Apfelbaum, 1998) and RMPL

(Ingham, Ragno, & Williams, 2001), but these levels
interact closely. Control languages allow flexible pro-
grams to be specified for robotic platforms, with the
intention that an executive should be able to interpret
the commands of the language at execution time in
order to manage the uncertainty inherent in the in-
teraction between a robot and its environment. How-
ever, the programs written in these languages are the
result of careful planning of the activities that the
robot is intended to execute. Thus, planning can be
seen as an analog of the programming activity that
precedes the execution of programs written in these
languages. In our implementation, the functions of
a TDL or RMPL control program are subsumed by
a purpose-built executive implementation that per-
forms the necessary control. This component is not
designed to be a fully robust solution so does not con-
tain the full functionality of execution monitoring or
the flexible execution of the form supported by TDL
and RMPL.

Several other researchers have explored ways to
provide a planning function in the face of the need
for plan modification or plan failure. Among the
most relevant work is that of Chien and his team
(Chien, Smith, Rabideau, Muscettola, & Rajan, 1998;
Rabideau, Knight, Chien, Fukunaga, & Govindjee,
1999), using ASPEN and its reduced form, CASPER.
Chien and his group have explored the use of on-
board planning technology to select and direct ob-
servation sequences for EO-1 (Sherwood et al., 2005).
Their approach involves the use of a carefully con-
structed and complex onboard model that can be
used to plan new observations as the goals arise.

The contingency planning work explored by
Bresina, Golden, Smith, and Washington (1999) us-
ing CRL (contingent rover language) is also very rel-
evant. Using CRL, the authors construct plans that
include alternative paths triggered by circumstances
that might arise during execution. These are very
similar to the opportunity fragments used in TVCR.
The plans they construct place the contingencies at
specific points during execution (identified by par-
ticular circumstances observed via sensors). This is
a slightly different view of the plan structure and
requires that contingencies be considered for execu-
tion without exploring the impact on later resource
availability. This means that the local modifications to
the plan cannot compete with resource allocations to
later parts of the planned activity. To allow later plan
elements to be dropped in favor of earlier opportuni-
ties, it would be necessary to make the later elements
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Figure 7. Simple plan modification by TVCR. The initial plan contains two fragments, including six actions (top of figure).
There is a single opportunity fragment to be inserted. This is placed between the two fragments, and an additional action
is inserted to link the fragments into a coherent plan.
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contingent on there being sufficient resources to com-
plete them. The most difficult aspect of using this
mechanism to control the opportunity insertion is to
anticipate the ways that current execution decisions
could impact planned future operations without hav-
ing an explicit review of those future operations. The
CRL mechanisms allow current execution decisions
to be affected by current state but do not attempt
to review the future planned operations or to mod-
ify them ahead of execution. TVCR considers the en-
tire planned sequence of operations when attempting
to insert new opportunistic fragments and makes the
decisions based on the anticipated requirements for
resources of those operations.

6. ROBOTIC ARM APPROACH AND
PLACEMENT PLATFORM

Key hardware components within the autonomous
arm agent and perception interface (AAPI) of the
CREST architecture are the panoramic cameras and
zoom high-resolution camera (pancam), the pancam
pan and tilt mechanism, the robotic arm, and the lo-
comotion chassis with associated onboard computer
and electronic interfaces (Figure 8).

Upon instruction from the executive, a stereo
image pair is captured using the pancam WACs.
Our demonstration scenario required an overlapping
sequence of image pairs to be captured via the
autonomous operation of the rover’s pancam pan

Figure 8. A close-up of our demonstration rover platform.

and tilt mechanism. SARA then examines one image
(typically the left-hand image) from each image pair.

Upon identification of a science target, the image
pixel coordinates of this object (e.g., the rock’s cen-
troid) are communicated to the AAPI. SARA can re-
quest a zoom image of the rock in question to confirm
a science target hypothesis. The AAPI accomplishes
this by calculating a correction to the pancam pan
and tilt mechanism orientation so as to center the sci-
ence target in the zoom camera’s field of view. A rock
zoom image can then be captured. Using the science
target WAC-captured image pair and stereo triangu-
lation, the 3D position of a science target is calculated
relative to the rover. This allows the pan and tilt ori-
entation to be calculated for the zoom image capture
activity and allows a science acquisition “cost” to be
calculated. This is based on the power and time that
would be required for the rover to perform placement
onto the science target location.

The cost information is used by TVCR to assess
the resource implications of an opportunistic science
activity. If a “go” is given, a rover traverse can oc-
cur to place the science target within arm’s reach, al-
though this was not incorporated in the final field tri-
als. The AAPI requests a WAC image pair and uses
its stereo triangulation and arm kinematics to confirm
target reachability and calculates an appropriate arm
configuration for instrument placement.

A safe instrument placement trajectory and
contact region on the science target can also be
determined by generating a mini-DEM (digital ele-
vation model) of the science target. The autonomous
AAPI has required a number of algorithms to be
designed and implemented, including camera image
distortion correction and rectification, disparity
map generation, stereo triangulation, pan and tilt
mechanism pointing, science target acquisition cost
calculation, arm reachability, and safe instrument
placement trajectory determination and execution.
Our current research is focused upon an even-
tual field programmable gate array (FPGA)-based
implementation of the AAPI functionality.

6.1. AAPI Details

The AAPI algorithm contains the following steps:

• capture pancam stereo images, remove lens
distortion, and rectify

• obtain pancam (2D) image pixel coordinates
for candidate science targets
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• generate disparity map, and use stereo trian-
gulation to create science target DEM

• verify that targets’ coordinates are within
robot arm reachability envelope [YES↓,NO↑]

• identify (optimal) instrument placement re-
gions within reachable DEM region

• identify correspondence between placement
regions and science targets [YES↓,NO↑]

• generate science targets’ surface normals and
placement trajectories

• check for collisions along placement trajecto-
ries [YES↓,NO↑]

• estimate costs (time and power) to place in-
strument on science target [YES↓,NO↑]

• if all OK, then “get sample”—wait for next
candidate science targets

At key points within the algorithm, critical decisions
have to be made that will result in a continuation to
the next step (denoted YES↓) or the algorithm will de-
tect a problem with the candidate science target (e.g.,
unreachable with the arm). Such a decision (denoted
NO↑) will cause the AAPI to flag that a new science
target is required.

The AAPI pancam was calibrated prior to con-
ducting the field trials. A standard camera calibration
method (Bouguet, 2008; Zhang, 2000) was employed
that required a 16 × 16 checkerboard target to be im-
aged by both the left and right WACs. These data al-
lowed both the extrinsic and intrinsic properties of
the cameras and their optics to be obtained. The pan-
cam calibration data allowed the lens distortions to
be removed after image capture and prior to stereo
image processing.

The AAPI stereo triangulation algorithm re-
quired a simplified epipolar geometry to be observed,
and hence any captured WAC images had to be rec-
tified (see Figure 9). Rather than implement a “yet-
another-disparity” algorithm, we wished to investi-
gate the performance of a state-of-the-art approach
that showed good performance when compared to
other algorithms and was able to deal with occlu-
sion problems (a situation that is quite probable in
a Martian “rock garden”). We based our disparity
map generation on the cooperative algorithm for
stereo matching and occlusion detection by Zitnick
and Kanade (2000). We found that this algorithm per-
formed well provided that good (close to solution)
initialization minimum and maximum pixel disparity
values were selected a priori. The major problem with
such an algorithm is the large computation time. Al-
though this may not be an issue for terrestrial appli-
cations, when using disparity algorithms onboard an
autonomous rover it must be noted that processing
memory and power are very limited (for ExoMars
typically of the order of 10s of megabytes of memory
and a 100-MHz clock rate). For our experiments we
found that simply creating an adjustable crop win-
dow around the given science target pixel coordinate
considerably reduced the overall computation time
(typically 40 s to generate a disparity map using a
1,024 × 50 pixel crop window for both left and right
WAC images, running on a 1.2-GHz Intel Pentium
M processor with 0.99 GB of RAM as used in the
experiment).

Once a disparity map had been generated, then a
simple process of stereo triangulation was performed
using the obtained science target left imagex,y and

Figure 9. Example of left and right WAC image rectification. The black dotted line shows an example of the resultant
simplified epipolar geometry.
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right imagex,y pixel values and the previously ob-
tained WAC extrinsic parameters.

Having obtained the 3D position of the candidate
science target relative to the left WAC origin,1 this po-
sition had to be transformed from the camera coordi-
nate origin to the origin used by the rover arm kine-
matics (in our case, at the base of the arm).

Prior to conducting our field trials, both the rover
pan/tilt mechanism and the rover arm were cali-
brated. This involved obtaining measurements of the
potentiometer-joint-offset (PJO) for each servo mecha-
nism used in the pan/tilt and arm devices This off-
set relates to the difference between the geometric
0-deg angular position of a given rotation joint axis
and the actual 0-deg angular position as measured by
the joint’s servo mechanism potentiometer. This type
of joint offset can be introduced during the device as-
sembly process, for example, when the arm is typi-
cally constrained in a rig to align the joints and when
the measurement encoders (potentiometers) are sub-
sequently mounted to each joint.

Calibration of the kinematics-joint-offset (KJO) for
each arm revolute joint was undertaken. The KJO for
each joint represents the angular difference between
the theoretical (kinematics) joint value and the ac-
tual joint value required to place the real arm’s end
point at a given target position in 3D space. The major
contributor to this angular difference is arm deflec-
tion (due to link bending and torsion) when sub-
jected to gravity. KJO calibration involved specify-
ing a set of calibration 3D points (relative to the arm
origin) within a given theoretical arm reachability re-
gion. These points were converted to joint angles us-
ing our arm inverse kinematics model. The arm was
then commanded to execute these joint angles, and
thus the arm was moved to the calibration 3D points
within the real world. For each joint set (base-anglei ,
shoulder anglei , elbow anglei), the actual 3D position
of the arm’s end point was measured using an ex-
ternal measurement system. A Vicon motion capture
system was employed for these measurements, and
this captured in real time (120 Hz) the Cartesian po-
sition (accuracy ≈ ±0.1 mm) of a set of passive re-
flective spherical (25-mm-diameter) markers placed
on the rover arm. The captured data were then used
as inputs to our KJO calibration algorithm, which

1It should be noted that by using additional pixel values surround-
ing the original science target pixel value, a set of 3D positions can
be calculated to yield a small science target rock DEM.

was based on a model of the arm’s forward kine-
matics for each calibration 3D point and a nonlinear
Levenberg–Marquardt least-squares error minimiza-
tion approach. The calibration algorithm calculated a
single value for each KJO, which were found to be
base joint offset = −1.185 deg, shoulder joint offset =
3.045 deg, and elbow joint offset = 5.084 deg. These
KJO values were then incorporated into our arm’s
forward and inverse kinematics models for subse-
quent use by the AAPI.

A further calibration that was performed was to
obtain the (left) camera origin to arm origin geomet-
ric transformation, so that the 3D position of the can-
didate science target relative to the arm could be
obtained. An external measurement approach could
have been used to accomplish this calibration, but we
wanted to investigate the application of a potential
in situ (i.e., on Mars) calibration method. Here the
pan and tilt device was oriented so that images of the
arm’s end point could be captured in both the left and
right WAC. This pan/tilt orientation was referred to
as the zero pan/tilt state (the values used were pan =
180 deg, cameras looking forward; tilt = 45 deg, cam-
eras looking downward relative to the horizontal).
When in this orientation the arm was moved to six
different end-effector locations, where each location
would be within the typical arm/rock contact oper-
ating envelope. A fiducial marker had been placed at
the end of the arm, and it was important to be able to
view this marker in all six arm positions and in both
the left and right WAC images. For each arm location,
our inverse kinematics algorithm was used to obtain
the 3D position of the fiducial marker relative to the
arm’s Cartesian origin.

Each of the six image pairs (left and right WAC)
of the fiducial marker was then rectified, and using
the stereo triangulation algorithm, the 3D positions
of the fiducial marker were obtained relative to the
left camera Cartesian origin. A least-squares Helmert
transform–based algorithm was then applied to the
fiducial 3D camera and 3D arm data to obtain the
camera origin to arm origin geometric transformation
parameters. A six-degree-of-freedom (DoF) trans-
form is created (plus scaling) that can be used to map
a candidate science target from camera 3D space to
arm 3D space. No additional camera origin to arm
base origin transform parameters are required.

Figure 10 shows an example image pair used as
part of this camera to arm origin transform work.
The resultant transform was used as part of the AAPI
processing during the field trials, and it was shown
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Figure 10. Left and right WAC images (prior to rectification) showing the fiducial marker attached to the arm end point.
A piece of paper was placed behind the marker to aide observation.

that such an approach could be used for in situ
camera/arm calibration should it be required (the
in situ–captured stereo camera images could be
processed on Earth, and the resultant transform
uploaded to the rover on Mars).

Before the generated Helmert transform could be
applied during the field trials, any calculated candi-
date science target in 3D camera space had first to be
transformed to the zero pan/tilt state, and another
trigonometric-based transform was created for this
purpose.

Figure 11(a) shows an example of applying the
zero pan/tilt state transform. This shows a plan view,

and the science target in camera space is shown
by the crosshair. “RP” shows the (relative) orienta-
tion (pan) of the left/right WAC baseline separation
when observing the science target. “TP” is the result
of transforming the WAC baseline separation to the
zero pan/tilt state. The resultant transformed target
x and z Cartesian values are shown with the dashed
lines.

Figure 11(b) shows the same example but now in
side view. Again the science target in camera space is
shown by the crosshair. “RT” shows the orientation
(tilt) of the WACs relative to the science target. “TT”
is the result of transforming the WAC tilt to the zero

Figure 11. Zero pan/tilt state transform example: (a) plan view and (b) side view. Axis units are in millimeters. Coordinate
system origin here is the camera origin for the left WAC.
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pan/tilt state. The resultant transformed target y and
z Cartesian values are shown with the dashed lines.

The AAPI incorporated additional algorithms for
zoom camera pointing and (as mentioned previously)
standard trigonometric-based forward and inverse
kinematics algorithms for arm end-effector 3D posi-
tion determination and end-effector positioning, re-
spectively. The zoom camera pointing algorithm was
used so that when a candidate science target had been
found within a left WAC image, new pan and tilt
joint rotation values could be calculated in order to
slew the cameras to an orientation such that the sci-
ence target was now along the principal axis of the
zoom camera. Prior to moving the arm end point to a
candidate science target position, the arm kinemat-
ics algorithm (together with the generated rock 3D
data) was used to check that the target was within
the reachability envelope of the arm. The generated
rock DEM can be processed for (optimal) placement
regions; in our case the simplest approach we have
experimented with involves searching for the largest
(relative) planar region (with respect to the horizon-
tal) and then finding the centroid of this region using
standard image processing methods (see Figure 12).
Our AAPI approach does not require rock boundaries
to be determined as the largest planar region detec-
tion process effectively segments one placement re-
gion from another.

It must be emphasized that SARA provides sci-
ence target data (i.e., the left WAC pixel coordinates
for the centroid of the identified rock science tar-

Figure 12. Plan view of “rock garden” DEM data that have
been processed to obtain the rock planar regions for arm
placement purposes. The black crosshair denotes the cen-
troid on the largest contiguous planar region.

get), based entirely on the rock’s science potential
and not on the practicalities of actually obtaining a
science sample from the rock in question. Naturally
occurring rocks and an instrument head (end effec-
tor) typically have complex geometries, and it may
not be possible to deploy multiple instruments to the
same SARA-identified rock centroid location without
rock/instrument head collision. The ability to deploy
multiple instruments to the same point on a science
target rock is regarded as an important operations
capability. However, the computational overheads in
ensuring that for every individual instrument place-
ment and rock contact, there would be no collision be-
tween the remainder of the instrument head and any
other part(s) of the target rock would be undesirable.

The AAPI approach is to identify “optimal”
placement regions on or as near as possible (based
on a simple Euclidean metric) to the original SARA-
identified science target. Hence, for example, a place-
ment target location that is surrounded by a flat
(planar) region would be preferable to a placement
target location that is at the bottom of some pit-type
(“concave”) surrounding region. The AAPI generates
placement target data based on geomorphological
analysis methods developed for geographical infor-
mation system (GIS) technology (Wood, 1996). Given
a science target rock DEM and a start DEM grid cell
(derived from the SARA science target data), a local
window (usually 3 × 3) is passed over the DEM. The
central DEM grid cell value is compared to its neigh-
bors, and based on the relative DEM height values a
number of different 3D rock surface features can be
determined. Figure 13 shows examples of six 3D rock
surface features. In addition to identifying rock 3D
surface features relative to the horizontal, the AAPI
can also vary the feature gradient so that, for exam-
ple, a planar region at an angle of 45 deg relative to
the horizontal can be identified.

Typical arm operations involved executing a
gross arm motion to a safe “standoff” position us-
ing joint-by-joint control (i.e., one joint at a time was
moved). A simple straight-line trajectory from this
safe position to the target rock contact position was
then computed based on the work of Taylor (1979).
Final arm motion along the target trajectory was ac-
complished using joint-interpolated motion (i.e., all
joints were moved simultaneously, and each joint mo-
tion velocity was zero when the target position was
reached).

Based on a priori information obtained regarding
motor speeds and power consumption for the rover
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Figure 13. Example 3D rock surface features and their as-
sociated DEM height derivative relationships that can be
used to determine an optimal instrument placement region
given a SARA-identified science target.

chassis motors and the arm joint servo-mechanisms,
science activity cost values were calculated in terms
of required time (seconds) and power (watts) to ex-
ecute a traverse to a science target and/or an arm
placement. This information was output by the AAPI
to the CREST executive for subsequent use by the
TVCR.

7. FIELD TRIALS

Figure 14 shows the layout of the nominal scenario
used in the field trials, which allowed us to test all as-
pects of the architecture and the overall system con-
cept. The objective was to determine whether the in-
dividual components could function together as a
complete system to demonstrate successful closed-
loop science autonomy in a representative (ExoMars-
like) scenario.

The duration and budget of the project limited
the eventual number of trials that could be carried
out, thereby limiting the statistical significance of the
results for the integrated system; however, the per-
formance of the individual components has also been
evaluated in a stand-alone configuration. This al-
lowed more comprehensive testing, e.g., using more
complex MER images to evaluate SARA than we
could achieve in our test facility.

The planned activity for this simulated sol was
to traverse from A to B and carry out periodic as-
sessments of the terrain at discrete waypoints using
acquired WAC images. The platform passes a small
rock field to its left (near centerline of figure), which

Figure 14. Demonstration scenario showing nominal
route (waypoints WP1–3) with arrow pointing to the rock
of most interest at WP3.

is not of science interest. As it nears WP3 there is a set
of rocks at 10 o’clock from its position. Some of these
are of high scientific value as they exhibit layering
features including both horizontal and cross bedding.
The challenge therefore was to ignore some rocks, de-
tect those of interest, and escalate the opportunistic
analysis to include high-resolution imaging and arm
placement.

Figure 15 shows how the nominal plan evolved
in the course of the experiment. Images at WP2 were
assessed but not deemed to be interesting enough. At
WP3 a morphological analysis was carried out on an
input WAC image; the resulting analysis showed a
high concentration of peak and ridge features, which
caused the SARA component to generate a request
to take a high-resolution image. This was assessed
and authorized by TVCR. The figure also shows the
resulting plan deviation where a close-up or level 2
analysis fragment has been inserted into the nominal
plan. Once executed, SARA carried out a structural
analysis on the high-resolution image.

The output shown in Figure 16(d) shows a sig-
nificant concentration of horizontal bedding. SARA
requested a more detailed analysis of the target via
the executive. The executive queried the arm agent to
get an approximate measure of the resources required
to conduct an arm placement. It then commanded
TVCR to parse this request and determine its fea-
sibility. TVCR determined that the request could be

Journal of Field Robotics DOI 10.1002/rob



Woods et al.: Autonomous Science for an ExoMars Rover–Like Mission • 379

Figure 15. Portion of nominal plan consisting of a set of traverse and analysis (including acquisition of WAC images) tasks
on the first line at the top. Requests for the insertion of additional science tasks at WP3 are denoted by a “?” box and TVCR
assessment of each request indicated by the “P” box. The continuous line from TVCR shows the outcome, with the dashed
line highlighting what would happen if the request was refused, i.e., no replan. Lines 2 and 3 show the result of successful
replans with new science tasks (level 2 remote analysis and ARM Analysis Inst Suite 1) inserted by TVCR following its
approval of opportunistic requests from SARA (via the executive). Note: the “FG” labels attached to tasks are simply task
identifiers.

Figure 16. (a) WAC input image. (b) Processed morphology analysis. (c) High-resolution input image. (d) Bedding analysis
output. (e) Successful arm placement. Note: Spherule (Vicon marker) for illustration only.

serviced, and the appropriate plan fragment was in-
serted in the plan. Figure 16(e) shows the resulting
arm placement.

Figure 17 shows a graph of our arm placement
results from an AAPI calibration trial. The 10 differ-
ent science target points (i.e., potential SARA input
data) were identified, and their actual positions were

measured using our Vicon system. Each science tar-
get was then processed using the AAPI, and the arm
moved to each target position. The actual arm end
point was then measured using the Vicon system so
that a comparison could be made against each com-
manded science target position. Prior to the calibra-
tion of the AAPI KJO, we experienced considerable
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Figure 17. 2D graph of arm placement results: plan view.
The 10 different target science points are shown (+) to-
gether with the achieved arm placement position for both
the calibrated (∗) and uncalibrated (×) AAPI KJOs. The un-
calibrated points show clearly the placement errors that are
due to arm deflection under gravity. The origin for this
graph is the mechanical interface between the arm base
joint and the rover chassis base plate, i.e., ≈230 mm above
the nominal ground plane.

placement errors mainly due to arm deflection; these
uncalibrated AAPI points are also shown. Note: As
this system did not include an autonomous naviga-
tion component, requests for additional analysis were
serviced only for rocks within reach of the current po-
sition. No mobile target tracking was therefore used
or developed. It is assumed that the rover and target
have not changed position, therefore, between
analysis phases.

It should be noted that the arm kinematics ori-
gin was set to be at the mechanical interface be-
tween the arm base joint and the rover chassis base
plate (i.e., ≈230 mm above the nominal ground
plane). Given this origin and adopting conventional
robot arm Cartesian axes meant that all of our sci-
ence target points (for the relatively small rocks
that were used) were in the negative Z direction
(i.e., lower than the chassis base plate): hence the
negative z values in Figures 18 and 19. Analysis of the

10 commanded/actual arm placement results pro-
duced a mean arm end point positional accuracy of
3.58 ± 1.793 mm [±1 standard deviation (SD)].

A week of on-site integration trials at the in-
door test facility resulted in the system being able
to successfully complete the reference test scenario.
As noted earlier, this work focused on the integra-
tion of the three main system elements during the
limited field trials, so the performance results cannot
be assessed in a statistically meaningful way. How-
ever, it does give an indication of some of the prob-
lems that were encountered and highlights areas that
could be improved in future developments. The trials
discussed below were performed at the final stages
of the integration. Owing to time constraints, trials
were on some occasions curtailed (see text below) if
a component did not perform as expected in order
to address the problem at hand. Given the unavail-
ability of an autonomous navigation component, tra-
verse activities were executed manually by operators
waiting on instruction from the execution component
trace output. With the exception of the manual drives,
SARA, TVCR, AAPI, and the executive operated in an
autonomous way starting from the upload of a plan,
progressing with telemetry downlinks, and ending
with final status reports. Finally, although we experi-
mented with the insertion of microtraverses to reach
targets that were close but out of reach in the early
stages of integration, these were ruled out in the final
trials because of the absence of an autonomous navi-
gation component.

Looking at the performance of the integrated
system in more detail, then: SARA operation was
relevant with respect to two parts of the terrain, i.e.,
at WP2, where it had to analyze but ultimately reject
targets in view, and at WP3, where it had to correctly
identify one rock from four as being the most impor-
tant and request both close-up analysis and then arm
placement activities. As noted in Figure 5, standoff
analysis and SVS derivation were based primarily on
the structural “roughness” SVS measure, which could
be derived from the geomorphological feature vector.
For these trials this was set at 0.3 (i.e., ratio of nonpla-
nar terrain that could be considered as rough given
occurrence of ridge and channel features, “bedding”).
For the last 10 trials, 70% resulted in a successful re-
jection of the target rocks, i.e., SVS <0.3 for structure.
The unsuccessful trials could be attributed to seg-
mentation failure, in which target rocks became fused
resulting in an overly high SVS and also scaling was
not taken into account and the rover was too close to
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Figure 18. 2D graph of arm placement results: side view.

the target, which resulted in a greater occurrence of
ridge and channel features and a false positive from
SARA. Between trials the sources of variability were
the ambient light conditions, i.e., from artificial light
only to a mix of morning/afternoon natural light and
artificial lighting, and also small changes in rover
positioning created by the manual driving between
waypoints. After initial tuning it was found that the
relatively small changes in position led to the 30%
failure rate noted here.

If SARA behaved incorrectly at WP2, the trial
run was aborted because of time constraints. For the
seven trials that were successful, the trials proceeded
and SARA standoff analysis at the true target field at
WP3 was successful for five of the seven trials. The
failed runs were again due to poor segmentation or
an inability to detect the effect of scale on the results.
In both cases the neighboring rock was identified as

the target of interest, and although this rock was of
the same bedding type, it was out of reach of the in-
struments and would have resulted in a poor use of
resources for close-up analysis in a real mission. For
the small number of successful standoff analyses at
WP3, the close-up analysis correctly detected a suf-
ficient degree of structural bedding. The target SVS
threshold was set at 90 based primarily on the identi-
fication of dense cross bedding made up of individual
lines, which were >9 pixels long. The average SVS
was 140 with a ±20 spread for those runs. For each
successful SARA standoff, TVCR authorized close-up
analysis and ARM placements by performing a suc-
cessful replan. For those ARM placements that were
invoked after successful close-up analysis, the ARM
movements were made as requested with an accu-
racy that was commensurate with that outlined in
Figure 17.

Figure 19. 2D graph of arm placement results: front view.
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Figure 20. MER Mars test data. Passing this image through the SARA obtains a target on the right-hand image. This was
derived from using the feature (e.g., ridge, channel, or peak) density obtained from the second image and the segmented
region mask from the third. Although real imagery was used, the system is assisted by the color difference between the soil
and rocks.

Figure 21. MER Mars test data. Again a target was selected in the right-hand image, which was derived using the feature
density characteristics and the segmentation of heterogeneous regions. Again it can be argued that the system was helped
by the contrast between the soil and rocks.

Figure 22. MER Mars test data. This sequence of images shows that when the rocks are very similar to their backgrounds,
it becomes hard to distinguish them. Although a target was found, its boundaries are not correct. This could be addressed
by changing the contextual model and parameter configuration file, providing better values that will decrease the expected
contrast difference.

8. MARTIAN TEST DATA

To test the feasibility of the SARA system and the
initial target extraction methods, actual Martian data
were obtained from the MER2 panoramic image
database. Real data were used for testing due to the
excessive contrast between background terrain and
targets of interest in our simulated Mars environment
used during the integration experiments. The main

2http://www.nasa.gov/mission pages/mer/index.html

differences between the real and experimental setup
are the contrast between the rocks and the surround-
ing terrain and sky, etc., and the density, shape, size,
and distribution of the rocks and other interesting
features. Although the SARA system is in the early
stages of its development and is limited in actual
analysis capability, the results shown in Figures 20–25
are with no reconfiguration of system parameters as
used during the field trials. Figures 20–23 show how
SARA performed with MER, standoff scale images.
Figures 23 and 24 show close-up performance.
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Figure 23. MER Mars test data. Although this image is similar to Figure 22, the segmentation algorithm could not distin-
guish the region at the top right (third image), which leads to the result in the right-hand image, where the target is not a
single rock but several, and it is coincidental that the target position is actually on the rock. Again this could be addressed
through the contextual model and configuration files, as well as an adaptive segmentation algorithm.

The results shown in Figures 20–23 show that
the geomorphology analysis approach for standoff
analysis performs reasonably well with complex 2D
MER images. This approach, which was developed
and tested in our aerobot studies (Woods et al., 2008),
works best on 3D data such as DEMs, and we an-
ticipate improvements in robustness if DEMs were
also assessed. There is of course an additional com-
putational cost to consider for 3D data analysis. This
implementation selected targets on the basis of abso-
lute feature density. In the aerobot work we used a

fuzzy logic–based system to apply a more sophisti-
cated analysis to raw feature data in order to extract
targets with particular characteristics.

To complete the SARA analysis test using real-
world data, high-resolution images from the MER
mission were also used. An important note here is
that presently SARA looks only for bedding and lim-
ited textual information. In normal operations the
SARA would have requested a high-resolution close-
up image (from the AAPI) of the target from the
standoff analysis.

Figure 24. MER Mars close-up image test data. Features are detected (top right); this describes surface texture and rough-
ness. Sobel edge detection and morphological gradient combination (bottom left) allows the detection of the changing
boundaries, which are then filtered and thinned (bottom center). A line mask is then passed over the thinned image, iden-
tifying potential lines and their directions and their lengths. This classification is superimposed onto the original image
(bottom right). Bottom right image shows the identified bedding having an orientation of between 0 and 14 deg approxi-
mately with respect to the x axis (horizontal) of the image.
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Figure 25. Similar to Figure 24, but this time the bedding analysis is incorrect as horizontal lines are again identified. This
is a result of the scale of the image and the line mask as there are horizontal lines present in the image from wind deposition
and shadows from the sun position.

Figures 24 and 25 again show that the initial re-
sults from the SARA at processing actual Martian
data are promising. To improve the analysis and clas-
sification performance further, information regarding
scale and 3D profiles would be very useful as these
would reduce the errors from using the masks. This
information would also help in the classification of
texture, as the scale and shape are very important.
The 3D information would also help eliminate the ef-
fect of shadowing on the system.

9. TVCR PLAN MODIFICATION EVALUATION

TVCR is built on a plan validation system, imple-
mented in VAL (Howey, Long, & Fox, 2004). The
performance of TVCR is dominated by a series of at-
tempts to validate plans using VAL, with plan mod-
ifications being achieved by a series of edits that are
subjected to validation before being released. The ed-
its themselves are cheap, because they amount sim-
ply to confirming that the conditions hold in order
to allow the addition of predefined plan segments,
or else to adjust plans as elements are removed. In
both cases, the numbers of constraints that must be
considered is small, because plan fragments gener-
ally have local relationships within the plan structure.
Thus, the most important function in determining the

execution costs for TVCR is the validation task. To
give an indication of the cost of plan validation, we
have run the validator on a collection of competition
plans from the 3rd International Planning Competi-
tion (Long & Fox, 2003). The test was executed on a
desktop PC running Linux with a 2.6-GHz processor
and 500 MB of memory. The collection contains 5,381
plans, with a combined length of more than 185,000
steps. This complete collection requires 14 min and
14 s (elapsed time) to validate (not all, but most plans
are valid). This is equivalent to an average of 160 ms
to validate each plan, with an average of more than
34 steps per plan. Note that this measurement in-
cludes separate invocation of the validator from the
command line for each plan.

A separate test in which multiple plans for the
same problem were validated in a single batch (so
only one invocation of the validator was required)
completed a validation of 20 plans, averaging 364
steps each, in just under a second. This shows that
without the overhead of starting the validator and
reading in the domain and problem files, the average
time to validate a plan is as little as 50 ms.

In a plan modification cycle, the maximum num-
ber of validation calls is determined by the number
of plan fragments the plan contains and how many
might have to be removed in order to arrive at a plan
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that fits the resource envelope for the execution cycle.
In practice, this is typically limited to about 10 calls.
In fact, far fewer are likely to be required: in our tests,
only four or five calls were needed. Thus, the total
resource requirement for this system is less than 1 s
of CPU time. Of course, onboard CPU resources are
likely to be significantly less powerful than the desk-
top used for evaluation (in a space science environ-
ment). A space-qualified CPU runs at 100 MHz, so
we might hope to lose two orders of magnitude in the
transition, suggesting that the upper bound on the re-
quired CPU time would be about 2 min, but less than
half of this would be required on typical runs.

It is very difficult to give a thorough empirical
evaluation of the plan modification strategy itself,
because this depends on the properties of the frag-
ments that are supplied to encode opportunities and
the availability of resources with which to exploit the
opportunities. The approach TVCR adopts is conser-
vative and greedy, so it will attempt to maximize the
number of high-priority fragments it fits into the time
line, but with minimal alteration of the existing time
line and always subject to the constraints on use of
fragments and on validity of the time line. This means
that TVCR will not fail to produce a valid time line,
but it might fail to find an optimal ordering of frag-
ments to achieve the maximal operational use of re-
sources. We did not experience any such examples,
but it is not hard to construct artificial problems with
this property. However, TVCR does not produce bad
solutions in these cases, merely suboptimal solutions
(according to the maximum science return criterion).
We believe that solutions that push the envelope of
resource availability to achieve maximal returns are
likely to be more fragile and prone to failure, so a
solution that appears optimal from the perspective
of predicted science return might well be suboptimal
from the perspective of actual science return.

10. LESSONS LEARNED

Owing to the short duration of the CREST project
(1 year), only very basic criteria were used for sci-
entific assessment (i.e., presence of layering, absence
of layering, or albedo from gray scale). Furthermore,
the need to incorporate the planning agent and other
system architecture components within the devel-
opment and testing limited the time available for
generic science evaluation. Clearly, this was neces-
sary to explore and assess the feasibility of the pro-
posed the architectural approach. It suggests that for

future work, the science evaluation component could
be developed independently. Integration could then
be repeated when the component is more mature.

Although the identification methods used
proved reasonably robust with respect to the image
data obtained during the test campaigns, differences
in the certainty of the analysis results were obtained
under various lighting conditions. These differences
were primarily due to the lighting intensity and
direction of shadowing effects caused by either
changes in the ambient Mars Yard environment or
changes in the position of the platform between
groups of trials. On occasion, these variations were
quite subtle and resulted in the introduction of extra
information on target objects. These effects could
also obscure target features to some extent. All of
these issues exposed the well-established problem of
threshold sensitivity in computer vision applications.

The use of 3D information generated by the
pancam/navcam systems would greatly improve the
geological identification and classification process.
The additional perspective will allow easier extrac-
tion of the granule size and shapes and the variation
in the depths of the bedding structures and coarse-
ness of the surfaces, similar to field geologists when
they are interacting with their environment. The per-
spective on an image can also influence the result
of the processing as the angle from which a rock is
presented to the camera can mean that interesting
features are out of view.

As far as planning and plan modification are con-
cerned, we found that modeling the domain in PDDL
was straightforward and gave access to a consider-
able collection of useful tools. However, PDDL does
not include any way to capture the organizational
structure of plans or parts of plans. The expression of
plan constraints and plan fragments is an additional
layer built over the PDDL domain description. It is
interesting to observe that a similar constraint lan-
guage was found necessary to support planning in
MAPGEN (Bresina & Morris, 2006), and many of the
observations made in the use of MAPGEN, although
it is a ground-based tool for mixed-initiative plan-
ning, apply equally to the TVCR onboard planning
context. The challenges of restricting the opportunis-
tic extension or modification of plans, within limited
computational resources, remain significant. Experi-
ences with the Autonomous Spacecraft Experiment
on Earth-Observing 1 (Chien et al., 2005), although
grounded in a more extensive experience with de-
ployment, show many similarities with our own.
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A number of lessons have been learned from
the AAPI work. First, the mechanics of the arm and
pan and tilt mechanism used during the field tri-
als must be improved. Expediency drove us to use a
simple three-DoF arm and to use commercial off-the-
shelf (COTS) servo mechanisms to drive the arm and
pan/tilt rotation axes. Although this provided a sim-
ple and relatively quick solution, it did generate pan-
cam pointing and arm accuracy placement problems.
Furthermore, low-mass carbon fiber structures were
used for the mast structure and arm link lengths. Al-
though this was acceptable for the pan/tilt mecha-
nism, it did generate arm deflections (as shown by
the measured KJO values required to compensate for
this) despite the fact that there was very little mass
at the arm end point. Although low-mass structures
are essential for flight hardware (although carbon
fiber would not be appropriate for an exobiology mis-
sion), ultra-high-quality, zero-backlash gearing must
be used, and any kinematics model must incorporate
an arm deflection model (both bending and torsion
effects). This is an area that is being worked on as part
of our current AAPI to Beagle 2 Development Model
(DM) arm porting activity. The Beagle 2 arm has five
DoFs and has been studied as a possible baseline arm
for the ExoMars mission.

Second, calibration is a vital area that must be
given a great deal of thought to plan and execute. All
kinematics devices must be calibrated together with
any camera intrinsic and extrinsic properties. For
the work that we are performing, then, arm/camera
cross calibration is also required. Calibration is a
time-consuming activity and shortcuts are not ad-
visable. Although we have considerable experience
with arm calibration (having calibrated the Beagle 2
Development Model and Flight Model arm) and cam-
era calibration (having been team members of the
Beagle 2 Stereo Camera System), tracking down ev-
ery error source, systematic or otherwise, is a major
activity. Given the mechanical inadequacies of our
arm and pan/tilt mechanics, we did manage to
achieve a mean arm end point positional accuracy of
3.58 ± 1.793 mm (±1 SD).

It should be noted that the current requirements
for the ExoMars mission dictate a contact instrument
positional accuracy better than 5 mm (including
±1 SD) and an instrument approach direction accu-
racy of less than 0.5 deg (relative to the desired ap-
proach trajectory, and including ±1 SD). However,
it must be emphasized that these final error lim-
its are after, first, a stereo camera capture and 3D

target processing, second, a subsequent 3-m traverse
to the vicinity of the science target, and finally, the re-
quired arm motions and instrument placement activ-
ities. Automation of such an activity sequence while
keeping within the required resultant positional and
angular error limits will be not be easy. Owing to the
contact instrument positional errors that are inherent
to any arm placement strategy, it is highly likely that
an approach similar to that used for Beagle 2 will be
adopted for ExoMars. This involved the use of a force
sensor at the mechanical interface between the instru-
ment head (PAW) and the robot arm. Hence the final
approach to any science target contact incorporated a
do move while force sensor ≤ preset threshold joint control
strategy.

Third, although we found that the stereo match-
ing and occlusion detection algorithm that we
adopted for our field trials performed well with re-
spect to high-disparity map accuracy, we did find
that well-informed algorithm initialization parame-
ters were required. Although this would be accept-
able for a Mars mission that had a high degree of
ground-based intervention, future missions requiring
a high degree of rover autonomy would find that a
different algorithmic approach is necessary. Further-
more, adopting an algorithm that has been devel-
oped for standard desktop computing applications
would most likely completely overpower the rela-
tively meager computing resources that are available
to the current state-of-the-art planetary rover. Space
qualification is a costly and time-consuming activity,
and although progress is being made, it will be some
time before we come close to the desktop computing
resources that we all take for granted. Until we reach
this situation, then, onboard planetary rover stereo
image processing will require “smart” but computa-
tionally minimal algorithms. We refer to such algo-
rithms as “simple smarts,” and we believe this to be
an overlooked research area.

Fourth, we do believe that there is an argument
for investigating the use of FPGA technology for
many of the AAPI algorithms used in this study. Cer-
tainly elements of the WAC image processing, the
stereo triangulation, the forward and inverse kine-
matics, and the various transforms developed as part
of the AAPI process are of sufficient maturity to war-
rant an FPGA approach. We envisage a dedicated arm
agent and a perception agent whereby the process-
ing is not reliant on the planetary rover core pro-
cessor. Certainly the arm joint motor control needs
close coupling between speed commanding and
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motion sensing, and an FPGA would be ideal for
such activities. If we have to wait for improved space-
qualified computing hardware, then an obvious ap-
proach is to have a multiprocessor solution (intercon-
nected using SpaceWire3 or a multicore system on a
chip solution). FPGAs form an ideal component tech-
nology within such a distributed computing architec-
ture.

Finally, our least-squares Helmert transform–
based approach used to map candidate science tar-
get 3D data from camera Cartesian space to robot
arm kinematics Cartesian space has shown that in
situ camera/arm calibration is possible. Even after
extensive calibration activities, one must realize that
all planetary rover components must be sterilized
and baked at 125◦C for 48 h (or use peroxide-plasma
methods). It must then withstand the vibrations of
launch, 20–2,000 Hz, +9 to −9 dB/oct, the vacuum,
and −100◦C temperatures of space. Upon impact
with the surface of Mars, even with the protection of
gasbags, the rover could experience shock forces as
high as 200× gravity. Once deployed it must oper-
ate within an atmosphere that has a breakdown volt-
age as low as 100 V, very fine blown dust, and a di-
urnal temperature range of −100 to +30◦C. This all
goes to emphasize that even with a pristine calibrated
robot prior to launch, one cannot assume that it will
arrive on the surface of Mars with all of its calibra-
tion parameters intact. In situ (on Mars) calibration
(correction) procedures need to be developed in par-
allel with the conventional prelaunch procedures. We
believe that closed-loop camera processing and arm
placement control methods are a fertile area for fu-
ture research.

We learned a number of lessons from how the tri-
als themselves were conducted. First, one of the main
features of this work was integration of individu-
ally complex components. Several sustained (i.e., full
team complement over a number of days), integra-
tion testing and preparation sessions were essential
in the run-up to the final field trials. Second, it is im-
portant to explicitly define and specify the test trial
trajectories in situ and on paper before the end of
preparation sessions so that a common understand-
ing can be truly realized. It is easy to verbally affirm

3SpaceWire is an asynchronous spacecraft communication-
switched network based in part on the IEEE 1355 standard of
communication. It is coordinated by ESA in collaboration with
several European space companies and other space agencies
(NASA and JAXA).

a common understanding during preparation in the
vicinity of the test area when in fact subtly differ-
ent interpretations may be formed. If these are not
checked, effort can be misplaced in the off-site indi-
vidual follow-up work. Finally, if the final field trials
are temporally constrained (e.g., access to the test site
resource being limited), then it is important that the
trials are actively and tactically managed to ensure
that the main goals are achieved. This requires pri-
oritization during problem resolution and initiation
of appropriate parallel activities when bottlenecks
occur.

11. CONCLUSIONS

Implementing science autonomy for a robotic explo-
ration platform is a challenging but attractive goal.
It requires a comprehensive system design that coor-
dinates and combines a number of complex compo-
nents. This work has shown that such a system con-
cept can be developed for a mission such as ExoMars,
which evolves the current operations paradigm in a
practical way. Three generic elements are required
to build this system. First, there is science assess-
ment and response. We have outlined a framework
for the development of an approach to autonomous
field science–based analysis of fundamental geolog-
ical attributes. The SARA implementation demon-
strated here has addressed only the basic elements of
this framework, and clearly the evolution of this ca-
pability is a long-term prospect. However, we believe
that it can be deployed in an incremental way as the
concept evolves. The next step would be to develop
this element further in a stand-alone form with which
to test the proposed methodology more thoroughly.
Such a model would be independent of any system
architecture or planning software and concentrate on
the generic concepts of science evaluation and as-
sessment. At the core of the model would be a rela-
tional database populated with a broad and diverse
library of structural, textural, and compositional ref-
erence data ranging from simple gray scale cartoon
images through to multispectral image cubes and
compositional spectra. In addition to the scientific
content, the database would also include engineering
and environmental information relevant to the mis-
sion, instrumentation, and planetary body. Suitable
data have already been accumulated from existing
missions and analog studies (Pullan et al., 2008).

The second critical component is a plan val-
idation and replanning element. This study has
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demonstrated the suitability of the TVCR concept for
this particular task. Such a component may be used
on ExoMars to support time line optimization. It is
beneficial to know, therefore, that it could also sup-
port autonomous science should it be deployed. The
third generic component is the autonomous control of
active platform elements such as a robotic arm or lo-
comotion system. In this work we have demonstrated
a concept for autonomous approach and placement of
a robotic arm.

The arm used for the field trials was a three-
DoF device, and simple joint-by-joint control meth-
ods were used. Currently we are working on a five-
DoF arm, namely the Beagle 2 development model
arm. Here we have developed full joint-interpolated-
motion with simultaneous joint motor speed control.
Arm end-effector placement trajectories can be de-
fined for this five-DoF arm, and the generated science
target rock DEM data can be used to calculate a rock
surface normal for arm placement trajectory determi-
nation. As we have detailed CAD models of the Bea-
gle 2 arm and associated mounting structure, we pro-
pose to use a bounding sphere approach to check for
potential arm collision situations. Currently we are
porting our AAPI software to the Beagle 2 arm appli-
cation, and the results from this work will be reported
in future literature.

The integration of an autonomous science assess-
ment with both planning and autonomous arm place-
ment has been a unique contribution of this work.
The main philosophical contribution has been our at-
tempt to provide an implementation of the way geol-
ogists hierarchically explore scenes of interest over a
range of scales in a continuous manner: i.e., acquire,
assess, decide what data and at what scale would
help explain the target, acquire, and repeat, etc. This
has been achieved by providing a framework to allow
different types of autonomy (science assessment and
response, planning, approach, and placement) to col-
laborate interactively to pursue scene investigation
over a number of iterative steps.

In conclusion we believe that, although challeng-
ing, science autonomy in some form will be essen-
tial for future exploration missions given the ineffi-
ciency of using solely Earth-based science analysis
and planning.

The need to optimize the collection, selection,
and transmission of science data could greatly benefit
from the use of such technology and may ultimately
be required to ensure that nominal science goals are
achieved.
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